人教版7年级数学下册9.1.2 不等式的性质 教案
人教七下数学9.1.2 不等式的性质(教案)

第九章不等式与不等式组9.1不等式9.1.2不等式的性质【知识与技能】1.理解不等式的性质;2.利用不等式的性质解不等式.【过程与方法】利用天平实验探究不等式性质1,性质2;通过对具体不等式两边都乘以(或除以)同一个负数,不等式符号改变的情形探究不等式性质3;在此基础上,利用不等式的性质解不等式,要着重强化不等式性质3的理解与运用.【情感态度】通过观察、实验、类比获得新知,体验数学活动的探索性和创造性.【教学重点】不等式的性质.【教学难点】不等式的性质3.一、情境导入,初步认识问题1 用“<”或“>”填空:(1)5>3,则5+2_____3+2,5-2____3-2;-1<2,则-1+3_____2+3,-1-3____2-3;a>b,则a±c_____b±c;a<b,则a±c_____b±c.(2)6>2,则6×5_____2×5,6/5_____2/5(3)-2<7,则-2×(-6)_____7×(-6),-2/-6_____7/-6.问题2 观察(1)、(2)、(3)总结其中的规律,概括不等式有哪些性质.二、思考探究,获取新知先引导学生回顾等式的性质,再根据实验和问题1 ,2探索不等式的性质.思考不等式有哪些性质?怎样用式子表达不等式的性质?【归纳结论】不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变,用式子表示:如果a>b,那么a±c>b±c.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变,用式子表示:如果a>b,c>0,那么a/c>b/c或a/c>b/c.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变,用式子表示:如果a>b,c<0,那么a/c<b/c或a/c<b/c.三、运用新知,深化理解1.设a>b,用“<”、“>”填空,并填写理由.(1)5a_____5b,理由:____________________.(2)a-7_____b-7,理由:____________________.(3)-3a_____-3b,理由:____________________.(4)3a+8_____3b+8,理由:____________________.(5)-7b+1_____-7a+1,理由:____________________.2.判断下列不等式的变形是否正确.(1)若a<b,且c≠0,则a/c<b/c;(2)若a>b,则1-a2<1-b2;(3)若a>b,则ac2>bc2;(4)若ac2<bc2,则a<b.3.根据不等式的性质解下列不等式,并在数轴上表示解集.(1)x+3>2;(2)-2x<6;(3)-5x+2>3x+2;(4)2x-6>4x-5.【教学说明】让学生自主探究,独立完成,然后相互交流,发现问题并及时纠正,教师巡视,适时予以指导.【答案】略.四、师生互动,课堂小结1.不等式的三个性质.2.运用不等式的性质3时,一定要变号.1.布置作业:从教材“习题9.1”中选取.2.完成练习册中本课时的练习.本课通过类比等式的性质,结合生活中的实例组织学生探索,得到不等式的三个性质.在探索中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,小组讨论又锻炼了学生的创造性和合作性,为后面的学习打下了一定的基础.。
人教版数学七年级下册9.1.2不等式的性质教学设计

(四)课堂练习
1.教师布置一些具有代表性的练习题,涵盖本节课所学的不等式性质和应用。
2.学生独立完成练习题,教师巡回指导,关注学生的解题过程,并及时给予反馈。
3.教师选取部分学生的作业进行展示和讲解,分析解题思路和易错点。
4.学生互相讨论、交流,共同提高解题能力。
4.教师通过板书和多媒体展示,讲解如何运用不等式的性质解决实际问题,如:求解不等式、比较大小等。
(三)学生小组讨论
1.教师将学生分成若干小组,每组分配一个实际问题,要求学生运用不等式的性质解决问题。
2.学生在小组内展开讨论,共同探究不等式的性质和解决方法。
3.教师巡回指导,关注学生的讨论过程,及时解答他们的疑问。
-通过生活实例引入不等式的概念,让学生感受到数学与生活的紧密联系,激发他们的学习兴趣。
-设计富有趣味性的问题,引导学生积极思考,主动探生,通过简单易懂的例子和详细的讲解,帮助他们理解和掌握不等式的定义和性质。
-对于基础较好的学生,提供更具挑战性的问题和拓展练习,提高他们的思维能力和解题技巧。
3.学生回答后,教师总结:这些场景中都存在一种大小关系,我们称之为不等式。今天我们将学习不等式的性质,并运用它们解决实际问题。
(二)讲授新知
1.教师讲解不等式的定义,并通过例子解释不等式的符号表示。
2.讲解不等式的性质,如:可加性、可减性、可乘性、可除性,并举例说明。
3.分析生活中的实际问题,引导学生学会将实际问题抽象为不等式问题。
人教版数学七年级下册9.1.2不等式的性质教学设计
一、教学目标
(一)知识与技能
1.理解不等式的定义,了解不等式的符号表示,并能用文字和符号两种方式表达不等关系。
七年级数学下册 9.1.2 不等式的性质教案 新人教版

9.1.2 不等式的性质[教学目标]1. 理解不等式的性质,掌握不等式的解法2. 培养学生的数感,渗透数形结合的思想.[教学重点与难点]重点:不等式的性质和解法.难点:不等号方向的确定.[教学设计]一.问题探知 发现规律问题1 等式的性质1,2.问题2 用”>””<” 填空并总结规律: (1)5>3 ,5+2 3+2,5-2 3-2 (2)-1<3,-1+2 3+2, -1-3 3-3(3)6>2,6×5 2×5,6×(-5) 2×(-5)(4)-2<3,(-2)×6 3×6,(-2)×(-6) 3×(-6)由上面规律填空:(1)当不等式两边加上或减去同一个数(正数或负数)时,不等号的方向 ;(2)当不等式两边乘同一个正数时,不等号的方向 ;而乘同一个负数时,不等号的方向 .不等式性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式来年改变乘(或除以)同一个负数,不等号的方向改变.例1 利用不等式的性质,填”>”,:<”(1)若a>b,则2a+1 2b+1;(2)若-1.25y<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,则(a-b)c 0.例2 利用不等式性质解下列不等式 (1)x-7>26; (2)3x<2x+1; (3)32x>50; (4)-4>3. 分析:利用不等式性质变形为最基本形,利用数轴表示解集练习:教材133:1,2题..二.巩固训练根据不等式的性质,把下列不等式化为x>a 或x<a 的形式学生观察规律归纳性质简单应用性质下列不等式: (1);23231-->x x (2)22121--≤x x (3)-3x>2;(4)-3x+2<2x+3例3 已知不等式3x-a ≤0的解集是x ≤2,求a 的取值范围.[作业]必做题:教科书134页习题:6题9.1.2不等式的性质(2)[教学目标]掌握不等式的性质,并利用不等式的性质解决简单的实际问题。
人教版七年级下册数学教案设计:9.1.2 不等式的性质

四、教学过程
1回顾旧知,类比新知2探索新知,归纳结论3基础训练,巩固应用4归纳小结
五、教学策略选择与信息技术融合的设计
教师活动
预设学生活动
设计意图
复习不等式的性质,检查学生对上节课的理解情况!
回忆,复述,回答!
小学阶段的不等式பைடு நூலகம்容的复习
本节课是在上节课学习的基础上,让学生在课前预习本节课的内容!同时讲解性质中的关键地方。
七、教学板书(本节课的教学板书)
课题:不等式的性质
性质1、
性质2
性质3
xs
A.a>0B.a<0C.a<1D.a>1
3.不等式-3≤x<2的整数解的个数是 _________
4.若a、b均为有理数,且b<0,则a,a-b,a+b的大小关系是__________.
5.方程3(x-1)=x-7a的解是负数,那么a的取值范围是________.
6.根据不等式的性质,把下列不等式化为“x>a”或“x<a”的形式。
(1) ; (2) ;
(3) ; (4)
7.有5支排球劲旅A队、B队、C队、D队、E队,参加排球锦标赛,成绩如下:D队的名次比C队低,A队比B队高,但低于E队;E队比C低,B队比D队高,请问:这5支球队各是第几名。解决这类问题,一个非常方便的方法是利用数学符号帮忙,此处用“>”或“<”,将成绩可简单表示成不等式,很快就得出这5个队的名次,试一下吧?
背诵性质,并做相应的练习
检查预习情况
让学生明确本节课的学习目标,让学生在明确的目的下学习本节课!
理解的基础上练习!
新课讲解
引导学生对本节课进行小结。
用自己的语言进行小结
人教版数学七年级下册9.1.2不等式的性质教学设计

(二)过程与方法
1.通过导入实际问题,引导学生发现不等式,激发学生的学习兴趣,培养学生的问题意识。
2.采用启发式教学方法,引导学生探究不等式的性质,培养学生的逻辑思维能力和团队合作精神。
3.通过典型例题的分析和讲解,让学生掌握不等式的求解方法,提高学生的解题技巧。
4.教师布置课后作业,巩固课堂所学知识,并为下一节课的学习做好准备。
5.通过总结归纳,使学生形成完整的知识体系,提高学生的数学素养。
五、作业布置
为了巩固本节课所学的不等式性质及求解方法,培养学生的数学思维能力,特布置以下作业:
1.请同学们完成课本第98页的练习题1、2、3,注意运用不等式的性质进行推理,并求解相关不等式。
4.教师讲解不等式的求解方法,如线性不等式、一元一次不等式的求解,并通过典型例题进行讲解。
5.学生跟随教师一起练习解题,掌握解题步骤和方法。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,每个小组讨论一个实际问题,如:某商店的优惠活动,购买金额达到一定数额才能享受优惠,如何用不等式表示这个条件?
6.关注学生情感,营造良好氛围:尊重学生的主体地位,鼓励学生提问、发表观点,营造轻松、愉快的学习氛围,提高学生的学习积极性。
7.课后辅导与评价:课后关注学生的作业完成情况,及时给予反馈和指导,提高学生的学习效果;同时,采用多元化的评价方式,全面评估学生的学习成果。
8.跨学科整合,提高综合素养:将数学知识与其他学科知识相结合,如与物理、化学等学科的联系,提高学生解决实际问题的能力,培养学生的综合素养。
2.注重知识衔接:结合学生已有的知识基础,引导他们发现和探究不等式的性质,使新旧知识得以有效衔接。
9.1.2 不等式的性质 初中数学人教版七年级下册教案2

不等式的性质教学设计一、概述本节是探索不等式的基本性质,为以后的解不等式做准备,本课通过类比等式基本性质,探索不等式的基本性质。
在本节的设计中,充分体现了学生已有经验的作用,用不完全归纳法得出不等式的基本性质。
教学中应鼓励学生动手、动口、动脑和交流,充分展示“观察、操作——猜想、探索——说理(有条理地表达)”的过程。
三、教学目标:1,探索不等式的基本性质并会简单运用。
2.在探索过程中学会表达 ,学会与人合作。
四、教学重点:不等式的基本性质。
教学难点:探索不等式的基本性质。
五、教学过程:教学步骤教 师 活 动学 生 活 动教学方式复习过渡引入新知1、观察下面这几个式子,完成下面的填空。
因为a=b ,所以a+3=b+3,a-3=b-3,因为a=b ,所以3a=3b ,a∕4=b∕4依据是?在教师引导下回忆前面知识,为探究新知识作好准备。
由学生归纳总结创设情景1、电梯里的数学问题2、小明的年龄比小丽大,设小明的年龄为a 岁,小丽为b 岁,则a>b.那么请你比较小明与小丽三年前年龄的大小关系?三年后呢?议一议:学生分小组进行讨论。
学生分组讨论,师生互动合作探索活动一、请填写下列表格,你有何发现?同桌之间可以互出题目给对方解决。
二、用“<”或“>”填空:5×1( )3×1,5×2( )3×2,5×3( )3×3,5×4( )3×4,5×(-1)( )3×(-1),5×(-2)( )3×(-2),5×(-3)( )3×(-3),5×(-4)( )3×(-4),三、 ①不等式的两边都乘以0,会出现什么样的结果?②不等式的性质与等式的性质有什么相同点、不同点?学生分小组进行讨论不等号的变化,并可多出几组。
经过对各种情况的分析、归纳、总结,得出不等式的基本性质。
人教版七年级数学下册9.1.2不等式的性质第一课时教学设计

通过具体的例题,演示如何运用不等式的性质进行变形和求解。
3.分析解题思路
在讲解过程中,强调解题的关键步骤和注意事项,引导学生理解不等式性质的应用。
4.互动提问
在讲解过程中,适时提问,检查学生对不等式性质的理解程度。
(三)学生小组讨论
1.分组讨论
将学生分成小组,每组选取一个实际问题,共同探讨如何将问题抽象为不等式,并运用不等式的性质进行求解。
2.学生在运用不等式性质进行变形和求解时的掌握情况,是否存在误区。
3.学生在解决实际问题时,能否将问题抽象为不等式,并运用所学知识进行求解。
4.学生在团队合作中的表现,是否能积极参与、倾听他人意见、表达自己的观点。
针对以上学情,教师应采取有针对性的教学策略,如:通过生动的实例引入不等式的性质,激发学生的兴趣;设置不同难度的练习题,帮助学生巩固所学知识;注重培养学生的团队合作意识,提高学生之间的交流与互动。从而让每个学生都能在轻松愉快的氛围中学习数学,提高数学素养。
(二)过程与方法
1.提高观察、分析、能力和推理能力,运用不等式的性质进行推理和求解。
3.学会与他人合作交流,倾听他人意见,表达自己的观点。
4.能够将所学知识应用于解决实际问题,提高解决问题的能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和爱好,增强学习数学的自信心。
2.小组分享
各小组分享自己的讨论成果,其他小组给予评价和反馈。
3.教师点评
教师针对每个小组的讨论情况进行点评,总结优点,指出不足。
4.拓展思考
引导学生思考:除了教材中的性质,还有没有其他不等式的性质?如何证明这些性质?
(四)课堂练习
1.练习题设计
设计不同难度的练习题,涵盖本节课所学的不等式性质。
七年级数学下册9.1.2不等式的性质教学设计

一、教学目标
(一)知识与技能
1.理解不等式的定义,知道不等号表示的意义,能够识别并正确书写常见的不等式。
2.掌握不等式的性质,包括但不限于:可加性、可减性、可乘性、可除性、对称性、传递性等。
3.能够运用不等式的性质解决实际问题,如比较大小、求解未知数等。
4.学会使用数轴来直观表示不等式及其解集,理解不等式解集的区间表示方法。
3.情感态度:鼓励学生勇于尝试、善于合作,培养他们面对数学问题的信心和兴趣。
4.课后作业:布置适量、有针对性的课后作业,帮助学生巩固所学知识,为下一节课做好准备。
五、作业布置
为了巩固学生对不等式性质的理解,提高他们解决实际问题的能力,特布置以下作业:
1.请同学们完成课本第92页的练习题第1-4题,这些题目涵盖了不等式的定义和基本性质,旨在帮助学生巩固基础知识。
2.完成第93页的第5-8题,这些题目设计了较为复杂的不等式问题,需要学生运用所学的性质进行推理和求解。通过这些题目,学生可以进一步提升解题技巧和逻辑思维能力。
3.结合生活实际,设计一道与不等式相关的实际问题,要求学生将其转化为数学模型,并利用不等式的性质解决问题。此题旨在培养学生将数学知识应用于生活的能力,激发他们的学习兴趣。
1.对不等式的概念理解不深,容易混淆不等号的意义。
2.在运用不等式性质解决问题时,可能缺乏灵活性和策略性。
3.对数轴的运用不够熟练,难以将抽象的不等式与具体的图形结合起来。
4.部分学生在解决实际问题时,可能难以将问题转化为数学模型。念的教学,通过实例对比,帮助学生明确不等号的意义。
7.教学拓展:针对学有余力的学生,可以设计一些拓展性练习,如研究不等式的证明、解决更复杂的问题等,激发学生的兴趣,提高他们的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
修订、增减
课题:
9.1.2不等式的性质(2)
三维目标
知识与技能
1、使学生熟练掌握不等式性质||,灵活利用不等式性质解不等式;
2、初步认识一元一次不等式的应用价值;
过程与方法
学会运用类比思想来解不等式||,培养学生观察、分析和归纳的能力;
情感与态度
在积极参与数学活动的过程中||,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.
④-2 < 3
(-2)×63×6
(-2)×(-6)3×(一6)
⑤-4>-6
(-4)÷2(-6)÷2
(-4)÷(-2)(-6)÷(-2)
问题2
从以上练习中||,你发现了什么规律?请你再用几个例子试一试||,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.
问题3
你能用式子表示不等式的三条性质吗?
【板书如下:
问题1
利用不等式的性质填“>”||,“<”:
(1)若a>b||,则2a2b;
(2)若-2y<10||,则y-5;
(3)a<b||,c>0||,则ac-1bc-1;
(4)a>b||,c<0||,则ac+1bc+1||。
问题2
利用不等式性质解下列不等式||,并在数轴上表示解集:
(1)x-7>26
(2)3x < 2x+1
教学重点:理解并掌握不等式的性质及运用;
教学难点:不等式性质3的探索及正确运用不等式的性质;
教学方法与手段:启发、讨论、探究
教学过程:
一、情境创设
复习回顾:
等式有哪些性质?
导入新课:
①给不平衡的天平两边同时加入相同质量的砝码||,天平会有什么变化?
②不平衡的天平两边同时拿掉相同质量的砝码||,天平会有什么变化?
教学重点:不等式的性质和解法;
教学难点:不等式的性质和解法;
教学方法与手段:启发、讨论、探究
教学过程:
一、情境创设
复习回顾:
1、不等式的三条基本性质是什么?
2、用“<”、“>”或“=”填空:
(1)若a >b||,
则a+cb+c||,a-cb-c;
(2)若a >b||,且c>0||,
则acbc||,a/cb/c;
∴0≤V≤105
在数轴上表示为:
问题2
三角形任意两边之差与第三边有着怎样的大小关系?
解:设a、b、c为任意一个三角形的三条边的长||,则
a+b>c||,b+c>a||,c+a>b.
移项||,得
a>c-b||,b>a-c||,c>b-a.
三角形中任意两边之差小于第三边||。
三、尝试应用
1、解下列不等式||,并在数轴上表示解集:
根据等式的性质2||,得x≥50×3/2
∴x≥7 5
(4)-4x≤3
根据等式的性质3||,得x≤-3/4||。
三、尝试应用
1、设a < b||,用“<”或“>”填空||,并说明依据:
(1)3a3b;依据||。
(2)a-8b-8;依据||。
(3)-2a-2b;依据||。
(4)2a-52b-5;依据||。
3、还有哪些问题需要注意?
让学生自己归纳||,教师仅做必要的补充和点拨.
六、布置作业
修订、增减
(1)3-5x≥4-6x
(2)-300x<1500
(3)2-2x<6
(4)5x+54<x-1
2.当x时||,2-3x为非正数.
3、已知一个等腰三角形的底边长5||,腰长为x||,则x的取值范围是.
四、补充提高
1.解下列不等式||,并把它们的解集在数轴上表示出来||。
(1)(1-x)<2(x+9);
(2) .
探究活动二
(二)不等式的简单应用
问题1
某长方体形状的容器长5 cm||,宽3 cm||,高10 cm.容器内原有水的高度为3 cm||,现准备继续向它注水.用V(单位:cm3)表示新注入水的体积||,写出V的取值范围||。
解:依题意||,得
V+3×5×3≤3×5×10
∴V≤105||。
不是||,因为新注入水的体积不能是负数||,所以V≥0||。
(3)若a >b||,且c<0||,
则acbc||,a/cb/c||。
二、自主探究
探究活动一
(一)运用不等式性质解不等式
问题1
解下列不等式||,并在数轴上表示解集:
(1)x-5>-2(2)-
(3) 8x-2 < 7x+3
问题2
解下列不等式||,并在数轴上表示解集:
(1) 7-3x≤10
(2)2x-3 < 3x+1
(3) x≤50
(4)-4x < 3
分析:解不等式最终要变成什么形式呢?
就是要使不等式逐步化为x>a或
x <a的形式||。
解:(1) x-7>26
根据等式的性质1||,得x-7+7>26+7
∴x>33
(2)3x < 2x+1
根据等式的性质1||,得3x-2x < 2x+1-2x
∴x<1
(3)2/3 x≥50
(1)a-3 > b-3
(2)
(3)-4a >-4b
2、用不等式表示下列语句并写出解集:
(1)x与3和不小于6;
(2)y的4倍小于或等于-2||。
(3)x的3倍大于或等于1;
(4)y与1的差不大于0
3、关于x的不等式2x+a 0的负整数解是-2||,-1||,求a的取值范围.
五、课堂小结
通过本节课的学习||,你学会了哪些知识?有哪些感悟?给同学、老师说一说?
课题:
9.1.2不等式的性质(1)
三维目标
知识与技能
1、理解掌握不等式的性质;
2、会解决简单的一元一次不等式||,并能在数轴上表示出解集||。
过程与方法
经历通过类比、猜测、验证发现不等式性质的探索过程||,初步体会不等式与等式的异同||,初步掌握类比的思想方法||。
情感与态度
通过创设问题情境和实验探究活动||,积极引导学生参与数学活动||,提高学习数学的兴趣||,增进学习数学的信心||,体会在解决问题的过程中与他人交流合作的重要性||。
2.已知关于 的方程 的解是非正数||,求 的取值范围||。
3.一个长方形的周长为60㎝||,长不小于宽||,那么它的长的取值范围是什么?
4、思考题:已知关于x的不等式(1-a)x>2的两边同时除以(1-a)得到 ||,试化简
五、课堂小结
课堂小结:
围绕以下几个问题:
1、这节课的主要内容是什么?
2、通过学习||,我取得了哪些收获?
③如果对不平衡的天平两边砝码的质量同时扩大相同的倍数||,天平会平衡吗?缩小相同的倍数呢?
二、自主探究
探究活动一
(一)探究不等式的性质
问题1
用“>”或“<”填空.
①-1 < 3
-1+23+2||,-1-33-3
②5 >3
5+a3+a||,5-a3-a
③6 > 2
6×52×5||,6×(-5)2×(-5)
(5)-3.5a+1-3.5b+1||。依据||。
பைடு நூலகம்2、填空
(1)∵2a > 3a∴a是数
(2)∵ ∴a是数
(3)∵ax < a且x > 1∴a是数
3、解下列不等式||,并在数轴上表示解集:
(1)x+5>-1(2)4x < 3x-5
(3) (4)-8x < 10
四、补充提高
1、根据下列已知条件||,说出a与b的不等关系||,并说明是根据不等式哪一条性质||。
(1)若a >b||,则a+c > b+c||,a-c >b-c;
(2)若a >b||,且c>0||,则ac >bc||,a/c >b/c;
(3)若a >b||,且c<0||,则ac<bc||,a/c<b/c||。】
问题4
你能说出不等式性质与等式性质的相同之处与不同之处吗?
探究活动二
(二)不等式的性质的运用