人教版高一数学必修一重点知识点总结5篇
高一数学必修一知识点总结归纳五篇精选

高一数学必修一知识点总结归纳五篇精选对于很多刚上高中的同学们来说,高一数学必修一是噩梦一般的存在,其知识点非常的繁琐复杂,让同学们头疼不已。
下面就是本文库给大家带来的高一数学必修一知识点总结,希望能帮助到大家!高一数学必修一知识点总结1I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax +bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0,则a可以是任意实数;排除了为0这种可能,即对于x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数。
高一数学必修一知识点总结41、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。
(2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。
最新高一数学知识点整理归纳5篇

最新高一数学知识点整理归纳5篇说到高一数学,很多同学都会说很难,的确,相对而言,高一数学是高中数学中最难的一部分,但我们一定要把知识点给吃透.下面就是松鼠给大家带来的最新高一数学知识点整理归纳5篇,希望能帮助到大家!更多高一数学的相关内容推荐↓↓↓人教版高一数学知识点整理五篇分享高一数学集合知识点归纳高一数学知识点大全5篇学好高一数学五大方法数学课本知识点大全高一★高一数学知识点总结11.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;★高一数学知识点总结2集合具有某种特定性质的事物的总体。
人教版高一数学知识点总结归纳最新五篇

人教版高一数学知识点总结归纳最新五篇暂时无法回答,因为“最新五篇的文章”是不确定的,具体是哪五篇文章也不确定。
好的,我来就人教版高一数学知识点做一个全面的总结归纳,希望能对您有所帮助。
一、函数1.函数的概念:函数是数学中的一种映射关系,将自变量对应到唯一的因变量上。
函数可以用一条曲线表示,也可以用函数式表示。
2.函数的性质:函数有奇偶性、周期性、单调性等等,这些性质可以通过函数的导数和二阶导数来判断。
3.函数的应用:函数在各个行业中都有重要的应用,如经济、物理、生物等,数学上也有很多用处,如数列、方程、微积分等。
二、三角函数1.三角函数的概念:三角函数是解决三角形问题的基本工具,常见的有正弦函数、余弦函数、正切函数和余切函数。
2.三角函数的周期性和对称性:三角函数具有周期性和对称性,这些性质可以用于简化计算,并且它们可以帮助我们理解三角函数的本质。
3.三角函数的应用:三角函数在工程、物理、天文学中都有广泛的应用,如航空、航天、地球物理等。
三、极限1.极限的概念:极限是数列或函数中趋向于某一值的过程,也可以说是邻域内的取值越来越接近某个值。
2.极限的计算方法:极限计算方法包括利用极限的基本性质、插值法、等价无穷小代换、洛必达法则等。
3.极限的应用:极限在微积分、数值计算和物理等领域有广泛的应用,特别是微积分中的极限理论,是微积分发展的重要基础。
四、导数1.导数的概念:导数是函数在某一点的切线斜率,是函数增减性、最值和凸凹性的重要判断依据。
2.导数的计算方法:导数的计算包括利用公式、导数的基本性质、几何法、隐函数求导等。
3.导数的应用:导数在自然科学和工程技术学科中应用广泛,如物理、经济、自动控制、机械制造等。
五、不等式1.不等式的概念:不等式是关于数的大小关系的陈述,有各种不等式,例如常见的一些几何不等式和代数不等式等。
2.不等式的运算和性质:不等式的运算包括加减乘除、取相反数等,不等式满足传递性、对称性、加法性和次数性等性质。
人教版高一数学必修一精选知识点总结5篇

人教版高一数学必修一精选知识点总结5篇高一数学在整个高中数学中占有特别重要的地位,既是高一又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点13.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特殊地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑴当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α肯定存在,但是斜率k不肯定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,假如它们平行,那么它们的斜率相等;反之,假如它们的斜率相等,那么它们平行,即留意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即假如k1=k2,那么肯定有L1⑴L22、两条直线都有斜率,假如它们相互垂直,那么它们的斜率互为负倒数;反之,假如它们的斜率互为负倒数,那么它们相互垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
高一数学必修一知识点梳理五篇分享

高一数学必修一知识点梳理五篇分享学习任何一门科目都离不开对知识点的总结,尤其是同学们在学习数学时,更要总结各个知识点,这样也方便同学们日后的复习。
下面就是给大家带来的高一数学必修一知识点总结,希望能帮助到大家!高一数学必修一知识点总结1(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示.即.斜率反映直线与轴的倾斜程度.当时,;当时,;当时,不存在.②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1.当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:()直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为.⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线(是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中.(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否.(7)两条直线的交点相交交点坐标即方程组的一组解.方程组无解;方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解.高一数学必修一知识点总结2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。
高一数学必修一知识点梳理整合最新

高一数学必修一知识点梳理整合最新人教版高一数学必修一知识点梳理整合五篇最新在我们上学期间,很多人都经常追着老师们要知识点吧,知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
掌握知识点有助于大家更好的学习。
以下是店铺收集整理的人教版高一数学必修一知识点梳理整合五篇最新,仅供参考,希望能够帮助到大家。
人教版高一数学必修一知识点梳理整合五篇最新1反比例函数形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
k分别为正和负(2和-2)时的函数图像。
当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)人教版高一数学必修一知识点梳理整合五篇最新21.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。
高一数学必修1知识总结归纳5篇

数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
借用《数学简史》的话,数学就是研究集合上各种结构(关系)的科学,可见,数学是一门抽象的学科,而严谨的过程是数学抽象的关键。
数学在人类历史发展和社会生活中发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题。
从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。
其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。
从那时开始,其发展便持续不断地有小幅度的进展。
但当时的代数学和几何学长久以来仍处于独立的状态。
代数学可以说是最为人们广泛接受的"数学"。
可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学。
而数学作为一个研究"数"的学科,代数学也是数学最重要的组成部分之一。
几何学则是最早开始被人们研究的数学分支。
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起。
从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程。
而其后更发展出更加精微的微积分。
西方最原始math(数学)应用之一,奇普现时数学已包括多个分支。
创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。
结构,就是以初始概念和公理出发的演绎系统。
他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……)。
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等。
人教版高一数学必修一知识点难点总结分享(共5篇)

人教版高一数学必修一知识点难点总结分享第1篇集合有以下性质若A包含于B,则A∩B=A,A∪B=B集合的表示方法集合常用大写拉丁字母来表示,如:A,B,C…而对于集合中的元素则用小写的拉丁字母来表示,如:a,b,c…拉丁字母只是相当于集合的名字,没有任何实际的意义。
将拉丁字母赋给集合的方法是用一个等式来表示的,例如:A={…}的形式。
等号左边是大写的拉丁字母,右边花括号括起来的,括号内部是具有某种共同性质的数学元素。
常用的有列举法和描述法。
1.列举法﹕常用于表示有限集合,把集合中的所有元素一一列举出来﹐写在大括号内﹐这种表示集合的方法叫做列举法。
{1,2,3,……}2.描述法﹕常用于表示无限集合,把集合中元素的公共属性用文字﹐符号或式子等描述出来﹐写在大括号内﹐这种表示集合的方法叫做描述法。
{x|P}(x为该集合的元素的一般形式,P为这个集合的元素的共同属性)如:小于π的正实数组成的集合表示为:{x|0 4.自然语言常用数集的符号:(1)全体非负整数的集合通常简称非负整数集(或自然数集),记作N;不包括0的自然数集合,记作N_(2)非负整数集内排除0的集,也称正整数集,记作Z+;负整数集内也排除0的集,称负整数集,记作Z-(3)全体整数的集合通常称作整数集,记作Z(4)全体有理数的集合通常简称有理数集,记作Q。
Q={p/q|p∈Z,q∈N,且p,q互质}(正负有理数集合分别记作Q+Q-)(5)全体实数的集合通常简称实数集,记作R(正实数集合记作R+;负实数记作R-)(6)复数集合计作C集合的运算:集合交换律A∩B=B∩AA∪B=B∪A集合结合律(A∩B)∩C=A∩(B∩C)(A ∪B)∪C=A∪(B∪C)集合分配律A∩(B∪C)=(A∩B)∪(A∩C)A∪(B∩C)=(A∪B)∩(A∪C)集合德.摩根律集合Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB集合“容斥原理”在研究集合时,会遇到有关集合中的元素个数问题,我们把有限集合A的元素个数记为card(A)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高一数学必修一重点知识点总结5篇
人教版高一数学必修一知识点1
指数函数
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。
(3)函数图形都是下凹的。
(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。
(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。
其中水平直线y=1是从递减到递增的一个过渡位置。
(6)函数总是在某一个方向上无限趋向于X轴,永不相交。
(7)函数总是通过(0,1)这点。
(8)显然指数函数。
人教版高一数学必修一知识点2
空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
2.2.直线、平面平行的判定及其性质
2.2.1直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aα
bβ=>a∥α
a∥b
2.2.2平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3—2.2.4直线与平面、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
α∩β=b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面与平面平行得出直线与直线平行
人教版高一数学必修一知识点3
知识点1.集合与元素
一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。
例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相
对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多
多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。
班级相对于你是集合,相对于学校是元素,参照物不同,得到
的结论也不同,可见,是集合还是元素,并不是绝对的
知识点2.解集合问题的关键
解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法
来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合,比
如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面
直角坐标系中的图形表示相关的集合等
人教版高一数学必修一知识点4
定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
范围:
倾斜角的取值范围是0°≤α<180°。
理解:
(1)注意“两个方向”:直线向上的方向、x轴的正方向;
(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
公式:
k=tanα
k>0时α∈(0°,90°)
k<0时α∈(90°,180°)
k=0时α=0°
当α=90°时k不存在
ax+by+c=0(a≠0)倾斜角为A,
则tanA=-a/b,
A=arctan(-a/b)
当a≠0时,
倾斜角为90度,即与X轴垂直
人教版高一数学必修一知识点5
1.“包含”关系—子集
注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA
2.“相等”关系(5≥5,且5≤5,则5=5)
实例:设A={x|x2-1=0}B={-1,1}“元素相同”
结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B
①任何一个集合是它本身的子集。
AíA
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同时BíA那么A=B
3.不含任何元素的集合叫做空集,记为Φ
规定:空集是任何集合的子集,空集是任何非空集合的真子集。