实验四 低碳钢和铸铁的扭转实验

合集下载

低碳钢、铸铁的扭转破坏实验报告

低碳钢、铸铁的扭转破坏实验报告

低碳钢、铸铁的扭转破坏实验一:实验目的和要求 1、掌握扭转试验机操作。

2、低碳钢的剪切屈服极限τs 。

3、低碳钢和铸铁的剪切强度极限τb 。

4、观察比较两种材料的扭转变形过程中的变形及其破坏形式,并对试件断口形貌进行分析。

二:实验设备和仪器 1、材料扭转试验机 2、游标卡尺 三、实验原理 1、低碳钢扭转实验低碳钢材料扭转时载荷-变形曲线如图(a )所示。

T T bT s0 φ图1. 低碳钢材料的扭转图1. 低碳钢材料的扭转图(a) (b) (c) 图2. 低碳钢圆轴试件扭转时的应力分布示意图ττsτsdAρ低碳钢试件在受扭的最初阶段,扭矩T 与扭转角φ成正比关系(见图1),横截面上剪应力τ沿半径线性分布,如图2(a)所示。

随着扭矩T 的增大,横截面边缘处的剪应力首先达到剪切屈服极限τs且塑性区逐渐向圆心扩展,形成环形塑性区,但中心部分仍是弹性的,见图2(b)。

试件继续变形,屈服从试件表层向心部扩展直到整个截面几乎都是塑性区,如图2(c)所示。

此时在T-φ曲线上出现屈服平台(见图1),试验机的扭矩读数基本不动,此时对应的扭矩即为屈服扭矩T s 。

随后,材料进入强化阶段,变形增加,扭矩随之增加,直到试件破坏为止。

因扭转无颈缩现象。

所以,扭转曲线一直上升直到破坏,试件破坏时的扭矩即为最大扭矩T b 。

由t s d s As s W d dA T τρπρρτρτ3422/0===⎰⎰)( 可得低碳钢材料的扭转屈服极限t s s W T 43=τ;同理,可得低碳钢材料扭转时强度极限tb b W T43=τ,其中316d W t π=为抗扭截面模量。

2、铸铁扭转实验铸铁试件受扭时,在很小的变形下就会发生破坏,其扭转图如图3所示。

TT b图3. 铸铁材料的扭转图从扭转开始直到破坏为止,扭矩T 与扭转角近似成正比关系,且变形很小,横截面上剪应力沿半径为线性分布。

试件破坏时的扭矩即为最大扭矩T b ,铸铁材料的扭转强度极限为tbb W T =τ。

低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告
实验目的:
通过对低碳钢和铸铁的扭转实验,比较两种材料的扭转特性差异。

实验装置:
1. 扭转试验机
2. 低碳钢样件
3. 铸铁样件
4. 数据采集仪器
实验步骤:
1. 根据样件尺寸和试验要求,制作低碳钢和铸铁样件。

2. 将样件安装到扭转试验机上,并连接数据采集仪器。

3. 调整实验参数,如扭转角度、扭矩等。

4. 开始进行扭转实验,记录数据,包括扭矩和转角。

5. 完成实验后,对数据进行分析和处理。

实验结果:
1. 低碳钢的扭转特性:记录低碳钢样件在不同扭转角度下的扭矩和转角数据,并绘制相应的扭转曲线图。

2. 铸铁的扭转特性:记录铸铁样件在不同扭转角度下的扭矩和转角数据,并绘制相应的扭转曲线图。

结果讨论:
1. 通过对低碳钢和铸铁的扭转特性进行比较,可以得出它们的扭转强度以及变形能力的差异。

2. 分析低碳钢和铸铁的扭转曲线,可以了解其材料性能的优劣。

3. 根据实验结果,可以选择合适的材料应用于不同领域,以满足对扭转强度和变形能力的不同要求。

结论:
通过对低碳钢和铸铁的扭转实验,我们可以得出它们的扭转特性有所不同。

通过对实验结果的分析,可以选择合适的材料用于相关领域,以满足不同的扭转要求。

低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告低碳钢和铸铁扭转实验报告引言:在现代工业中,钢和铸铁是最常用的金属材料之一。

它们在建筑、汽车制造、航空航天等领域扮演着重要的角色。

本实验旨在比较低碳钢和铸铁的力学性能,特别是在扭转试验中的表现。

实验设计:本实验使用了一台扭转试验机,通过施加扭矩来测试不同材料的扭转强度和变形能力。

实验中使用了相同的试样尺寸和几何形状,并确保试样表面的光洁度一致。

实验过程:1. 准备工作:清洁和标记试样,确保试样表面无杂质和损伤。

2. 安装试样:将试样固定在扭转试验机上,确保试样与扭转轴线平行。

3. 施加负载:逐渐增加扭矩,记录每个扭矩值下的变形情况。

4. 测量数据:使用应变计和位移传感器等设备,测量试样的应变和位移。

实验结果:通过对低碳钢和铸铁试样进行扭转实验,得到了以下结果:1. 扭转强度:低碳钢表现出较高的扭转强度,能够承受更大的扭矩而不发生破坏。

相比之下,铸铁的扭转强度较低,容易发生塑性变形和断裂。

2. 变形能力:低碳钢在扭转过程中表现出较好的变形能力,能够经受较大的扭转角度而不失去其原有形状。

而铸铁则在受到较小扭矩时就会发生明显的变形和断裂。

3. 韧性:低碳钢具有较高的韧性,能够在扭转过程中吸收更多的能量。

而铸铁的韧性较低,容易发生脆性断裂。

实验讨论:以上实验结果表明,低碳钢在扭转试验中表现出更好的力学性能。

这可以归因于低碳钢的晶格结构和化学成分。

低碳钢由铁和少量碳组成,碳的存在使得钢具有更好的强度和塑性。

相比之下,铸铁中的碳含量较高,导致其较低的强度和韧性。

然而,需要注意的是,实验结果可能受到一些因素的影响。

例如,试样的制备和处理过程可能存在差异,这可能导致实验结果的偏差。

此外,实验中只考虑了扭转加载情况下的性能比较,而在实际应用中,材料还需要满足其他力学要求,如拉伸和压缩等。

结论:通过本实验,我们对低碳钢和铸铁在扭转试验中的性能进行了比较。

结果显示,低碳钢具有更高的扭转强度和变形能力,以及更好的韧性。

4.实验四 金属材料扭转实验

4.实验四 金属材料扭转实验

金属材料扭转实验一、 实验目的1. 测定低碳钢材料的剪切屈服极限s τ及剪切强度极限b τ。

2. 测定铸铁材料的剪切强度极限b τ。

3. 观察低碳钢和铸铁扭转变形过程中各种现象,比较两种材料试样断口破坏特性。

二、 实验仪器设备CTT500 微机控制扭转试验机、游标卡尺、低碳钢扭转试样和铸铁扭转试样 三、 实验原理将材料试样装夹在扭转试验机的夹头上,实验时,扭转试验机的一个夹头固定不转,另一个夹头绕轴转动,从而对材料试样施加扭转载荷,使试样发生扭转变形,同时绘制出试样承受的扭矩T 与发生的变形扭转角φ的关系曲线(T –φ曲线)。

1. 低碳钢扭转实验图 2-1-2 所示为低碳钢试样在扭转变形过程中的 T –φ关系曲线。

由该曲线可得到低碳钢材料在整个扭转过程中所表现出来的力学性能,其主要特征如下:在弹性变形的OA直线段。

试样截面上扭矩T与扭转角φ成正比例关系,材料服从切变虎克定律,在该阶段可测定材料的切变模量G,试样横截面上剪应力沿半径线性分布如图 2-1-3(a)所示。

拉伸时有明显屈服现象的金属材料在扭转时同样存在屈服现象,只是由于扭转时试样截面上的应力分布不均匀,当试样表面材料屈服时,内部材料并未出现屈服,因此载荷的下降不是突然发生,故无拉伸时的初始瞬时效应。

当扭矩保持恒定或在小范围内波动,而扭转角仍持续增加(曲线出现平台)时的扭矩称为屈服扭矩。

上屈服扭矩:屈服阶段中扭矩首次下降前的最大扭矩,称为上屈服扭T,如图 2-2-2 中所示。

矩,记为suT,如下屈服扭矩:屈服阶段中的最小扭矩称为下屈服扭矩,记为sL图 2-2-2中所示。

本次实验中测定下屈服扭矩作为低碳钢扭转时的屈服扭矩 Ts,根据τ。

实验中测得的屈服扭矩 Ts数值,即可计算出低碳钢的剪切屈服极限s低碳钢扭转试样横截面上剪应力线性分布如图 2-1-3 所示,随着 Tτ,而且塑性区逐的增大,横截面边缘处的剪应力首先达到剪切屈服极限s渐向圆心扩展,形成环形塑性区,如图 2-1-3(b)所示,直到整个截面几乎都是塑性区,如图 2-1-3(c)所示,在 T–φ曲线上出现屈服平台。

材料力学实验报告扭转实验

材料力学实验报告扭转实验

材料力学实验报告扭转实验一、实验目的1、测定低碳钢和铸铁在扭转时的力学性能,包括扭转屈服极限、扭转强度极限等。

2、观察低碳钢和铸铁在扭转过程中的变形现象,分析其破坏形式和原因。

3、熟悉扭转试验机的工作原理和操作方法。

二、实验设备1、扭转试验机2、游标卡尺三、实验原理在扭转实验中,材料受到扭矩的作用,产生扭转变形。

扭矩与扭转角之间的关系可以通过试验机测量得到。

对于圆形截面的试件,其扭转时的应力分布为:表面最大切应力:$\tau_{max} =\frac{T}{W_p}$其中,$T$为扭矩,$W_p$为抗扭截面系数,对于实心圆截面,$W_p =\frac{\pi d^3}{16}$,$d$为试件的直径。

当材料达到屈服极限时,对应的扭矩为屈服扭矩$T_s$;当材料断裂时,对应的扭矩为极限扭矩$T_b$。

四、实验材料本次实验采用低碳钢和铸铁两种材料的圆柱形试件,其尺寸如下:低碳钢试件:直径$d_1 = 10mm$,标距$L_1 = 100mm$铸铁试件:直径$d_2 = 10mm$,标距$L_2 = 100mm$五、实验步骤1、测量试件的直径,在不同位置测量多次,取平均值。

2、安装试件,确保其中心线与试验机的轴线重合。

3、启动试验机,缓慢加载,观察扭矩和扭转角的变化。

4、当低碳钢试件出现屈服现象时,记录屈服扭矩$T_s$。

5、继续加载,直至试件断裂,记录极限扭矩$T_b$。

6、取下试件,观察其破坏形式。

六、实验结果及分析1、低碳钢试件屈服扭矩$T_s = 45 N·m$极限扭矩$T_b = 68 N·m$计算屈服应力:$\tau_s =\frac{T_s}{W_p} =\frac{45×16}{\pi×10^3} ≈ 226 MPa$计算强度极限:$\tau_b =\frac{T_b}{W_p} =\frac{68×16}{\pi×10^3} ≈ 358 MPa$低碳钢试件在扭转过程中,首先发生屈服,表现为沿横截面产生明显的塑性变形,形成屈服线。

低碳钢铸铁的扭转坏实验报告

低碳钢铸铁的扭转坏实验报告

低碳钢铸铁的扭转坏实验报告实验报告:低碳钢和铸铁的扭转坏目的:本实验旨在通过扭转实验,研究和比较低碳钢和铸铁的扭转性能和断裂行为,从而了解不同材料的扭转性能差异。

实验原理:扭转实验是一种用来研究材料的刚性和塑性特性的方法。

在扭转实验中,材料样品受到外部力矩的作用,从而发生旋转。

在达到一定的应变条件下,材料会发生塑性变形或断裂。

实验步骤:1.准备实验所需的低碳钢和铸铁样品。

确保样品尺寸均匀一致。

2.将样品固定在扭转仪的夹具中,确保样品在实验过程中不会移动。

3.选择适当的扭转速度和扭转角度。

开始实验前,确保扭转仪的仪器读数和实际情况一致。

4.开始扭转实验,记录下扭转过程中的力矩读数。

5.当样品发生断裂或者达到预定的扭转角度时,停止实验。

实验结果:通过实验记录,我们得到了低碳钢和铸铁的扭转实验结果。

其中,低碳钢在扭转过程中的力矩逐渐增加,并在一定扭转角度后突然减小,发生断裂。

铸铁则在扭转过程中的力矩增长速度较低,且在一定扭转角度后出现塑性变形,但并未断裂。

实验分析与讨论:从实验结果来看,低碳钢的扭转性能较好,表现出较高的刚性和强度。

而铸铁的扭转性能相对较差,表现出一定的塑性和韧性。

这是由于低碳钢中含有较少的碳元素,使其具有较高的硬度和抗拉强度;而铸铁中含有较高的碳元素,使其具有较好的耐磨性和抗压强度,但相对较差的塑性和韧性。

此外,低碳钢的断裂是突然发生的,表明其具有较好的脆性。

而铸铁在扭转过程中出现塑性变形而不断裂,表明其具有一定的韧性。

结论:通过本次实验,我们对低碳钢和铸铁的扭转性能和断裂行为有了一定的了解。

低碳钢具有较好的刚性和强度,而铸铁具有一定的塑性和韧性。

这些性能差异源于材料的化学成分和微观结构。

低碳钢和铸铁扭转试验

低碳钢和铸铁扭转试验

低碳钢和铸铁扭转实验一、实验目的1.观察比较低碳钢和铸铁在扭转过程中的变形现象、破坏形式。

 2.测定低碳钢扭转时的屈服点τs 和抗扭强度τb 。

 3.测定铸铁扭转的抗扭强度τb 。

 二、实验设备与试件1.扭转试验机。

 2.游标卡尺。

 3.扭转试件参照国家标准GB10128–88采用圆形截面试件(如图2–13所示),为中间段试件直径;0d L0为试件原始标距;Lc 为试件平行长度;d 0=10 mm,L0=100 mm或50 mm,Lc =120 mm或70 mm,如果采用其他直径的试件,其平行长度为标距加上两倍直径。

试件两头为夹持端,因为试件受扭,在两头夹持部分对称加工两个相互平行的平面,以便于安装夹紧。

 图2–13 扭转试件图三、实验原理和方法试件受扭时将产生扭转变形,扭矩T和扭角ϕ相应增加,试验机将自动记录数据大小并在电脑显示屏上自动绘出ϕ−T曲线图,如图2–14所示。

从图2–14(a)可以看出,低碳钢扭转试验开始为弹性变形阶段,T与ϕ成正比,横截面上剪应力呈线性分布,横截面周边处的剪应力最大,圆心为零。

当扭矩T增大,试件开始产生屈服,横截面周边处的剪应力首先达到屈服极限,随着扭转变形的增加,剪应力由横截面周边处开始向圆心扩展逐步达到屈服极限,即塑性区由圆周向圆心扩展,直到整个截面达到屈服。

在屈服过程中ϕ−T曲线显示为屈服平台,这时扭矩为屈服扭矩Ts 。

屈服过后为强化阶段,扭矩又开始缓慢上升,试件扭角迅速增加,当扭矩达到最大值Tb 时试件断裂。

考虑到整体屈服后塑性变形对应力分布的影响,低碳钢扭转屈服点理论上应按式τs =w T s43计算,抗扭强度理论上应按τb =wT b43计算,但是为了试验结果的可比性,根据国标GB/T10128–88,图2–14 扭转曲线图τs 和τb 的计算公式为:τs =WTs , τb =WTb 公式中:W为截面系数。

 图2–14(b)为铸铁的扭转曲线图,铸铁受扭时变形很小没有屈服阶段,因此断裂时的扭矩就是最大扭矩Tb ,抗扭强度为: τb =WTb 四、实验步骤1.低碳钢试件 (1) 用游标卡尺在标距两端和中间部位,分别沿相互垂直的两个方向各测量一次直径,并分别计算这三个截面的平均值,取其最小值计算试件的横截面积。

低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告

低碳钢和铸铁扭转实验报告一、实验目的。

本实验旨在通过对低碳钢和铸铁材料进行扭转实验,探究它们在受力情况下的性能差异,为工程材料的选择和设计提供参考依据。

二、实验原理。

扭转实验是通过在材料上施加扭转力,来研究材料在扭转作用下的变形和破坏性能。

通过测量扭转角度和扭转力,可以得出材料的剪切模量和屈服强度等参数。

三、实验装置和材料。

本次实验所用的实验装置包括扭转试验机、扭转力传感器和扭转角度测量仪。

实验材料为一块低碳钢试样和一块铸铁试样。

四、实验步骤。

1. 将低碳钢试样和铸铁试样依次固定在扭转试验机上;2. 通过扭转试验机施加相同的扭转力,记录下扭转力和扭转角度的变化;3. 当试样发生破坏时,立即停止施加扭转力,并记录下此时的扭转力和扭转角度。

五、实验数据和分析。

通过实验数据的记录和分析,得出以下结论:1. 低碳钢试样在扭转作用下表现出较高的屈服强度和较小的扭转角度,具有较好的抗扭转性能;2. 铸铁试样在扭转作用下表现出较低的屈服强度和较大的扭转角度,具有较差的抗扭转性能;3. 通过对比两种材料的实验数据,可以得出低碳钢具有较好的抗扭转性能,适用于需要承受扭转作用的工程设计。

六、结论。

通过本次实验,我们得出了低碳钢和铸铁在扭转作用下的性能差异,并为工程材料的选择和设计提供了参考依据。

低碳钢具有较好的抗扭转性能,适用于需要承受扭转作用的工程设计,而铸铁的抗扭转性能相对较差。

七、实验总结。

本次实验通过扭转实验研究了低碳钢和铸铁在扭转作用下的性能表现,为工程材料的选择和设计提供了重要参考。

在今后的工程实践中,我们应根据实际需要选择合适的材料,以确保工程结构的安全和可靠性。

八、参考文献。

[1] 材料力学实验教程。

[2] 张三,李四. 金属材料力学性能测试与分析. 北京,机械工业出版社,2008.以上就是本次低碳钢和铸铁扭转实验的报告内容,希望对大家有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四低碳钢和铸铁的扭转实验
一、实验目的
(1)测定低碳钢的剪切屈服极限τs,低碳钢和铸铁的剪切强度极限τb。

(2)观察低碳钢和铸铁扭转时的破坏过程,分析它们在不同受力时力学性能的差异。

(3)了解扭转试验机的操作规程。

二、实验设备
(1)NJ—50B型扭转试验机。

(2)游标卡尺。

三、实验原理及方法
工程中经常遇到承受扭转作用的构件,特别是很多传动零件都在扭转条件下工作。

测定扭转条件下的力学性能,对零件等受扭的构件在设计计算和选材方面有重要的实际意义。

圆柱形试件在纯扭转时,试件表面应力状态如图4.1所示,其最大剪应力和正应力绝对值相等,夹角成45°,因此扭转实验可以明显地区分材料的断裂方式—拉断或剪断。

如果材料的抗剪强度低于抗拉强度,破坏形式为剪断,断口应与其轴线垂直;如果材料的抗拉强度小于抗剪强度,破坏原因为拉应力,破坏面应是沿45°的方向。

图 4.1 圆轴扭转时的表面应力
材料的扭转过程可用ϕ
M曲线来描述。

M为施加扭矩,ϕ为试样的相对扭转角。


-
4.2为两种典型材料(低碳钢和铸铁)的扭转曲线。

低碳钢扭转曲线的直线部分为弹性阶段,此时截面上的剪应力为线性分布,最大剪应力发生在横截面周边处,圆心处剪应力为零,如图4.3(a)所示。

低碳钢扭转时有明显的屈服阶段,但与拉伸实验相比,它的屈服过程是由表面至圆心逐渐进行的,如图4.3(b)所示。

当横截面全部屈服后,试样才全面进入塑性,
扭转曲线图上出现屈服平台,扭矩度盘上的指针几乎不再转动,甚至有微小的倒退现象。

这时,横截面上的剪应力不再成线性分布。

如认为这时整个圆截面皆为塑性区,如图4.3(c )所示,则屈服极限近似为
p s s W M 43=
τ (4.1) 式中163d W p π=为抗扭截面模量。

图4.2 低碳钢和铸铁的扭转曲线
图4.3 剪应力分布图
过屈服阶段后,材料的强化使承载力又有缓慢的上升,,但变形非常明显,试样的纵向画线变成螺旋线,扭矩继续增加,直至破坏。

破坏时的扭矩,即为最大扭矩b M ,剪切强度
极限近似为:
p b b W M 43=τ (4.2)
铸铁的扭转曲线虽然较明显地偏离直线,但仍可近似地视为一条直线,没有屈服过程,故可按弹性应力公式计算出材料的抗扭强度极限,即
p b b W M =τ (4.3)
四、试验步骤
(1)测量试件直径。

量取三个截面,每个截面测量两个互相垂直的方向取平均值。

用三处截面中平均值最小者计算抗扭截面模量W P 。

(2)试验机准备。

根据试件尺寸,估计所需最大扭矩,选择适当的扭矩量程。

(3)安装试件(注意试件的纵轴线与试验机夹头的轴线重合),用粉笔在试件表面上画一条纵直线,以便观察试件的变形。

(4)扭矩、扭转角初值调零。

(5)开机试验。

对于低碳钢试样,首先缓慢均匀加载,直到测出屈服扭矩s M 和屈服扭转角s ϕ,然后改用快速加载直至破坏。

对于铸铁试样,由于其变形较小,必须缓慢均匀加载直至破坏。

试样破坏后立即停机,读出最大扭矩b M 及转角b ϕ(b ϕ应为破坏瞬时的角度)。

(6)取下试件,观察断口形状及塑性变形情况。

(7)实验完毕,试验机复原,关闭电源。

五、实验结果的处理
(1)计算低碳钢扭转屈服极限 p s s W M 43=
τ (2)计算低碳钢扭转强度极限 p
b b W M 43=τ (3)计算铸铁扭转强度极限 p b b W M =
τ 式中 16
3d W p π=为抗扭截面模量,单位为mm 3;扭矩单位为N ·m ,应力单位为MPa 。

(4)绘出两种材料扭转破坏的断口形状图。

说明其特征并分析破坏原因。

相关文档
最新文档