材料分析测试技术ppt重点

合集下载

纳米材料测试分析技术 ppt课件

纳米材料测试分析技术  ppt课件
第四章:纳米材料测试分析技术
纳米材料测 试分析技术
尺寸评估 结构表征 性能测量
电子显微分析
扫描探针分析
X-射线衍射分析
光谱分析
能谱分析
粒 ppt课件 度 分 析
1
天津理工大学纳米材料与技术研究中心
微观世界的探索
社会发展、科技进步总伴随着工具的完善和革新。 以显微镜来说吧,发展至今可以说是有了三代显 微镜。这也使得人们对于微观世界的认识越来越 深入,从微米级,亚微米级发展到纳米级乃至原 子分辨率。
ppt课件
5
一、电 子 显 微 分 析
电子显 微分析
透射电子显微镜(TEM)
+ 扫描电子显微镜(SEM)
X-射线能谱 分析( EDX)
电子探针显微分析(EPMA)
材料的形貌观察、材料的 表面和内部微结构分析
ppt课件
材料的微区成 分分析(微米)
6
透射电子显微分析
透射电子显微镜(简称透射电镜) Transmission Electron Microscope(TEM)
ppt课件
2
天津理工大学纳米材料与技术研究中心
第一代为光学显微镜
1830年代后期为M.Schleide
和 T.Schmann 所 发 明 ; 它 使
人类“看”到了致病的细菌、
微生物和微米级的微小物体,
对社会的发展起了巨大的促
进作用,至今仍是主要的显
微工具 。
ppt课件
3
天津理工大学纳米材料与技术研究中心
ppt课件 microscope”
8
普通透射电子显微镜(TEM)
透通过两个中间镜
之间的相互配合,可在较大范
围内调整相机长度和放大倍数。

材料的测试、表征方法和技巧ppt课件

材料的测试、表征方法和技巧ppt课件
用) 共聚焦方式,适于表面或层面分析,高信噪比 能适合黑色和含水样品 高、低温及高压条件下测量 光谱成像快速、简便,分辨率高 仪器18稳固,体积适中,维护成本低,使用简单
红外光谱
光谱范围400-4000cm-1 分子振动谱 吸收,直接过程,发展较早
平衡位置附近偶极矩变化不为零 与拉曼光谱互补 实验仪器是以干涉仪为色散元件 测试在中远红外进行,不收荧光干扰
方法一:纵坐标为吸收强度,横坐标为波长λ(m) 和波数1/λ,单位:cm-1 。可以用峰数,峰位,峰
形,峰强来描述。 纵坐标是:吸光度A 应用:有机化合物
的结构解析 定性:基团的特征
吸收频率; 定量:特征峰的强

6
方法二:纵坐标是百分透过率T%。百分透过率的定义 是辅射光透过样品物质的百分率,即 T%= I/I0×100%, I是透过强度,Io为入射强度。
峰数 峰数与分子自由度有关。无瞬间偶基距变化 时,无红外吸收
峰强 瞬间偶极矩大,吸收峰强;键两端原子电负 性相差越大(极性越大),吸收峰越强
由基态跃迁到第一激发态,产生一个强的吸收峰, 基频峰
由基态直接跃迁到第二激发态,产生一个弱的吸收 峰,倍1频1 峰
有机化合物基团的特征吸收
化合物红外光谱是各种基团红外吸收的叠加
各种基团在红外光谱的特定区域会出现对应的吸收 带,其位置大致固定
受化学结构和外部条件的影响,吸收带会发生位移, 但综合吸收峰位置、谱带强度、谱带形状及相关峰 的存在,可以从谱带信息中反映出各种基团的存在 与否
12
常见基团的红外吸收带
=C-H C-H CC C=C
O-H O-H(氢键)
C=O C-C,C-N,C-O
S-H P-H N-O N-N C-F C-X

《材料测试方法》课件

《材料测试方法》课件
《材料测试方法》ppt课件
目 录
• 材料测试方法简介 • 材料力学性能测试 • 材料物理性能测试 • 材料化学性能测试 • 材料无损检测技术 • 材料现代测试技术
01
材的性能
通过测试,可以了解材料在 各种条件下的性能表现,如 力学性能、热性能、电性能 等。
质量控制
测试方法的分类
破坏性测试与非破坏性测试
根据是否对材料造成破坏,测试方法可分为破坏性测试和非破坏性测试。破坏性测试会改变材料的结构和性能,而非 破坏性测试不会对材料造成损伤。
宏观测试与微观测试
根据测试尺度,测试方法可分为宏观测试和微观测试。宏观测试主要关注材料的整体性能和行为,而微观测试则关注 材料的微观结构和性质。
红外线检测
总结词
利用红外线对材料进行辐射,通过测量材料对红外线的吸收和反射来分析材料的表面和内部结构。
详细描述
红外线检测利用不同物质对红外线的吸收和反射特性不同,通过测量材料对红外线的吸收和反射光谱 可以分析材料的表面和内部结构。该方法具有非接触、无损、快速等优点,适用于塑料、橡胶、涂料 等多种材料的检测。
测试是材料质量控制的重要 手段,通过测试可以判断材 料是否符合设计要求和使用 标准。
研发与改进
测试可以为新材料的研发提 供数据支持,帮助研发人员 了解材料的性能特点,优化 材料配方和工艺。
安全评估
对于涉及安全性的材料,如 建筑材料、医疗器械等,测 试是进行安全评估的必要步 骤。
测试的重要性
保障产品质量
化学稳定性测试
总结词
化学稳定性测试用于评估材料在化学介质中的稳定性 。
详细描述
通过在不同化学介质中检测材料性能的变化,评估材 料的化学稳定性,如耐酸碱度、耐溶剂性等。

材料研究与测试方法-PPT精品文档

材料研究与测试方法-PPT精品文档

康普顿效应实验装置
康普顿效应----波长变长
波长改变的数值与散射角有关
式中2θ为散射线与入射线的夹角
石墨的康普顿效应
X射线的吸收
物质对X射线的吸收主要是由原子内部的电 子跃迁而引起的。当X射线的波长足够短时, 光子能量可把原子中处于某一能级上的电 子打出来,而它本射被吸收。在这个过程 中,X射线的部分能量转变成光电子、荧光 X射线及俄歇电子的能量。因此,X射线 的强度被衰减。
( 1 )证明了 X 射线是电 磁波, ( 2 )也第一次从实验上 证实了晶体内部质点 的规则而对称的排 列。
X射线管
X射线的特点
波动性: 以一定的频率 ν 和波长 λ 在空间传播 ; 具有干 涉、衍射、偏振等现 象 微粒性: 具有一定的质量m、 能量E和动量p.
X射线的波粒两重性
ν、λ与E、p之间也有如下的关系: E=hν=hc/λ P=h/λ 式中,h-Planck常数,等于6.625×10-27尔格.秒; c-X射线的速度,等于2.998×1010 cm/s. X射线是波长为: 0.001~10 nm 做晶体结构分析用的X射线的波长为: 0.05~0.25 nm
பைடு நூலகம்
Moseley定律


1/λ=a(Z-α)2 式中a和 α都为常数 Moseley 定 律 指 出 各 元 素的波长非常有规律 地随着它们在周期表 中的排列顺序而递减.
Moseley定律是元素分析 --X射线波谱分析(电子 探针定性 ) 及 X 射线荧 光分析的主要依据。
Moseley定律
第一章 X射线衍射分析
Kα线和 Kβ线
Kα线: L─→K Kβ线: M─→K 特征X射线的相对强度 主要是由(电子在各能级 之间的)跃迁几率决定的。 L层与K层较近,所以L 层上的电子回跳几率大 : IKα>IKβ

材料分析测试技术材料X射线衍射和电子显微分析课件

材料分析测试技术材料X射线衍射和电子显微分析课件

实际案例分析
材料A的X射线衍射和电子显微分析
通过结合应用,确定了材料A的晶体结构和微观结构特征,为其性能研究提供了 有力支持。
材料B的缺陷分析
利用X射线衍射和电子显微分析,成功检测到材料B中的晶体缺陷和微观结构变化 ,为优化制备工艺提供了指导。
材料X射线衍射和电
04
子显微分析的发展
趋势与未来展望
材料X射线衍射与电
03
子显微线衍射
01
局限性:对于非晶体或无定形材料,X射 线衍射效果不佳。
03
02
特点:能够确定晶体结构,提供宏观尺度上 的晶体信息。
04
电子显微分析
特点:高分辨率和高放大倍数,能够观察 材料的微观结构和表面形貌。
05
06
局限性:对于轻元素和某些化学态的识别 能力有限,且需要薄样品。
电子显微镜的工作原理
电子显微镜利用电子替代传统显微镜的光子,通过电子束 与样品的相互作用,将样品中的信息传递到荧光屏上,形 成图像。
分辨率和放大倍数
电子显微镜的分辨率和放大倍数主要取决于物镜的焦距和 中间镜的放大倍数,其分辨率通常比光学显微镜高,能够 观察更细微的结构。
电子显微镜的应用
生物医学研究
料X射线衍射和电子显微分析。
02
自动化和智能化
随着人工智能和机器学习技术的发展,未来的材料X射线衍射和电子显
微分析将更加自动化和智能化,能够自动识别、分类和处理数据。
03
多维度和多尺度分析
未来的材料X射线衍射和电子显微分析将能够实现多维度和多尺度分析
,从微观到宏观全面揭示材料的结构和性能。
技术发展面临的挑战与机遇
挑战
随着材料科学的发展,新型材料不断涌现,需要不断更新和完善材料X射线衍射和电子显微分析技术。同时,随 着环保意识的提高,如何降低这些技术对环境的负面影响也是一个重要的挑战。

《材料分析测试技术》课件

《材料分析测试技术》课件

在生物学领域,材料分析测试技术用于研 究生物大分子的结构和功能,以及生物材 料的性能和生物相容性。
医学领域
环境科学领域
在医学领域,材料分析测试技术用于药物 研发、医疗器械性能评价以及人体组织与 器官的生理和病理研究。
在环境科学领域,材料分析测试技术用于 环境污染物检测、生态系统中物质循环的 研究以及环保材料的性能评估。
反射光谱测试技术
通过测量材料对不同波长光的反射率,分 析材料的表面特性、光学常数和光学性能 。
发光光谱测试技术
研究材料在受到激发后发射出的光的性质 ,包括荧光、磷光和热辐射等,以了解材 料的发光性能和光谱特性。
透射光谱测试技术
通过测量材料对不同波长光的透射率,分 析材料的透光性能、光谱特性和光学常数 。
磁粉检测技术
总结词
通过磁粉与材料相互作用,检测其表面和近表面缺陷。
详细描述
磁粉检测技术利用磁粉与被检测材料的相互作用,通过观察磁粉的分布和排列,检测材 料表面和近表面的裂纹、折叠等缺陷。该技术广泛应用于钢铁、有色金属等材料的检测

涡流检测技术
总结词
通过电磁感应在材料中产生涡流,检测其表 面和近表面缺陷。
《材料分析测试技术》ppt课件
目录
• 材料分析测试技术概述 • 材料物理性能测试技术 • 材料化学性能测试技术 • 材料力学性能测试技术 • 材料无损检测技术 • 材料分析测试技术的应用与展望
01
材料分析测试技术概述
Chapter
定义与目的
定义
材料分析测试技术是指通过一系列实验手段对材料 进行物理、化学、机械等性能检测,以获取材料组 成、结构、性能等方面的信息。
电学性能测试技术
电容率测试技术

现代材料分析测试技术材料分析测试技术ppt文档全文预览

现代材料分析测试技术材料分析测试技术ppt文档全文预览

现代材料分析测试技术材料分析测试技术ppt文档全文预览本部分的主要目的:介绍透射电镜分析、扫描电镜分析、表面成分分析及相关技术的基本原理,了解透射电镜样品制备和分析的基本操作和步骤,掌握扫描电镜在材料研究中的应用技术。

在介绍基本原理的基础上,侧重分析技术的应用!讲课18学时,实验:4学时,考试2学时。

主要要求:1)掌握透射电镜分析、扫描电镜分析和表面分析技术及其在材料研究领域的应用;2)了解电子与物质的交互作用以及电磁透镜分辨率的影响因素;3)了解透射电镜的基本结构和原理,掌握电子衍射分析及衍射普标定、薄膜样品的制备及其透射电子显微分析;4)了解扫描电镜的基本结构及其工作原理,掌握原子序数衬度、表面形貌衬度及其在材料领域的应用;了解波谱仪、能谱仪的结构及工作原理,初步掌握电子探针分析技术;5)对表面成分分析技术有初步了解;6)了解电子显微技术的新进展及实验方法的选择;参考书:1)常铁军,祁欣主编。

《材料近代分析测试方法》哈尔滨工业大学出版社;2)周玉,武高辉编著。

《材料分析测试技术——材料某射线与电子显微分析》哈尔滨工业大学出版社。

1998版3)黄孝瑛编著。

《透射电子显微学》上海科学技术出版社。

1987版4)进藤大辅,及川哲夫合著.《材料评价的分析电子显微方法》冶金工业出版社。

2001年版5)叶恒强编著。

《材料界面结构与特性》科学出版社,1999版1.1引言眼睛是人类认识客观世界的第一架“光学仪器”。

但它的能力是有限的,如果两个细小物体间的距离小于0.1mm时,眼睛就无法把它们分开。

光学显微镜的发明为人类认识微观世界提供了重要的工具。

随着科学技术的发展,光学显微镜因其有限的分辨本领而难以满足许多微观分析的需求。

上世纪30年代后,电子显微镜的发明将分辨本领提高到纳米量级,同时也将显微镜的功能由单一的形貌观察扩展到集形貌观察、晶体结构、成分分析等于一体。

人类认识微观世界的能力从此有了长足的发展。

光学显微镜的分辨率由于光波的波动性,使得由透镜各部分折射到像平面上的像点及其周围区域的光波发生相互干涉作用,产生衍射效应。

材料分析测试技术PPT课件

材料分析测试技术PPT课件
■分光晶体:是专门用来对X射线起分光 作用的晶体,它具有高的衍射效率、强 的反射能力和好的分辨率。每种晶体只 能色散一段范围波长的X射线,只适用于 一定原子序数的元素分析。常见的分光 晶体及其应用范围见P160表2-7。
■X射线探测器:WDS中使用的探测器和 XRD中使用的一样。
5
WWDDSS和EDSS的的比比较较
能谱仪(EDS)
• 目前最常用的能谱仪是Si(Li)X射线能谱仪。 其关键部件是Si(Li)检测器即锂漂移硅固态 检测器(结构示意图见P162图2-94)。
• Si(Li)探测器要始终处在真空中,探头装在 与存有液氮的杜瓦瓶相连的冷指内,日常 保养麻烦费用较高。
1
Si(Li)能谱仪的优点
▲分析速度快,几分钟内即可分析和确定样 品中含有的所有元素。分析范围为11Na~ 92U的所有元素。
操作特性
WDS
分析元素范围 Z≥4
分辨率

分析精度
±1~5%
对表面要求 平整,光滑
分析速度

谱失真

最小束斑直径 ~200nm
探测极限
0.01~0.1%
使用范围
精确的定量分

EDS
Z≥11 低
≤±5% 粗糙表面也适用


~5nm
0.1~0.5%
适合于与SEM配合
使用
6
EPMA分析方法
EPMA有四种分析方法
11
2.8 扫描隧道显微镜(简介)
• 扫描隧道显微镜简称STM,是新型的表面分析仪 器,是1982年,由G.Binnig和H.Rhrer等人发明 的,该发明于1986年获诺贝尔奖。
• STM的原理:STM以原子尺度的极细探针及样品 作为电极,当针尖与样品非常接近时(约1nm), 就产生隧道电流。通过记录扫描过程中,针尖位 移的变化,可得到样品表面三维显微形貌图。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⏹材料分析技术就是人们为了获取材料的物理/化学/机械等方面的信息而采用的一些实验方法和手段⏹就是利用一种探测束——如电子束、离子束、光子束等,时常还加上电场、磁场、热等的作用,来分析材料的形貌、化学组成、原子结构、原子状态、电子状态等方面的信息。

⏹材料分析方法发展方向:更高的灵敏度更好的选择性更高的准确性更快的分析速度更高的自动化程度更完善的多元分析能力更可信的形态分析无损分析原位分析(in situ)/活体内分析(in vivo)/实时(real time)分析衍射(diffraction)是指波遇到障碍物时偏离原来直线传播的物理现象。

X射线的波粒二象性X射线的本质是电磁辐射,与可见光完全相同,仅是波长短而已,因此具有波粒二像性。

波动性X射线的波长范围:0.01~100 Å 表现形式:在晶体作衍射光栅观察到的X射线的衍射现象,即证明了X射线的波动性。

⏹X射线的产生原理:高速运动的电子与物体碰撞时,发生能量转换,电子的运动受阻失去动能,其中一小部分(1%左右)能量转变为X射线,而绝大部分(99%左右)能量转变成热能使物体温度升高。

⏹连续X射线谱X射线连续谱的强度随着X射线管的管电压增加而增大,最大强度所对应的波长λmax变小,最短波长界限λ0减小;连续谱中接近最短波长处的辐射较多。

⏹连续谱的经验公式可表达为:C为常数,Z为阳极材料的原子序数。

⏹标识X射线是在连续谱的基础上叠加若干条具有一定波长的谱线,它和可见光中的单色相似,亦称单色X射线。

⏹激发电压的计算为激发被照物体的k系荧光辐射,电子束的(或照射x射线光子的)能量至少等于为被照物体的k系吸收限波长。

则靶的激发电压为波长单位为nm,电压单位为V。

⏹一束可见光以任意角度投射到镜面上都可以产生反射,而原子面对X射线的反射并不是任意的,只有当θ、λ、d三者之间满足布拉格方程时才能发生反射,所以把X射线这种反射称为选择反射。

⏹产生衍射的条件为λ<2d⏹X射线衍射分析方法1)照相法;2)衍射仪法⏹粉末照相法是将一束近平行的单色X射线投射到多晶样品上,用照相底片记录衍射线束强度和方向的一种实验法。

⏹照相法的实验主要装置为粉末照相机。

⏹德拜照相机(称为德拜法或德拜-谢乐法)⏹底片安装方法:正装法、反装法、不对称法⏹样品要求:a. 细度:10-3cm~10-5cm(过250目~300目筛)b. 制成直径为0.3mm~0.6mm,长度为1cm的细圆柱状粉末集合体⏹实验数据的测定:⏹德拜粉末照相法底片实验数据的测量主要是测定底片上衍射线条的相对位置和相对强度,然后根据测量数据再计算出θhkl和晶面间距d hkl。

⏹衍射仪的运行方式连续扫描连续扫描图谱可方便地看出衍射线峰位,线形和相对强度等。

这种工作方式其工作效率高,也具有一定的分辨率、灵敏度和精确度,非常适合于大量的日常物相分析工作。

连续扫描就是让试样和探测器以1:2的角速度作匀速圆周运动,在转动过程中同时将探测器依次所接收到的各晶面衍射信号输入到记录系统或数据处理系统,从而获得的衍射图谱。

上图即为连续扫描图谱。

能进行峰位测定、线形、相对强度测定,主要用于物相的定量分析工作。

⏹步进扫描步进扫描又称阶梯扫描。

步进扫描工作是不连续的,试样每转动一定的角度Δθ即停止,在这期间,探测器等后续设备开始工作,并以定标器记录测定在此期间内衍射线的总计数,然后试样转动一定角度,重复测量,输出结果。

图3-34即为某一衍射峰的步进扫描图形。

⏹衍射线峰位的确定及衍射线积分强度的测量峰位确定主要有3种方法:图形法、曲线近似法和重心法⏹图形法:峰顶法、切线法、半高宽中点法、7/8高度法、中点连线法⏹衍射线强度的确定衍射线强度有峰高强度和积分强度两种。

⏹峰高强度:一般是指衍射图谱上衍射线的高度。

通常是在同一实验条件下比较衍射线的高度来定性分析峰强。

⏹积分强度:在对某一衍射峰进行积分强度测定时,衍射仪一般采用慢扫描(0.25º/min)或步进扫描工作方法,以获得准确的峰形峰位。

⏹衍射线积分强度的计算,就是将背底线以上区域的面积测量或计算。

⏹样品制备被测试样制备良好,才能获得正确良好的衍射信息。

对于粉末样品,通常要求其颗粒平均粒径控制在5μm左右,亦即通过320目的筛子,而且在加工过程中,应防止由于外加物理或化学因素而影响试样其原有的性质。

⏹在样品制备过程中,应当注意:1)样品颗粒的细度应该严格控制,过粗将导致样品颗粒中能够产生衍射的晶面减少,从而使衍射强度减弱,影响检测的灵敏度;样品颗粒过细,将会破坏晶体结构,同样会影响实验结果。

2)在制样过程中,由于粉末样品需要制成平板状,因此需要避免颗粒发生定向排列,存在取向,从而影响实验结果。

3)在加工过程中,应防止由于外加物理或化学因素而影响试样其原有的性质。

⏹X射线物相定性分析物相分析是为了确定待测样品的结构状态,同时也确定了物质的种类。

定量分析--多相共存时,组成相含量是多少。

粉末晶体X射线物相定性分析是根据晶体对X射线的衍射特征即衍射线的方向及强度来达到鉴定结晶物质的。

⏹主要在于下列原因:1)每一种结晶物质都有各自独特的化学组成和晶体结构结构,不会存在两种结晶物质的晶胞大小、质点种类和质点在晶胞中的排列方式完全一致的物质;2)结晶物质有自己独特的衍射花样。

(d、θ和I)3)多种结晶状物质混合或共生,它们的衍射花样也只是简单叠加,互不干扰,相互独立。

(混合物物相分析)每一种结晶物质都有其特定的结构参数,包括点阵类型、晶胞大小、晶胞形状、晶胞中原子种类及位置等。

⏹物相分析原理将实验测定的衍射花样与已知标准物质的衍射花样比较,从而判定未知物相。

混合试样物相的X 射线衍射花样是各个单独物相衍射花样的简单迭加,根据这一原理,就有可能把混合物物相的各个物相分析出来。

⏹物相定性分析过程常规物相定性分析的步骤如下:(1)实验用粉末照相法或粉末衍射仪法获取被测试样物相的衍射花样或图谱。

(2)通过对所获衍射图谱或花样的分析和计算,获得各衍射线条的2θ,d 及相对强度大小I/I1。

在这几个数据中,要求对2θ和d值进行高精度的测量计算,而I/I1相对精度要求不高。

目前,一般的衍射仪均由计算机直接给出所测物相衍射线条的d值。

(3)使用检索手册,查寻物相PDF卡片号根据需要使用字母检索、Hanawalt检索或Fink检索手册,查寻物相PDF卡片号。

一般长采用Hanawalt检索,用最强线d值判定卡片所处的大组,用次强线d值判定卡片所在位置,最后用8条强线d值检验判断结果。

若8强线d值均已基本符合,则可根据手册提供的物相卡片号在卡片库中取出此PDF卡片。

(4)若是多物相分析,则在(3)步完成后,对剩余的衍射线重新根据相对强度排序,重复(3)步骤,直至全部衍射线能基本得到解释。

⏹物相定性分析所应注意问题一般在对试样分析前,应尽可能详细地了解样品的来源、化学成分、工艺状况,仔细观察其外形、颜色等性质,为其物相分析的检索工作提供线索。

尽可能地根据试样的各种性能,在许可的条件下将其分离成单一物相后进行衍射分析。

由于试样为多物相化合物,为尽可能地避免衍射线的重叠,应提高粉末照相或衍射仪的分辨率。

对于数据d值,由于检索主要利用该数据,因此处理时精度要求高,而且在检索时,只允许小数点后第二位才能出现偏差。

特别要重视低角度区域的衍射实验数据,因为在低角度区域,衍射所对应d值较大的晶面,不同晶体差别较大,衍射线相互重叠机会较小。

在进行多物相混合试样检验时,应耐心细致进行检索,力求全部数据能合理解释,但有时也会出现少数衍射线不能解释的情况,这可能由于混合物相中,某物相含量太少,只出现一、二级较强线,以致无法鉴定。

在物相定性分析过程中,尽可能地与其它的相分析结合起来,互相配合,互相印证。

从目前所应用的粉末衍射仪看,绝大部分仪器均是由计算机进行自动物相检索过程,但其结果必须结合专业人员的丰富专业知识,判断物相,给出正确的结论。

⏹物相检索的方法一、大海捞针法二、限定条件的检索法三、单峰搜索法⏹X射线物相定量分析过程对于一般的X射线物相定量分析工作,总是通过下列几个过程进行:(1)物相鉴定即为通常的X射线物相定性分析。

(2)选择标样物相标样物相的理化性能稳定,与待测物相衍射线无干扰,在混合及制样时,不易引起晶体的择优取向。

(3)进行定标曲线的测定或K j s测定选择的标样物相与纯的待测物相按要求制成混合试样,选定标样物相及待测物相的衍射,测定其强度I s和I j,用I j/I s和纯相配比X j s获取定标曲线或K j s。

(4)测定试样中标准物相j的强度或测定按要求制备试样中的特检物相j及标样S物相指定衍射线的强度。

(5)用所测定的数据,按各自的方法计算出待检物相的质量分数X j。

⏹X射线物相定量分析过程应注意的问题在定量分析的基础公式中,假设了被测物相中晶粒尺寸非常细小,各相混合均匀,无择优取向。

实际情况存在一定的不同。

在试样制备及标样选择时,避免重压,减少择优取向,通常采用透过窗样品架,而在测量时,采用样品从其面法线转动来消除择优取向的影响。

⏹X射线衍射分析方法的应用多晶体点阵常数的精确测定晶面取向度的测定晶体结晶度的测定转动晶体法测聚合物结构(单晶衍射)晶粒尺寸的测定膜厚的测定⏹德拜-谢乐法系统误差的主要来源:相机半径、底片伸缩、试样偏心、试样吸收⏹衍射仪法误差来源:仪器固有误差、光栏准直、试样偏心(含吸收)、光束几何、物理因素(单色,吸收)、●透射电子显微镜电子穿透薄样品;源于电子与样品间的作用,穿透的电子束将提供样品内部成分与结构信息可做细微图像观察(HRTEM-单子原子相);结构分析(SAED);成分分析(EDX)以及电子结构分析(EELS)分辨率< 1Å 样品:10-100 nm厚●扫描电子显微镜SEM 电子和材料的表面间的相互作用形貌观察和组分分析分辨率4Å 样品:厚样品●扫描隧道显微镜(STM)分辨率:X-Y:0.1 nm;Z:0.01nm检测的深度:1-2 原子层可在空气,水体中测试只能用于导体●原子力显微镜(AFM)分辨率:X-Y:0.15 nm;Z:0.05nm可在空气,水体中测试可用于导体或者绝缘体●爱瑞(Airy)斑:由于衍射效应,一个发光物点的像是一个一定尺寸的亮斑和周围几个亮环。

一般将亮环忽略不计,中央亮斑为物点的像,称为爱瑞斑。

●Airy斑的亮度84%集中在中央亮斑上,其余分布在周围暗环上。

通常以第一暗环半径衡量Airy斑大小。

●点光源通过透镜产生的Airy斑半径R0的表达式为λ—入射光波长;n—物镜与物体之间介质的折射率;α—半孔径角,不能大于90o;-显微镜的数值孔径M—放大倍数假设有两物点通过透镜成像后,在像平面上得到两个Airy斑。

相关文档
最新文档