质谱定性分析及谱图解析
(完整版)质谱分析图谱解析

※ 计算机处理
3.3 有机质谱中的反应及其机理
M+ e
50-70 eV
+. M
+
2e
-. M
+
小于1%
+.
A +. + 中性分子或碎片
M
B + + R
A +.
B+
M+·→ A+·, B+, C +·, D+ ……
y = 154 32 12×8=26 不合理 设w=1 则 y = 154 321612×8=10
分子式为C8H10OS
查Beynon表法
C H N O m/z M+1 M+2 理论计算值,会出现不符合N律和不符合DBE的一般规律。
高分辨质谱法
精确质量,与分辨率有关 ※ 试误法
精确质量的尾数=0.007825y+0.003074z-0.005085w
DBE: Double Bond Equivalents UN: Unsaturated Number
计算式为:
=C+1-H/2
C—C原子数
H—H原子数
i) 分子中含有卤素原子(X)时,它的作用等价于氢原子;
ii) 二价原子数目不直接进入计算式;
iii) 化合物中若含有一个三价N原子,它相应的化合物比链状烷烃多3个H.
H2C OC2H5
例:① 烯:
R HH
C
CH2
H2C C
C R'
H2
② 酯:
质谱的图谱分析与介绍

若分子中含C9,则其余元素的原子量总和为132-12×9=24。由N、O、H原子量推导出可能 的分子式1. C9H24 2.C9H10N 3. C9H8O
1.不符合价键理论2.不符合氮规则3.合理的分子式
6. 计算化合物的不饱和度 (r+dB)---环加双键数 不饱和度表示有机化合物的不饱和程度,计算不饱和度有助于判断化合物的结构。
离子流强度有两种不同的表示方法:
(1)绝对强度
是将所有离子峰的离子流强度相加作为总离子流,用各离子峰的离子强度除以总离子流, 得出各离子流占总离子流的百分数
(2)相对强度
以质谱峰中最强峰作为100%,称为基峰(该离子的丰度最大、最稳定),然后用各种峰的 离子流强度除以基峰的离子流强度,所得的百分数就是相对强度。
子找子离子,或由子离子找母离子来确定离子间的亲缘关系。
质量分析离子动能谱(MIKES):反置(VBE)双聚焦系统第二无场所加速电压V和磁 场B固定不变,仅扫描静电场电压,由母找子
B/E联动扫描:第一无场所加速电压固定不变,B/E比值为常数联动扫描,由母找子 B2/E联动扫描:第一无场所由子找母,加速电压固定不变,B/E比值为常数联动扫描。 串联质谱法实现产物离子检测。
2.离子特征丢失与化合物的类型
质谱高质量端离子峰是由分子离子失去碎片形成的。从分子离子失去的碎片,可以确定化合 物中含有哪些取代基
M-1 -H 醛类(一些醚类和胺类)
M-15 -CH3 甲基取代
M-18 -H2O 醇类
M-28 -C2H4, CO, N2 失C2H4(McLafferty重排),失CO(从酯环酮脱下) M-29 -CHO, -C2H5 醛类、乙基取代物 M-34 -H2S 硫醇
分子中既没有杂原子又没有双键,其正电荷位置一般在分支碳原子上。如果电荷位置不确 定,或不需要确定电荷的位置,可在分子式的右上角标:"┒+",例如CH3COOC2H5┒+。
质谱的原理和图谱的分析

(4)快原子轰击(fast atom bombardment, FAB) 用高能量的快速Ar原子束轰击样品分子(用液体基质负载样品并涂敷在靶上,常用基质有甘油、间硝基苄醇、二乙醇胺等),使之离子化。 FAB灵敏度高,适用于对热不稳定、极性强的分子,如肽、蛋白质、金属有机物等。 样品分子常以质子化的[M+H]+离子出现 基质分子会产生干扰峰。
◎分子中含1Cl 和1Br (a1+b1) (a2+b2), M : M+2 : M+4≈3 : 4 : 1 (3a+b)(a+b)=3a2+4ab+b2
查Beynon表法
C H N O m/z M+1 M+2
从离子源出口到达检测器之前裂解并被记录的离子称亚稳离子,其动能小于离子源生成的离子,以低强度于表观质量m*(跨2~3质量单位)处记录下来,其m/z一般不为整数。 m*=m22/m1
01
在质谱中,m*可提供前体离子和子离子之间的关系。
02
离子在离子源的运动时间约106s数量级, 寿命小于 106s的离子在离子源内进一步裂解。离子从离子源到达检测器的时间约为105s数量级,离子寿命大于105s,足以到达检测器。寿命在106s到 105s的离子可产生亚稳离子。
(2)同位素离子
含有同位素的离子称为同位素离子。 与同位素离子相对应的峰称为同位素离子峰。
分子离子在电离室中进一步发生键断裂生成的离子。
经重排裂解产生的离子称为重排离子。 其结构并非原来分子的结构单元。
02
(5)母离子与子离子
任何一个离子(分子离子或碎片离子)进一步裂解生成质荷比较小的离子。 前者称为母离子,后者称为子离子。
质谱谱图解析

3. 根据分子离子峰的同位素丰度,未知物含有2-3个O及5-6个C,分子 量为126的合理化学式只有三个:C5H2O4,C6H6O3,C7H10O2,由以 上判断,最有可能的化学式为C6H6O3
4. 根据C6H6O3计算环加双键值为4
至此,可排出可能的ห้องสมุดไป่ตู้构为呋喃甲酸甲酯,但无法确定是哪个异构体。 这两个异构体都能产生谱图中的重要峰
若有高分辨质谱数据,即可直接获得m/z 67,m/z 95的元素组成,使 解析大为简化
最后,还要合成这两个异构体,再根据这两个异构体的质谱图和色谱 保留时间最终确定未知物结构
两种异构体产生谱图中重要峰的途径如下:
例 12
这是一张由植物中提取的一种成分的质谱图,应用化学电离技术获得分 子量为151,由同位素丰度得到该分子元素组成为C9H13NO
7. 未知物化学式比色酮和香豆素多了一个O,即多一个羟基
8. 天然的色酮及香豆素衍生物类化合物中,取代基多位于A环:
9. 由香豆素及色酮的质谱图可看到两者都发生消除反应,失去[CO],产生 [M-28]碎片离子,但只有色酮发生失去乙炔的消除反应,产生[M-26]碎片 离子,而香豆素不发生这种反应
10. 未知物的谱图中只有[M-28]的碎片峰(m/z 118),而没有[M-26]的 碎片峰(m/z 120),因此排除了羟基色酮的可能
1. 未知物谱图中质量数最高的峰是m/z 254(偶数),与m/z 226相差28 u,为失去合理中性物,因此认定m/z 254为分子离子峰
2. 由m/z 254离子的元素组成C15H10O4计算其环加双键值为11 3. 分子离子峰为基峰环加双键值为11可产生[M-28]+显著碎片峰,具有
质谱谱图解读

质谱谱图解读质谱谱图是质谱仪测量过程中的一个结果,它可以提供目标化合物的质量及其相对丰度,帮助分析师根据特定的质谱特征来确定化合物的结构和组成。
在本文中,我们将深入探讨质谱谱图的解读方法,以帮助读者更好地理解和应用这一重要的分析工具。
1. 质谱图的基本构成质谱谱图由两个主要的轴组成:质量轴和信号强度轴。
质谱仪通过离子化处理将样品中的化合物转化为带电离子,然后按照质量-电荷比(m/z)对离子进行分离和检测。
质谱图上的峰表示不同质荷比的离子相对丰度,而峰的位置则对应着化合物的质量。
2. 质谱峰的解析质谱图中的每个峰都代表着一个特定的离子,其相对强度可以用于确定化合物的相对丰度。
对于单个峰的解析,我们需要考虑以下几个方面:2.1 基峰(Base Peak):基峰是质谱图中信号最强的峰,其相对强度被标为100%。
其他峰的相对强度是以基峰为参照来测量和表示的。
2.2 分子离峰(Molecular Ion Peak):分子离峰是由分子化合物的整个分子离子(M)形成的,其质量等于化合物的分子量。
这个峰通常是质谱图中质量最高的峰,可以用来确定化合物的分子式。
2.3 碎裂峰(Fragmentation Peak):碎裂峰是由分子离峰经过一系列的分裂反应生成的。
这些峰的存在可以提供关于化合物的结构信息,帮助确定分子中的官能团以及它们的相对位置。
3. 质谱峰的解释解读质谱谱图可以通过以下几个步骤进行:3.1 确定基峰和分子离峰:首先,找到质谱图中的基峰和分子离峰。
基峰的相对强度为100%,分子离峰的质量对应着化合物的分子量。
3.2 观察碎裂峰:仔细观察质谱图中的碎裂峰,并比较其质量和相对强度。
通过分析碎裂峰的出现模式和质量差异,可以推断化合物中的官能团和原子组成。
3.3 结合其他谱图:质谱谱图常常与其他谱图(如红外光谱、紫外光谱等)一起使用,来进一步解读化合物的结构和性质。
4. 实例分析为了更好地理解和应用质谱谱图解读的方法,我们以某药物分析为例进行实例分析。
质谱分析图谱解析

离子质量:离子的质量是质 谱分析的关键参数,可以通
过质谱图直接读取
分子式:根据离子质量和相 对丰度,结合化学知识,可
以确定分子的分子式
解析图谱中的离子峰
确定离子峰的位置:根据图谱中的峰位和峰高,确定离子峰的位置。 计算离子峰的相对丰度:根据离子峰的峰高和峰面积,计算离子峰的相对丰度。 确定离子峰的质荷比:根据离子峰的位置和质量,确定离子峰的质荷比。
实例分析:选取 一个具体的有机 化合物,分析其 质谱分析图谱, 解释图谱中各峰 的含义和相互关 系
解析技巧:介绍 解析有机化合物 质谱分析图谱的 技巧和方法
结论:总结有机 化合物质谱分析 图谱解析的结果 和意义
Байду номын сангаас
解析实例二:生物大分子的质谱分析图谱
生物大分子:蛋白质、核酸、多糖等 质谱分析:测定生物大分子分子量、结构和组成 图谱解析:通过图谱分析生物大分子的结构和功能 实例:蛋白质的质谱分析图谱解析,如胰岛素、血红蛋白等
解析结果的解释和表达
解析结果需要结合实验目的和预期结果进行解释 解析结果需要与文献报道的结果进行比较和分析 解析结果需要以图表的形式清晰、准确地展示 解析结果需要以简洁明了的语言进行描述和表达
Prt Six
质谱分析图谱解析 的发展趋势和展望
质谱分析技术的进展
质谱技术的发展历程:从最初的质谱仪到现在的高分辨率质谱仪
质谱分析图谱解析在科学研究中的应用前景
质谱分析图谱解析在生命科学领域的 应用
质谱分析图谱解析在环境科学领域的 应用
质谱分析图谱解析在材料科学领域的 应用
质谱分析图谱解析在食品科学领域的 应用
质谱定性分析及图谱解析

MS
(1)分子离子稳定性的一般规律:
分子离子的稳定性与分子结构有关。 碳数较多、碳链较长(也有例外) 和有支链的分子,分裂几率较高,
其分子离子的稳定性低;而具有
键的芳香族化合物和共轭烯烃分子, 分子离子稳定,分子离子峰大。
MS
分子离子稳Байду номын сангаас性的顺序为:
芳香环>共轭烯烃>脂环 化合物>直链的烷烃类>硫醇 >酮>胺>酯>醚>分支较多 的烷烃类>醇。
MS
8.5 质谱定量分析
质谱法进行定量分析时,应满足一些必要的条件, 例如:
(1)组分中至少有一个与其它组分有显著不同的 峰;
(2)各组分的裂解模型具有重现性;
(3)组分的灵敏度具有一定的重现性(要求1%);
(4)每种组分对峰的贡献具有线性加和性;
MS
对于个组分的混合物:
i11 p1 i12 p2 i1n pn I1 i21 p1 i22 p2 i2n pn I 2
MS
8.4 质谱定性分析及图谱解析
通过质谱图中分子离子峰和 碎片离子峰的解析可提供许多 有关分子结构的信息,因而定 性能力强是质谱分析的重要特 点。
MS
8.4.1 相对分子质量的测定
从分子离子峰可以准确地测定该 物质的相对分子质量,这是质谱分 析的独特优点,它比经典的相对分 子质量测定方法(如冰点下降法,沸 点上升法,渗透压力测定等)快而准 确,且所需试样量少(一般0.1mg)。
im1 p1 im2 p2 imn pn I m
MS
式中:
Im — 在混合物的质谱图上于质量 m处的峰高(离子流);
imn — 组分n在质量m处的离子流,
Pn — 混合物中组分n的分压强。
质谱定性分析及图谱解析

实验步骤与操作
1. 样品准备
选择合适的溶剂将待测样品溶解,并调整至适当的浓度 。
2. 质谱仪调试
打开质谱仪,调整仪器参数,如离子源电压、质量分析 器参数等,以确保仪器处于最佳工作状态。
3. 样品进样
将准备好的样品通过进样系统注入到离子源中。
4. 质谱图获取
启动数据采集系统,记录质谱图。根据需要,可以选择 不同的扫描范围和扫描速度。
峰检测与识别
利用算法对预处理后的数据进行峰检测,识别出质谱图中 的各个峰,并记录其质荷比(m/z)和强度信息。
峰对齐与校正
对多个样本的质谱数据进行峰对齐操作,确保相同物质在 不同样本中的峰能够对应起来。同时,进行峰校正,消除 由于仪器误差等因素引起的峰偏移。
峰匹配与注释
将检测到的峰与已知的化合物数据库进行匹配,对峰进行 注释,明确各个峰所代表的化合物。
重金属污染物检测
通过质谱技术可以准确地检测环境中的重金属污染 物,如铅、汞、镉等,为环境治理提供依据。
大气颗粒物分析
质谱技术可用于分析大气颗粒物的化学组成 和来源,为大气污染防控提供科学支持。
食品安全检测中的应用
农药残留检测
质谱技术可用于检测食品中的农药残留,保障食品的 安全性和消费者的健康。
食品添加剂检测
质谱定性分析及图谱解析
汇报人:文小库
2024-01-20
CONTENTS
• 质谱技术概述 • 质谱定性分析方法 • 图谱解析方法 • 质谱定性分析实验设计 • 质谱定性分析数据处理与结果
展示 • 质谱定性分析应用实例
01
质谱技术概述
质谱技术原理
离子化过程
将待测样品转化为气态离 子,常见的方法有电子轰
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MS
8.4.1 相对分子质量的测定
从分子离子峰可以准确地测定该物质的相对 分子质量,这是质谱分析的独特优点,它比经 典的相对分子质量测定方法(如冰点下降法,沸 点上升法,渗透压力测定等)快而准确,且所需 试样量少(一般0.1mg)。
MS
关键是分子离子峰的判断,因为在质谱中最 高质荷比的离子峰不一定是分子离子峰,这是 由于存在同位素和分子离子反应[如式(8-4) 所示]等原因,可能出现M+1或M+2峰;另一方面, 若分子离子不稳定,有时甚至不出现分子离子 峰。
第八章 质谱
Mass Spectrometry(MS)
质谱发展史
1898 W. Wien 1910
J. J. Thompson
发现带正电荷的离子束在磁场中发生偏转。 使用简单的电场-磁场组合装置, 获得了抛 物线族的质谱, 证明了20Ne, 22Ne两种同位 素的存在。 采用电子轰击技术使分子离子化。 制得了第一台速度聚焦质谱仪。提出每种同 位素的质子和中子在结合成原子核时, 具有 特定的质量亏损(并非整数值)。 商品MS出现, 用于石油精炼和橡胶工业。
MS
+
R CH2 O
CH2
R`
R
CH2
O
+
CH2
R`
+
.
R CH2
O CH R`
(游离基)
[M+1]+
出现M-1峰较典型的化合物是醛类、醇类或含 氮化合物,如:
R C
H
+.
O
R C
+
O
[M]+
[M-1]+
例: 2-甲基-2-丁醇质谱图
87 100
59
观察图中最高质量数峰 为87,但它不应是分子离 子峰。Why?
MS
8.2 质谱技术基本原理
8.2.1 质谱仪的基本工作原理
质谱仪的基本工作原理如图8-2所示。现以 扇形磁场单聚焦质谱仪为例(图8-3),将质谱 仪器各主要部分的作用原理讨论如下。
图8-3 单聚焦质谱仪
MS
1. 真空系统
通常用机械泵预抽真空,然后用扩散泵高效率并连 续地抽气。
2. 进样系统 1)气体扩散 2)直接进样 3)气相色谱
MS
因而在所得的质谱图中可出现下述一些质谱峰。
(1)分子离子峰:反应式(8-1)形成的离子ABCD+ 称为分子离子或母离子。因为多数分子易于失去一个 电子而带一个正电荷,所以分子离子的质荷比值就是 它的相对分子质量。 (2)同位素离子峰: 分子离子峰并不是质荷比最大的峰,在它的右边常 常还有M+1和M+2等小峰,这些峰是由于许多元素具有 同位素的缘故,称为同位素峰。
MS
碎片离子
ABCD+ BCD + A+
CD + AB+
B + A+ 或 A + B+
AB + CD+
D + C+ 或
C + D+
MS
重排后裂分
ABCD+ ADBC+ BC + AD+ 或 AD + BC+
分子离子反应
ABCD+ + ABCD (ABCD) +2 BCD + ABCDA+
MS
离子流强度有两种不同的表示方法:
(1)绝对强度 (2)相对强度 (1)绝对强度
绝对强度是将所有离子峰的离子流强度相加作为总 离子流,用各离子峰的离子强度除以总离子流,得出 各离子流占总离子流的百分数(总离子流是100%)。
MS
(2)相对强度
以质谱峰中最强峰作为100%,称为基峰(该离子的 丰度最大、最稳定),然后用各种峰的离子流强度除 以基峰的离子流强度,所得的百分数就是相对强度。
MS
m/ z
m/z 图8-9 甲基异丁基甲酮的质谱图
MS
(1)分子离子
MS
(2)碎片离子:
m/z=85
MS
(2)碎片离子:
m/z=43
MS
(2)碎片离子:
m/z=57
MS
(3) 重排后裂解:
m/z 58
MS
8.4 质谱定性分析及图谱解析
通过质谱图中分子离子峰和碎片离子峰的解析 可提供许多有关分子结构的信息,因而定性能 力强是质谱分析的重要特点。
设离子作圆周运动的轨道半径(近似为磁场曲率半 径)为 R ,则运动离心力必然和磁场力相等,故
mv Hzv R
式中 H 为磁场强度。
2
(8-得
m H R z 2V
2
2
(8-3)
式(8-3)称为质谱方程式,是设计质谱仪器的主要依据。 由此式可见,离子在磁场内运动半径R与m/z、H、 V有关。因此只有在V及H一定的条件下,某些具有一 定质荷比的正离子才能以运动半径为R的轨道到达检测 器。
其动能为:
1 2 zU mv 2
(8-1)
式中 z 为离子电荷数,U 加速电压。显然,在一定的 加速电压下,离子的运动速度与质量 m 有关。
MS
当具有一定动能的正离子进入垂直于离子速度方向的 均匀磁场(质量分析器)时,正离子在磁场力(洛仑兹力) 的作用下,将改变运动方向(磁场不能改变离子的运动 速度)作圆周运动。
MS
8.2.3 质谱图的表示和解释方法
在质谱图中每个质谱峰表示一种质荷比 m/z 的离子, 质谱峰的强度表示该种离子峰的多少,因此根据质谱 峰出现的位置可以进行定性分析,根据质谱峰的强度 可以进行定量分析。 对于有机化合物质谱,根据质谱峰的质荷比和相对 强度可以进行结构分析。
图 8-8 空气的质谱图。
50
73 55
m/z87峰是M-1峰
m/z73峰是由分子离子峰脱甲 基、m/z59是分子离子峰脱乙 基而来。
20
40
60
80
100
m/z
图 2-甲基-2-丁醇质谱图
MS
(5)降低电子轰击源的能量,观察质谱峰的变化:在 不能确定分子离子峰时,可以逐渐降低电子流的能量; 使分子离子的裂解减少。这时所有碎片离子峰的强度 都会减小,但分子离子峰的相对强度会增加。仔细观 察质荷比最大的峰是否在所有的峰中最后消失。最后 消失的峰即为分子离子峰。
MS
分子式 (1)C7H10N4
M+1 9.25
M+2 0.38
(2)C8H8NO2
(3)C8H10N2O (4)C8H12N3 (5)C9H10O2 (6)C9H12NO (7)C9H14N2
9.23
9.61 9.98 9.96 10.34 10.71
0.78
0.61 0.45 0.84 0.68 0.52
MS
例如,某化合物,根据其质谱图,已知其相对分子 质量为150,由质谱测定,m/z150、151和152的强度比 为M(150)=100%,M+1(151)=9.9%,M+2(152)=0.9%,试 确定此化合物的分子式。
从M+2/M=0.9%可见,该化合物不含S,Br或C1。在 Beynon的表中相对分子质量为150的分子式共29个,其 中(M+2)/ M 的百分比为9~11的分子式有如下7个:
例如氢有 1H、 2H,碳有 12C、 13C,氧有 16O、 17O、 18O。 由于各种元素的同位素在自然界中的丰度是一定的, 它们的天然丰度如表8-2所示。因此同位素与分子离子 峰的比值是一个常数。 从表8-2可见,S、C1、Br等元素的同位素丰度高, 因此含S、C1、Br的化合物的分子离子或碎片离子, 其强度较大,所以根据M+1和M+2两个峰的强度比就 可以判断化合物中是否含有这些元素。
MS
MS
横坐标表示 m/z(实际上就是磁场强度),由于分子离 子或碎片离子在大多数情况下只带一个正电荷,所以 通常称m/z为质量数,例如-CH3 离子的质量数(m/z)是 15,对于低分辨率的仪器,离子的质荷比在数值上就 等于它的质量数。
质谱图的纵坐标表示离子强度,在质谱中可以看到 几个高低不同的峰,纵坐标峰高代表了各种不同质荷 比的离子丰度-离子流强度。
MS
有机化合物的质谱分析,最常应用电子轰击源作
离子源,但在应用这种离子源时,有的化合物仅出现
很弱的,有时甚至不出现分子离子分子峰,这样就使 质谱失去一个很重要的作用。为了得到分子离子峰, 可以改用其它一些离子源,如场致电离源、化学电离 源等。
在场致电离的质谱图上,分子离子峰很清楚,碎片峰则较弱,
M e M 2e
分子离子继续受到电子的轰击,使一些化学键断裂,
或引起重排以瞬间速度裂解成多种碎片离子(正离子)。
4. 质量分析
MS
质量分析内主要为一电磁铁,自离子源发 生的离子束在加速电极电场(800-8 000V)的 作用下,使质量的正离于获得的速度,以直线 方向n运动(图8-6)。
MS
3. 电子源
电子轰击、化学电离、场致电离、高频火花电 离、热电离、激光电离、表面电离
被分析的气体或蒸气首先进入仪器的离子源,转化 为离子。 图8-5为常用的电子轰击离子源。 离子源的作用是将试样分子转化为正离子,并使正 离子加速、聚焦为离子束,此离子束通过狭缝而进入 质量分析器。
MS
电子由直热式阴极发射,在电离室(正极)和阴极 (负极)之间施加直流电压,使电子得到加速而进入电 离室中。当这些电子轰击电离室中的气体(或蒸气)中 的原子或分子时,该原子或分子就失去电子成为正离 子(分子离子):
现在一般的质谱图都以相对强度表示,并以棒图的形式 画出来。
MS
8.3 离子的类型