(110kv变电站电气主接线设计)
110kva变电站电气主接线图分析

把变电站内的电气设备都要算上啊一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置二次设备:综合自动化、.、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等好像有点说多了,也可能有少点的,存在差异吧35KV高压开关柜上一般都设有哪些保护各作用是什么?过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。
2.定时限电流保护:用于下一电压级别的短路保护。
3.反时限电流保护:作用与2相同,但灵敏度比2高。
4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。
5.纵联差动电流保护:专用于变压器内部故障保护。
6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。
零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。
2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。
可以选择作用于跳闸或发信。
过电压保护:1.雷电过电压保护。
2.操作过电压保护。
1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。
3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。
低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。
俗称躲晃电。
非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。
选择跳闸。
2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。
3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。
110kV变电站的电气主接线设计要点分析

110kV变电站的电气主接线设计要点分析一、引言110kV变电站作为电力系统中的重要组成部分,其电气主接线设计直接关系到电力系统的正常运行和安全稳定。
电气主接线设计要点分析对于提高变电站的运行可靠性、经济性和安全性具有重要意义。
本文将对110kV变电站的电气主接线设计要点进行深入分析,旨在为电气主接线设计提供理论参考和实际操作指导。
1. 设计原则110kV变电站的电气主接线设计要遵循以下原则:(1)安全可靠:保证电气设备正常运行,并能够承受额定电压和电流,确保人员和设备的安全;(2)经济合理:在满足安全可靠的前提下,尽可能减少线路长度和功率损耗,合理配置电气设备,提高供电质量;(3)易于维护:确保电气设备布置合理,方便日常维护和故障排除;2. 主接线布置110kV变电站的电气主接线布置要充分考虑变电站的实际情况和用电负荷,合理布置进线、出线、主变、母线等设备,确保电气设备的正常运行和安全可靠。
主接线的布置应符合以下要求:(1)进线布置:主变厂站进线需考虑进线的数量、容量和工作方式,充分考虑进线的选择、位置和配电室的布置;(2)出线布置:根据变电站的用电负荷情况,确定出线的数量、容量和位置,合理配置出线开关设备;(3)主变布置:主变的布置要满足进线、出线和母线的联络需求,尽量减少主变到配电室的电缆长度,使主变与配电室尽量靠近;(4)母线布置:母线的布置要充分考虑配电室的大小、位置和设备的配合,确保母线的连接可靠和线路的可维护性;3. 设备选型110kV变电站的电气主接线设备选型要充分满足变电站的运行需求,保证设备的安全可靠和运行经济。
设备选型应考虑以下要点:(1)电缆型号:根据电气负荷和环境条件,选择合适的电缆型号和规格,确保电缆的输电能力和绝缘性能;(2)断路器和隔离开关:选择合适的断路器和隔离开关,满足110kV变电站的配电需求,确保设备的可靠性和安全;(3)互感器和避雷器:根据110kV变电站的电压等级,选择相应的互感器和避雷器,确保设备的运行稳定和安全;(4)接地装置:选择合适的接地装置,确保设备的接地可靠和操作安全;4. 调度控制110kV变电站的电气主接线设计要考虑调度控制的要求,确保电气设备的运行稳定和供电质量。
110kv变电站电气主接线设计

110KV电气主接线设计专业:发电厂及电力系统年级:指导教师:根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。
该变电站设有两台主变压器,站内主接线分为110kV. 35kV和10kV三个电压等级。
110KV电压等级采用双母线接线,35KV和10KV 电压等级都采用单母线分段接线。
本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。
本设计以《35〜门OkV变电所设计规范》、《供配电系统设计规范》、《35〜"OkV高压配电装置设计规范》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品, 技术先进、运行可靠、经济合理。
关键词:降压变电站;电气主接线;变压器;设备选型摘要 (I)1变电站电气主接线设计及主变压器的选择 (1)1.1主接线的设计原则和要求 (1)1.1.1主接线的设计原则 (1)1.1.2主接线设计的基本要求 (2)1.2主接线的设计 (3)1.2.1设计步骤 (3)1.2.2 初步方案设计 (3)1.2.3最优方案确定 (4)1.3主变压器的选择 (5)1.3.1主变压器台数的选择 (5)1.3.2主变压器型式的选择 (5)1.3.3主变压器容量的选择 (6)1.3.4主变压器型号的选择 (6)1.4站用变压器的选择 (9)1.4.1站用变压器的选择的基本原则 (9)1.4.2站用变压器型号的选择 (9)2短路电流计算 (10)2.1短路计•算的目的、规定与步骤 (10)2.1.1短路电流计算的目的 (10)2.1.2短路计算的一般规定 (10)2.1.3计算步骤 (10)2.2变压器的参数计算及短路点的确定 (11)2.2.1变压器参数的计算 (11)2.2.2短路点的确定 (11)2.3各短路点的短路计算 (12)2.3.1短路点d・1的短路计算(110KV母线) (12)2.3.2短路点d-2的短路计算(35KV母线) (13)2.3.3短路点d-3的短路计算(10KV母线) (13)2.3.4 短路点d-4的短路计算 (14)2.4 绘制短路电流计算结果表 (14)3电气设备选择与校验 (16)3.1电气设备选择的一般规定 (16)3.1.1 一般原则 (16)3.1.2有关的儿项规定 (16)3.2各回路持续工作电流的计算 (16)3.3高压电气设备选择 (17)3.3.1断路器的选择与校验 (17)3.3.2隔离开关的选择及校验 (21)3.3.3熔断器的选择 (23)3.3.4避雷器的选择与校验 (23)3.4母线与电缆的选择及校验 (23)3.4.1 材料的选择 (24)3.4.2母线截面积的选择 (24)致谢 (27)参考文献 (28)附录 (29)1变电站电气主接线设计及主变压器的选择变电站电气主接线是指变电站的变圧器、输电线路怎样与电力系统相连接,从而完成输配电任务。
110kV变电站电气主接线及运行方式

110kV变电站电气主接线及运行方式变电站电气主接线是指高压电气设备通过连线组成的接受或者分配电能的电路。
其形式与电力系统整体及变电所的运行可靠性、灵活性和经济性密切相关,并且对电气设备选择、配电装置的布置、继电保护和控制方式的拟定有较大影响。
所以,主接线设计是一个综合性问题,应根据电力系统发展要求,着重分析变电所在系统中所处的地位、性质、规模及电气设备特点等,做出符合实际需要的经济合理的电气主接线。
一变电所主接线基本要求1.1 保证必要的供电可靠性和电能质量。
保证供电可靠性和电能质量是对主接线设计的最基本要求,当系统发生故障时,要求停电范围小,恢复供电快,电压、频率和供电连续可靠是表征电能质量的基本指标,主接线应在各种运行方式下都能满足这方面的要求。
1. 2 具有一定的灵活性和方便性。
主接线应能适应各种运行状态,灵活地进行运行方式切换,能适应一定时期内没有预计到的负荷水平变化,在改变运行方式时操作方便,便于变电所的扩建。
1. 3 具有经济性。
在确保供电可靠、满足电能质量的前提下,应尽量节省建设投资和运行费用,减少用地面积。
1. 4 简化主接线。
配网自动化、变电所无人化是现代电网发展的必然趋势,简化主接线为这一技术的全面实施创造了更为有利的条件。
1. 5 设计标准化。
同类型变电所采用相同的主接线形式,可使主接线规范化、标准化,有利于系统运行和设备检修。
1. 6 具有发展和扩建的可能性。
变电站电气主接线应根据发展的需要具有一定的扩展性。
二变电所主接线基本形式的变化随着电力系统的发展,调度自动化水平的提高及新设备新技术的广泛应用,变电所电气主接线形式亦有了很大变化。
目前常用的主接线形式有:单母线、单母线带旁路母线、单母线分段、单母线分段带旁路、双母线、双母线分段带旁路、一个半断路器接线、桥形接线及线路变压器组接线等。
从形式上看,主接线的发展过程是由简单到复杂,再由复杂到简单的过程。
在当今的技术环境中, 随着新技术、高质量电气产品广泛应用,在某些条件下采用简单主接线方式比复杂主接线方式更可靠、更安全,变电所主接线日趋简化。
110kV变电站电气主接线方案选择

分析和 比较 ,最后 确 定 了电气主接 线的 方案 。 关键 词 :1 l O k V 变 电站 ;主接 线方 式 ;方案选 择 ;经济性 ;灵 活性 ;可靠性 中图分 类号 :" 1 " M6 4 5 文献 标识 码 :A
Q术
N e w T e c h n o l o  ̄e s a n d P r o d u c t s
l l 0 k V变 电站 电气主接线 方案选择
张烈金 葛树国 ( 广 东顺德 电力设计 院有限公 司,广 东 顺德 5 2 8 3 0 0 )
一
表 2 。
( 2 )线 路 一 变 压 器 组 所 采 用 的 是 1 1 0 k V变 电站 例 最 简 单 的接 线 方 法 ,设 备单 元 为 3 个 ,所 占面 积较 小 ,且 接 线
操作 简便 ,布 线清 晰 ,当送 电线 路 出现 问题 时 ,可通 过 断 开 断 路 器 解 决 。正 常 运行 状 态 时 装 置 为 主变 压 器 l台 以及 进 线 1 条 ,接 线 简 单 且 具 有运 行 经 济 、可 靠性 高等 优 点 ,对 于变 电站 智 能 化 、 自 动化操作 有 一定促 进作 用 。 ( 3) T型 接线 在 运 行过 程 中具 有 较 高 的可靠 性 , 运行 方式 为主变 压器 3台 、 进线 3 条 ,但 必 须 在 两 侧 配置 电 源 ,每 个 电源需 配 置 3条出线 。 以上 为典 型 1 1 0 k V变 电站 主 要 接 线 方 式 ,应 根据 电 网规 划 的具 体情 况 ,结 合技 术指 导 ,在该 变 电站 以 2台主 变 压 器作 为本 期 规 模 的 情况 下 ,根据 运 行 负 载率 大小 选 择 合 适 的接 线 方 式 ,当负 载 率处于 0 . 5 ~ 0 . 6 5 范 围 时 ,可 考 虑 采 用 普
35kV_110kV变电站电气主接线设计

110kV/35kV变电站电气主接线设计摘要本文首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。
设计首先查阅了有关资料,收集与研究课题大量的资料,并翻译了相关的外文资料,然后对负荷分析进行了精确的计算与分析,从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV与35kV 两个电压等级,用拟定方法进行比较从而确定主接线的连接方式,对主接线系统的做了设计,110KV侧选择了单母线分段接线方式,35KV单母线分段带旁路母线接线方式,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,确定了变压器用两台,容量为31500KVA,型号为SSZ9—31500/110,对无功功率补偿做了明确的计算,然后采用标幺值法对短路计算进行了分析与处理。
根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线和电压互感器,电流互感器进行了选型。
对主变压器进行整定计算与分析,对防雷部分进行了计算和分析,确定了防雷的方法,并做出了相应的原理图。
从而完成了110kV/35KV变电站电气部分的设计。
关键词:变电站;变压器;电气主接线AbstractIn this design, on the basis of the mandate given by the system and the load line and all the parameters, load analysis of trends. Design First check the relevant information collection and research topic a lot of information and foreign-language translation of the relevant information and then load analysis of the precise calculation and analysis, load growth from the establishment of the need to clarify, and then passed on The proposed substation and the general direction of Chuxian to consider and, through the load data analysis, security, economic and reliability considerations, identified 110 kV and 35kV two voltage levels, compared with developed methods to determine the main wiring connections , The main wiring system to do the design, 110 KV side of the single-choice sub-bus connection mode, 35 KV sub-bus with bypass bus connection mode, and then through the load calculation and determine the scope of the main electricity transformer Number, capacity and Models, identified by two transformers, the capacity for 31500 KVA, the model SSZ9-31500/110, the reactive power compensation to a clear, and per-unit value method used to calculate a short-circuit analysis and treatment. According to the most sustained work and short-circuit current calculation of the results, the high-voltage fuse, isolating switch, bus and voltage transformers, current transformers for the selection. The main transformer for setting calculation and analysis, part of the mine were calculated and analyzed to determine the mine's method, using AUTOCAD and make the corresponding schematic. Thus completing the 110 kV/35KV electrical substation part of the design.Key words:converting station;transformer substation;electrical wiring目录第1章绪论 (1)1.1 变电站的背景和地址情况 (1)1.1.1 变电站的背景 (1)1.1.2 变电站地址概况 (1)1.2 变电站的意义 (1)1.3 本文研究内容 (2)第2章负荷分析计算 (3)2.1 电力负荷的概述 (3)2.1.1 电力负荷分类方法 (3)2.1.2 各主要电用户的用电特点 (3)2.1.3 电力系统负荷的确定 (3)2.2 无功功率补偿 (4)2.2.1 无功补偿的概念及重要性 (4)2.2.2 无功补偿装置类型的选择 (5)2.3 主变压器的选择 (8)2.3.1 负荷分析与计算 (8)2.3.2 主变压器选择 (10)第3章电气主接线设计 (12)3.1 变电站主接线的要求及设计原则 (12)3.1.1 变电站主接线基本要求 (12)3.1.2 变电站主接线设计原则 (13)3.2 110 kV侧主接线方案选取 (13)3.3 35kV侧主接线方案选取 (16)第4章短路计算 (18)4.1 短路计算的原因与目的 (18)4.2 短路计算的计算条件 (18)4.3 最大最小运行方式分析 (19)4.4 短路计算 (20)第5章开关设备的选择与校验 (23)5.1 电气设备选择的概述 (23)5.2 110kV侧断路器的选择 (25)5.3 35KV侧断路器的选择 (26)5.4 110kV隔离开关的选择 (27)5.5 35KV隔离开关的选择 (28)5.6 互感器的选择 (28)5.7 高压侧熔断器的选择 (30)5.8 母线选择及校验 (30)第6章变电站的继电保护 (33)6.1 继电保护的任务与要求 (33)6.2 继电保护的接线方式与操作方式 (33)6.3 主变压器保护规划与整定 (35)第7章防雷保护计算 (43)7.1 防雷保护 (43)7.2 防雷的装置与防雷计算 (44)第8章结论 (46)参考文献 (47)致谢 (48)附录Ⅰ (49)英文文献 (49)附录Ⅱ (61)第1章绪论1.1 变电站的背景和地址情况1.1.1 变电站的背景随着时代的进步,电力系统与人类的关系越来越密切,人们的生产,生活都离不开电的应用,如何控制电能,使它更好的为人们服务,就需要对电力进行控制,避免电能的损耗和浪费,需要对变电站的电能进行降压,从而满足人们对电的需求,控制电能的损耗。
110kV变电站的电气主接线设计要点分析

110kV变电站的电气主接线设计要点分析110kV变电站是电力系统中重要的配电设备,其中的电气主接线设计是十分关键的,它直接影响到变电站的安全运行和电力系统的稳定性。
本文将针对110kV变电站的电气主接线设计要点展开分析,以期为相关工程设计和运维提供参考。
一、110kV变电站的电气主接线设计的基本要求1. 安全可靠性要求110kV变电站的电气主接线设计首要考虑的是安全可靠性,包括设备的选型、敷设及接线方式等,以保证电力系统的安全运行。
2. 规范要求110kV变电站的电气主接线设计需要符合国家电网公司和行业标准的相关要求,并且要考虑到变电站的具体情况进行合理的适配。
3. 经济性要求110kV变电站的电气主接线设计除了满足安全可靠性要求外,还需要考虑成本控制和资源利用效率,以提高经济性。
二、110kV变电站的电气主接线设计的要点分析1. 电气主接线的选型110kV变电站的电气主接线选型要考虑电缆和导线两种方式,根据变电站的特点和运行环境进行选择,设备应具有良好的绝缘性能和耐热、耐火、防腐蚀等特性。
2. 接线方式的确定110kV变电站的电气主接线需要确定合理的接线方式,包括单线图设计、接线柜设计、接地方式选择等方面的考虑,以保证设备的正常运行和维护方便。
3. 系统的接地设计110kV变电站的电气主接线设计还需要考虑系统的接地设计,包括接地装置的选型、接地电阻的计算、接地网的布置等,以保证系统的接地性能符合规范要求。
4. 接线的可操作性110kV变电站的电气主接线设计需要考虑设备的可操作性,包括接线柜的设置位置、接线柜的配线方式、接线柜的维护空间等,以方便运维人员进行操作和维护。
5. 防护措施的考虑110kV变电站的电气主接线设计还需要考虑到防护措施,包括对设备进行绝缘、防雷、防水、防腐蚀等方面的考虑,以保证设备的长期稳定运行。
110kV变电站的电气主接线设计是变电站工程中至关重要的一环,它直接关系到电力系统的安全运行和稳定性。
110kva变电站电气主接线图分析

110kva变电站电气主接线图分析把变电站内的电气设备都要算上啊一次设备:主变(中性点隔离开关、间隙保护、消弧线圈成套设备)、断路器(或开关柜、GIS等)、电压互感器(含保险)、电流互感器、避雷器、隔离开关、母线、母排、电缆、电容器组(电容、电抗、放电线圈等等),站用变压器(或接地变),有的变电站还有高频保护装置二次设备:综合自动化、.、逆变0000.、小电流接地选线、站用电、直流(蓄电池)、逆变、远动通讯等等其他:支持瓷瓶、悬垂、导线、接地排、穿墙套管等等,消防装置、SF6在线监测装置等等好像有点说多了,也可能有少点的,存在差异吧35KV高压开关柜上一般都设有哪些保护各作用是什么?过电流保护:1.速断电流保护:用于保护本开关以后的母排、电缆的短路故障。
2.定时限电流保护:用于下一电压级别的短路保护。
3.反时限电流保护:作用与2相同,但灵敏度比2高。
4.电压闭锁过电流保护:防止越级跳闸和误跳闸,提高供电可靠性。
5.纵联差动电流保护:专用于变压器内部故障保护。
6.长延时过负荷保护:用于保护专用设备或者电网的过负荷运行,首选发信,其次跳闸。
零序电流保护:1.零序电流速断保护:保护线路和线路后侧设备对地短路、严重漏电故障。
2.定时限零序电流保护:保护线路和线路后侧设备的轻微对地短路和小电流漏电,监测绝缘状况。
可以选择作用于跳闸或发信。
过电压保护:1.雷电过电压保护。
2.操作过电压保护。
1、2两种过电压通常都是用避雷器来保护,可防止线路或设备绝缘击穿。
3.设备异常过电压保护:通过电压继电器和综保定值整定来实现跳闸或发信,用于保护设备在异常过压下运行造成的发热损坏。
低电压保护:瞬时低电压保护只发信不跳闸,用于避免瞬间短路或大负荷启动造成的正常设备误跳闸。
俗称躲晃电。
非电量保护:1.重瓦斯保护:用于变压器内部强短路或拉弧放电的严重故障保护。
选择跳闸。
2.轻瓦斯保护:用于变压器轻微故障的检测,选择发信报警。
3.温度保护:用于检测变压器顶层油温监测,轻超温发信报警,重超温跳闸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110KV电气主接线设计:专业:发电厂及电力系统年级:指导教师:摘要根据设计任务书的要求,本次设计为110kV变电站电气主接线的初步设计,并绘制电气主接线图。
该变电站设有两台主变压器,站主接线分为110kV、35kV和10kV三个电压等级。
110KV电压等级采用双母线接线,35KV和10KV电压等级都采用单母线分段接线。
本次设计中进行了电气主接线的设计、短路电流计算、主要电气设备选择及校验(包括断路器、隔离开关、电流互感器、电压互感器、母线、熔断器等)、各电压等级配电装置设计。
《35~《供配电系统设计规》、本设计以《35~110kV变电所设计规》、110kV高压配电装置设计规》等规规程为依据,设计的容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。
关键词:降压变电站;电气主接线;变压器;设备选型目录摘要 (Ⅰ)1 变电站电气主接线设计及主变压器的选择 (1)1.1 主接线的设计原则和要求 (1)1.1.1 主接线的设计原则 (1)1.1.2 主接线设计的基本要求 (2)1.2 主接线的设计 (3)1.2.1 设计步骤 (3)1.2.2 初步方案设计 (3)1.2.3 最优方案确定 (4)1.3 主变压器的选择 (5)1.3.1 主变压器台数的选择 (5)1.3.2 主变压器型式的选择 (5)1.3.3 主变压器容量的选择 (6)1.3.4 主变压器型号的选择 (6)1.4 站用变压器的选择 (9)1.4.1 站用变压器的选择的基本原则 (9)1.4.2 站用变压器型号的选择 (9)2 短路电流计算 (10)2.1 短路计算的目的、规定与步骤 (10)2.1.1 短路电流计算的目的 (10)2.1.2 短路计算的一般规定 (10)2.1.3 计算步骤 (10)2.2 变压器的参数计算及短路点的确定 (11)2.2.1 变压器参数的计算 (11)2.2.2 短路点的确定 (11)2.3 各短路点的短路计算 (12)2.3.1 短路点d-1的短路计算(110KV母线) (12)2.3.2 短路点d-2的短路计算(35KV母线) (13)2.3.3 短路点d-3的短路计算(10KV母线) (13)2.3.4 短路点d-4的短路计算 (14)2.4 绘制短路电流计算结果表 (14)3 电气设备选择与校验 (16)3.1 电气设备选择的一般规定 (16)3.1.1 一般原则 (16)3.1.2 有关的几项规定 (16)3.2 各回路持续工作电流的计算 (16)3.3 高压电气设备选择 (17)3.3.1 断路器的选择与校验 (17)3.3.2 隔离开关的选择及校验 (21)3.3.3 熔断器的选择 (23)3.3.4 避雷器的选择与校验 (23)3.4 母线与电缆的选择及校验 (23)3.4.1 材料的选择 (24)3.4.2 母线截面积的选择 (24)致 (27)参考文献 (28)附录 (29)1 变电站电气主接线设计及主变压器的选择变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。
变电站的主接线是电力系统接线组成中一个重要组成部分。
主接线的确定,对电力系统的安全、稳定、灵活、经济运行及变电站电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会产生直接的影响。
1.1 主接线的设计原则和要求1.1.1 主接线的设计原则(1)考虑变电站在电力系统的地位和作用变电站在电力系统中的地位和作用是决定主接线的主要因素。
变电站是枢纽变电站、地区变电站、终端变电站、企业变电站还是分支变电站,由于它们在电力系统中的地位和作用不同,对主接线的可靠性、灵活性、经济性的要求也不同。
(2)考虑近期和远期的发展规模变电站主接线设计应根据5~10年电力系统发展规划进行。
应根据负荷的大小和分布、负荷增长速度及地区网络情况和潮流分布,并分析各种可能的运行方式,来确定主接线的形式及站连接电源数和出线回数。
(3)考虑负荷的重要性分级和出线回路多少对主接线的影响对一、二级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一、二级负荷不间断供电;三级负荷一般只需一个电源供电。
(4) 考虑主变台数对主接线的影响变电站主变的容量和台数,对变电站主接线的选择将产生直接的影响。
通常对大型变电站,由于其传输容量大,对供电可靠性高,因此,其对主接线的可靠性、灵活性的要求也高。
而容量小的变电站,其传输容量小,对主接线的可靠性、灵活性要求低。
(5)考虑备用量的有无和大小对主接线的影响发、送、变的备用容量是为了保证可靠的供电,适应负荷突增、设备检修、故障停运情况下的应急要求。
电气主接线的设计要根据备用容量的有无而有所不同,例如,当断路器或母线检修时,是否允许线路、变压器停运;当线路故障时是否允许切除线路、变压器的数量等,都直接影响主接线的形式。
1.1.2 主接线设计的基本要求根据有关规定:变电站电气主接线应根据变电站在电力系统的地位,变电站的规划容量,负荷性质线路变压器的连接、元件总数等条件确定。
并应综合考虑供电可靠性、运行灵活、操作检修方便、投资节约和便于过度或扩建等要求。
1.1.2.1可靠性所谓可靠性是指主接线能可靠的工作,以保证对用户不间断的供电,衡量可靠性的客观标准是运行实践。
主接线的可靠性是由其组成元件(包括一次和二次设备)在运行中可靠性的综合。
因此,主接线的设计,不仅要考虑一次设备对供电可靠性的影响,还要考虑继电保护二次设备的故障对供电可靠性的影响。
同时,可靠性并不是绝对的而是相对的,一种主接线对某些变电站是可靠的,而对另一些变电站则可能不是可靠的。
评价主接线可靠性的标志如下:(1)断路器检修时是否影响供电;(2)线路、断路器、母线故障和检修时,停运线路的回数和停运时间的长短,以及能否保证对重要用户的供电;(3)变电站全部停电的可能性。
1.1.2.2灵活性主接线的灵活性有以下几方面的要求:(1)调度灵活,操作方便。
可灵活的投入和切除变压器、线路,调配电源和负荷;能够满足系统在正常、事故、检修及特殊运行方式下的调度要求。
(2)检修安全。
可方便的停运断路器、母线及其继电器保护设备,进行安全检修,且不影响对用户的供电。
(3)扩建方便。
随着电力事业的发展,往往需要对已经投运的变电站进行扩建,从变压器直至馈线数均有扩建的可能。
所以,在设计主接线时,应留有余地,应能容易地从初期过度到终期接线,使在扩建时,无论一次和二次设备改造量最小。
1.1.2.3经济性可靠性和灵活性是主接线设计中在技术方面的要求,它与经济性之间往往发生矛盾,即欲使主接线可靠、灵活,将可能导致投资增加。
所以,两者必须综合考虑,在满足技术要求前提下,做到经济合理。
(1)投资省。
主接线应简单清晰,以节约断路器、隔离开关等一次设备投资;要使控制、保护方式不过于复杂,以利于运行并节约二次设备和电缆投资;要适当限制短路电流,以便选择价格合理的电器设备;在终端或分支变电站中,应推广采用直降式(110/6~10kV)变电站和以质量可靠的简易电器代替高压侧断路器。
(2)年运行费小。
年运行费包括电能损耗费、折旧费以及大修费、日常小修维护费。
其中电能损耗主要由变压器引起,因此,要合理地选择主变压器的型式、容量、台数以及避免两次变压而增加电能损失。
(3)占地面积小。
电气主接线设计要为配电装置的布置创造条件,以便节约用地和节省架构、导线、绝缘子及安装费用。
在运输条件许可的地方,都应采用三相变压器。
(4)在可能的情况下,应采取一次设计,分期投资、投产,尽快发挥经济效益。
1.2 主接线的设计1.2.1 设计步骤电气主接线设计,一般分以下几步:(1)拟定可行的主接线方案:根据设计任务书的要求,在分析原始资料的基础上,拟订出若干可行方案,容包括主变压器形式、台数和容量、以及各级电压配电装置的接线方式等,并依据对主接线的要求,从技术上论证各方案的优、缺点,保留2个技术上相当的较好方案。
(2)对2个技术上比较好的方案进行经济计算。
(3)对2个方案进行全面的技术,经济比较,确定最优的主接线方案。
(4)绘制最优方案电气主接线图。
1.2.2 初步方案设计根据原始资料,此变电站有三个电压等级:110/35/10KV ,故可初选三相三绕组变压器,根据变电站与系统连接的系统图知,变电站有两条进线,为保证供电可靠性,可装设两台主变压器。
为保证设计出最优的接线方案,初步设计以下两种接线方案供最优方案的选择。
方案一:110KV侧采用双母线接线,35KV侧采用单母分段接线,10KV侧采用单母分段接线。
方案二:110KV侧采用单母分段接线,35KV侧采用双母线接线,10KV侧采用单母分段。
两种方案接线形式如下:图1-1 主接线方案一图1-2 主接线方案二1.2.3 最优方案确定1.2.3.1技术比较在初步设计的两种方案中,方案一:110KV侧采用双母线接线;方案二:110KV侧采用单母分段接线。
采用双母线接线的优点:①系统运行、供电可靠;②系统调度灵活;③系统扩建方便等。
采用单母分段接线的优点:①接线简单;②操作方便、设备少等;缺点:①可靠性差;②系统稳定性差。
所以,110KV侧采用双母线接线。
在初步设计的两种方案中,方案一:35KV侧采用单母分段接线;方案二:35KV侧采用双母线接线。
由原材料可知,问题中未说明负荷的重要程度,所以,35KV侧采用单母分段接线。
1.2.3.2经济比较对整个方案的分析可知,在配电装置的综合投资,包括控制设备,电缆,母线及土建费用上,在运行灵活性上35KV、10KV侧单母线形接线比双母线接线有很大的灵活性。
由以上分析,最优方案可选择为方案一,即110KV侧为采用双母线接线,35KV侧为单母线形接线,10KV侧为单母分段接线。
其接线图见以上方案一。
1.3 主变压器的选择在各种电压等级的变电站中,变压器是主要电气设备之一,其担负着变换网络电压,进行电力传输的重要任务。
确定合理的变压器容量是变电所安全可靠供电和网络经济运行的保证。
因此,在确保安全可靠供电的基础上,确定变压器的经济容量,提高网络的经济运行素质将具有明显的经济意义。
1.3.1 主变压器台数的选择为保证供电可靠性,变电站一般装设两台主变,当只有一个电源或变电站可由低压侧电网取得备用电源给重要负荷供电时,可装设一台。
本设计变电站有两回电源进线,且低压侧电源只能由这两回进线取得,故选择两台主变压器。
1.3.2 主变压器型式的选择1.3.2.1相数的确定在330kv及以下的变电站中,一般都选用三相式变压器。
因为一台三相式变压器较同容量的三台单相式变压器投资小、占地少、损耗小,同时配电装置结构较简单,运行维护较方便。
如果受到制造、运输等条件限制时,可选用两台容量较小的三相变压器,在技术经济合理时,也可选用单相变压器。