河南漯河中考数学试卷及答案

合集下载

2024年河南省漯河市临颍县中考数学一模试卷+答案解析

2024年河南省漯河市临颍县中考数学一模试卷+答案解析

2024年河南省漯河市临颍县中考数学一模试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列各数中,最小的数是()A. B. C.1 D.02.一个组合体如图所示,其左视图是()A.B.C.D.3.2024年我国教育支出继续增加,全国一般公共预算教育支出规模超万亿元.数据“万亿”用科学记数法表示为()A. B. C. D.4.下列运算正确的是()A. B.C. D.5.如图是路灯维护工程车工作时的示意图,工作篮底部与支撑平台平行.当,时,的度数为()A. B. C. D.6.关于x的一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.某展会需要安排两名引导员,现从两名男生和两名女生中随机选择两人,则选中的两人恰好是两名女生的概率是()A. B. C. D.8.如图,AB是的直径,,AC与相切于点A,OC交于点D,连接BD,若,则BD的长为()A.4B.C.2D.9.已知点,,在同一个函数图象上,则这个函数图象可能是()A. B. C. D.10.如图1,在矩形ABCD中,H是边BC的中点,E是边AB上一动点,连接AH,过点E作,交直线CD于点F,连接EH,AF,以EH,EF为边作▱设,图2是y与x 的函数关系图象,点P为图象上的最低点,则AD的长为()A.6B.C.D.4二、填空题:本题共5小题,每小题3分,共15分。

11.请写出一个小于3的无理数.12.不等式组的解集是______.13.数学兴趣小组对甲、乙两款语音识别系统分别进行了20次准确度测试,并将测试得分满分10分进行统计,如图所示,则对语音识别准确度更稳定的系统是______款填“甲”或“乙”14.某公园儿童滑梯的截面示意图如图所示,已知立柱BC,EF垂直于地面AD且高度相同,平台BG平行地面AD,,若,则滑道DG的长约为______结果保留整数.参考数据:,,15.如图,在中,,,过点B作直线,点D在射线BA上点D不与A,B重合,连接CD,将线段CD绕点C逆时针旋转得到线段CE,过点E作,垂足为当时,BD的长为______.三、解答题:本题共8小题,共75分。

漯河市2020年(春秋版)中考数学试卷A卷

漯河市2020年(春秋版)中考数学试卷A卷

漯河市2020年(春秋版)中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A . a<1<-aB . a<-a<1C . 1<-a<aD . -a<a<12. (2分)(2017·黄冈模拟) 下列图形中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .3. (2分)下列等式从左到右的变形,属于因式分解的是()A . (a+b)(a﹣b)=a2﹣b2B . a2+4a+1=a(a+4)+1C . x3﹣x=x(x+1)(x﹣1)D .4. (2分) (2019九上·梅县期中) 一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是()A .B .C .D .5. (2分) (2015七上·深圳期末) 如图,由几个小正方体组成的立体图形的俯视图是()A .B .C .D .6. (2分)(2019·石家庄模拟) 斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A . 5×107B . 0.5×10-6C . 5×10-7D . 5×10-67. (2分)数据:1,2,3,3,4,5的中位数是()A . 2B . 3C . 4D . 58. (2分) (2019九上·临城期中) 如图,内接于⊙ ,,,则⊙ 半径为()A . 4B . 6C . 8D . 129. (2分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A .B .C .D .10. (2分) (2017七下·金乡期中) 把一张对边互相平行的纸条,折成如图所示,EF是折痕.若∠EFB=32°,则下列结论错误的有()A . ∠C′EF=32°B . ∠AEC=148°C . ∠BGE=64°D . ∠BFD=116°二、填空题 (共5题;共8分)11. (1分)(2018·遵义模拟) 计算﹣6 的结果是________.12. (4分)某市努力改善空气质量,近年来空气质量明显好转,根据该市环境保护局公布的2010﹣2014这五年各年全年空气质量优良的天数如表所示,根据表中信息回答:20102011201220132014234233245247256(1)这五年的全年空气质量优良天数的中位数是________,平均数是________;(2)这五年的全年空气质量优良天数与它前一年相比增加最多的是________年(填写年份);(3)求这五年的全年空气质量优良天数的方差________.13. (1分)(2017·宾县模拟) 如图,边长为2的正方形MNEF的四个顶点分在大圆O上,小圆O与正方形各边都相切,AB与CD是大圆O的直径,AB⊥CD,CD⊥MN,小明随意向水平放置的该圆形区域内抛一个小球,则小球停在该图中阴影部分区域的概率为________.14. (1分)(2016·岳阳) 在半径为6cm的圆中,120°的圆心角所对的弧长为________cm.15. (1分) (2017八下·泉山期末) 在函数y= (m -3)x -2(m是常数)中, y随着x的增大而增大,则m的取值范围是________。

河南省漯河市2020年中考数学试卷C卷

河南省漯河市2020年中考数学试卷C卷

河南省漯河市2020年中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)最大的负整数和最小的自然数的和是()A . 1B . 2C . ﹣1D . 02. (2分)(2017·日照模拟) 如图,几何体是由底面圆心在同一条直线上的三个圆柱构成的,其俯视图是()A .B .C .D .3. (2分)(2018·葫芦岛) 下列运算正确的是()A . ﹣2x2+3x2=5x2B . x2•x3=x5C . 2(x2)3=8x6D . (x+1)2=x2+14. (2分) (2018七下·赵县期末) 当1≤x≤2时,ax+2>0,则a的取值范围是()A . a>-1B . a>-2C . a>0D . a>-1且a≠05. (2分) (2020八下·金华期中) 如图,在 ABCD中,点F是线段CD上一点,点A作 BFGE,当点F从点C向点D运动过程中,四边形BFGE的面积的变化情况是()A . 保持不变B . 一直减小C . 一直增大D . 先增大后减小6. (2分)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A . 12个B . 16个C . 20个D . 30个7. (2分)(2017·景德镇模拟) 为迎接“劳动周”的到来,某校将九(1)班50名学生本周的课后劳动时间比上周都延长了10分钟,则该班学生本周劳动时间的下列数据与上周比较不发生变化的是()A . 平均数B . 中位数C . 众数D . 方差8. (2分) (2018八上·紫金期中) 如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的边长为()A . 4B . 8C . 16D . 649. (2分)(2016·泰安) 如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A .B .C .D .10. (2分)下列说法正确的有()①对角线互相平分的四边形是平行四边形;②平行四边形的对角互补;③平行线间的线段相等;④两个全等的三角形可以拼成一个平行四边形;⑤平行四边形的四内角之比可以是2:3:2:3.A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分) 2015年12月6日第十届全球孔子学院大会在上海召开,截止到会前,网络孔子学院注册用户达800万人,数据800万人用科学记数法表示为________ 人.12. (1分)(2017·聊城) 如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是________.13. (1分)两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角的度数分别为________度,________度.14. (1分) (2019九上·灵石期中) 如图,在平面直角坐标系中,△OAB与△OCD是以原点O为位似中心的位似图形,且位似比为1:3,已知点A的坐标为(1,2),则点C的坐标是________.15. (1分) (2019八下·包河期中) 如图,在Rt△ABC中,∠B=90°,AB=30,BC=40,将△ABC折叠,使点B恰好落在边AC上,与点B重合,AE为折痕,则EB’=________.16. (1分)如图,在△ABC中,∠ACB=90°,AC=8,BC=6,P是直线AB上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,B′A长度的最小值是m,B′A长度的最大值是n,则m+n的值等于________.三、解答题 (共9题;共87分)17. (5分) (2017八下·黄山期末) 先化简,再求值:,其中x=﹣3.18. (6分)(2017·增城模拟) 小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.19. (15分) (2019七下·道里期末) 单位为了解3500名党员职工每月党费上交情况,从中随机抽取50名党员职工,根据每月每名党员职工的党费情况给制如图所示的条形统计图.(1)求50名党职工每月觉费的平均数;(2)直接写出这50名党员职工每月党费的众数与中位数;(3)根据这50名党员职工每月党费的平均数,请你估计该单位3500名党员职工每月约上交党费多少元?20. (10分) (2019九上·宁河期中) 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.21. (5分)(2018·莱芜) 在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A 端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,ta n50°≈1.2)22. (10分)(2019·丹东模拟) 如图,在等腰中,,以为直径作交边于点,过点作交于点,延长交的延长线于点 .(1)求证:是的切线;(2)若,,求的长.23. (11分)(2018·通辽) 如图,抛物线y=ax2+bx﹣5与坐标轴交于A(﹣1,0),B(5,0),C(0,﹣5)三点,顶点为D.(1)请直接写出抛物线的解析式及顶点D的坐标;(2)连接BC与抛物线的对称轴交于点E,点P为线段BC上的一个动点(点P不与B、C两点重合),过点P 作PF∥DE交抛物线于点F,设点P的横坐标为m.①是否存在点P,使四边形PEDF为平行四边形?若存在,求出点P的坐标;若不存在,说明理由.②过点F作FH⊥BC于点H,求△PFH周长的最大值.24. (10分)(2020·苏州模拟) 如图①,中,, .动点在的边上按的路线匀速移动,当点到达点时停止移动;动点Q以的速度在的边上按的路线匀速移动,当点Q到达C点时停止移动.已知点、点Q同时开始移动,同时停止移动(即同时到达各自的终止位置).设动点移动的时间为,的面积为,S与t的函数关系如图②所示.(1)图①中 ________ ,图②中 ________ ;(2)求S与t的函数表达式;(3)当为何值时,为等腰三角形.25. (15分)(2020·无锡模拟) 已知:如图,∠ABC=135°,AB=a,BC=b,点P是边AC上任意一点,连结BP,将△CPB沿PB翻折,得△C'PB.(1)若a=,b=6,∠C'PC=90°,求CP的长;(2)连结AC',当以A、B、P、C'为顶点的四边形是平行四边形时,求的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共87分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、。

漯河中考数学试题及答案

漯河中考数学试题及答案

漯河中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 若a > 0且b < 0,下列哪个不等式是正确的?A. a + b > aB. a - b < bC. a * b > 0D. a / b > 0答案:D3. 圆的周长公式是什么?A. C = πdB. C = 2πrC. C = πr^2D. C = 4πr答案:A4. 一个直角三角形的两直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A5. 一个数的平方根是它本身,这个数可以是?A. 1B. -1C. 0D. 以上都是答案:C6. 以下哪个是二次方程的一般形式?A. ax^2 + bx + c = 0B. ax + b = 0C. ax^2 + c = 0D. ax - b = 0答案:A7. 一个数的立方是它本身,这个数可以是?A. 1B. -1C. 0D. 以上都是答案:D8. 以下哪个是等腰三角形的特征?A. 两边相等B. 三边相等C. 两角相等D. 三角相等答案:A9. 以下哪个是实数集的符号表示?A. NB. ZC. QD. R答案:D10. 以下哪个是自然数集的符号表示?A. NB. ZC. QD. R答案:A二、填空题(每题2分,共20分)11. 一个数的绝对值是它本身,这个数是________。

答案:非负数12. 一个数的相反数是它本身,这个数是________。

答案:013. 一个数的倒数是它本身,这个数是________。

答案:±114. 一个数的平方等于4,这个数是________。

答案:±215. 一个数的立方等于-8,这个数是________。

答案:-216. 如果一个三角形的内角和为180°,那么一个四边形的内角和是________。

答案:360°17. 如果一个数列是等差数列,且第3项是10,第5项是14,那么这个数列的公差是________。

2024年河南省中考数学试卷正式版含答案解析

2024年河南省中考数学试卷正式版含答案解析

绝密★启用前2024年河南省中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图,数轴上点P表示的数是( )A. −1B. 0C. 1D. 22.据统计,2023年我国人工智能核心产业规模达5784亿元.数据“5784亿”用科学记数法表示为( )A. 5784×108B. 5.784×1010C. 5.784×1011D. 0.5784×10123.如图,乙地在甲地的北偏东50°方向上,则∠1的度数为( )A. 60°B. 50°C. 40°D. 30°4.信阳毛尖是中国十大名茶之一.如图是信阳毛尖茶叶的包装盒,它的主视图为( )A.B.C.D.5.下列不等式中,与−x>1组成的不等式组无解的是( )A. x>2B. x<0C. x<−2D. x>−36.如图,在▱ABCD中,对角线AC,BD相交于点O,点E为OC的中点,EF//AB 交BC于点F.若AB=4,则EF的长为( )A. 12B. 1 C. 43D. 27.计算(a·a···a⏟a个)3的结果是( )A. a5B. a6C. a a+3D. a3a8.豫剧是国家级非物质文化遗产,因其雅俗共赏,深受大众喜爱.正面印有豫剧经典剧目人物的三张卡片如图所示,它们除正面外完全相同.把这三张卡片背面朝上洗匀,从中随机抽取一张,放回洗匀后,再从中随机抽取一张,两次抽取的卡片正面相同的概率为( )A. 19B. 16C. 15D. 13⏜的中点,连接BD,CD.以点D为圆心,BD的长为半径在⊙O内画弧,则阴影部分的面积为( )A. 8π3B. 4πC. 16π3D. 16π10.把多个用电器连接在同一个插线板上,同时使用一段时间后,插线板的电源线会明显发热,存在安全隐患.数学兴趣小组对这种现象进行研究,得到时长一定时,插线板电源线中的电流I与使用电器的总功率P的函数图象(如图1),插线板电源线产生的热量Q与I的函数图象(如图2).下列结论中错误的是( )A. 当P=440W时,I=2AB. Q随I的增大而增大C. I每增加1A,Q的增加量相同D. P越大,插线板电源线产生的热量Q越多第II卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

漯河市中考数学试卷

漯河市中考数学试卷

漯河市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2019七下·景县期中) 下列实数中,无理数是()A .B .C .D .2. (2分)某几何体的三视图如图所示,则此几何体是()A . 圆锥B . 圆柱C . 长方体D . 四棱柱3. (2分)对于反比例函数,下列说法正确的是A . 图象经过点(1,﹣3)B . 图象在第二、四象限C . x>0时,y随x的增大而增大D . x<0时,y随x增大而减小4. (2分)(2017·邵阳模拟) 下列计算正确的是()A . a2•a3=a6B . (a2)3=a5C . (﹣2ab)2=4a2b2D . 3a2b2÷a2b2=3ab5. (2分)(2016·宁夏) 某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.99.59.58.9s20.920.92 1.01 1.03A . 甲B . 乙C . 丙D . 丁6. (2分) (2019九上·盐城月考) 在平面直角坐标系中,以点为圆心,4为半径的圆()A . 与轴相交,与轴相切B . 与轴相离,与轴相交C . 与轴相切,与轴相交D . 与轴相切,与轴相离7. (2分) (2016九上·平潭期中) 如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①2a+b=0;②a+b+c>0;③当﹣1<x<3时,y>0;④﹣a+c<0.其中正确的个数为()A . 1B . 2C . 3D . 48. (2分) (2019七下·北京期末) 根据如图可以验证的乘法公式为()A . (a+b)(a-b)=a2-b2B . (a+b)2=a2+2ab+b2C . (a-b)2=a2-2ab+b2D . ab(a+b)=a2b+ab2二、填空题 (共9题;共17分)9. (1分) (2015七下·泗阳期中) 若x=3,则2x﹣2的值为________.10. (1分)(2011·南宁) 在平面直角坐标系中,点P(2,﹣3)关于原点对称点P′的坐标是________.11. (9分)如图,反映了甲离开A的时间与离A地的距离的关系,反映了乙离开A地的时间与离A地的距离之间的关系,根据图象填空:(1)当时间为2小时时,甲离A地________ 千米,乙离A地________ 千米;(2)当时间为6小时时,甲离A地________ 千米,乙离A地________ 千米;(3)当时间________ 时,甲、乙两人离A地距离相等;(4)当时间________ 时,甲在乙的前面,当时间________ 时,乙超过了甲;(5)对应的函数表达式为________ ,对应的函数表达式为________ .12. (1分) (2019九下·惠州月考) 如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为________(结果保留π).13. (1分)若分式=0,则x的值为________14. (1分)(2017·大连模拟) 某校12名学生参加区级诗词大赛,他们得分情况如下表所示:分数8788909397人数23421则这12名学生所得分数的众数是________分.15. (1分)若关于x的方程(a+3)x2﹣2x+a2﹣9=0有一个根为0,则a=________.16. (1分)(2018·随州) 如图,在四边形ABCD中,AB=AD=5,BC=CD且BC>AB,BD=8.给出以下判断:①AC垂直平分BD;②四边形ABCD的面积S=AC•BD;③顺次连接四边形ABCD的四边中点得到的四边形可能是正方形;④当A,B,C,D四点在同一个圆上时,该圆的半径为;⑤将△ABD沿直线BD对折,点A落在点E处,连接BE并延长交CD于点F,当BF⊥CD时,点F到直线AB的距离为.其中正确的是________.(写出所有正确判断的序号)17. (1分) (2017九上·五莲期末) 如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为________.三、解答题 (共11题;共92分)18. (5分)(2016·阿坝) 化简: + .19. (5分) (2017八下·南召期中) 解方程: = ﹣5.20. (20分)(2017·盘锦) 如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学没人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?饮品名称自带白开水瓶装矿泉水碳酸饮料非碳酸饮料平均价格(元/瓶)0234(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?(4)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学做良好习惯监督员,请用列表法或树状图法求出恰好抽到2名女生的概率.21. (15分)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.22. (5分)(2017·长春模拟) 如图,在△ABD和△FEC中,点B,C,D,E在同一直线上,且AB=FE,BC=DE,∠B=∠E.求证:AD=FC.23. (5分)如图,以△ABC一边AB为直径作半圆,与另外两边分别交于点D、E,且点D为BC的中点.(1)证明:△ABC为等腰三角形;(2)小丽在观察了本题的条件后说:“如果∠B满足一个条件,四边形BDEO就会成为菱形”,你认为小丽的说法正确吗?如果正确,请给出∠B的一个条件,并证明四边形BDEO为菱形;如果不正确,请说明理由.24. (1分)△ABC中,∠ACB=120°,将它绕着点C逆时针旋转30°后得到△D CE,则∠ACE的度数为________.25. (10分)(2018·无锡) 一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2600kg的这种水果.已知水果店每售出1kg该水果可获利润10元,未售出的部分每1kg将亏损6元,以x(单位:kg,2000≤x≤3000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)问:当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22000元?26. (1分)如图,将一条长度为1的线段三等分,然后取走其中的一份,称为第一次操作;再将余下的每一条线段三等分,然后取走其中一份,称为第二次操作;…如此重复操作,当第n次操作结束时,被取走的所有线段长度之和为________.27. (10分) (2018九上·江都月考) 如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2 ,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.28. (15分) (2016九上·延庆期末) 设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x 的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m.n]上的“闭函数”.如函数,当x=1时,y=3;当x=3时,y=1,即当时,有,所以说函数是闭区间[1,3]上的“闭函数”.(1)反比例函数y= 是闭区间[1,2016]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y= 是闭区间[1,2]上的“闭函数”,求k的值;(3)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的表达式(用含m,n的代数式表示).参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共17分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共11题;共92分)18-1、19-1、20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、23-1、24-1、25-1、25-2、26-1、27-1、27-2、28-1、28-2、28-3、。

漯河市2018年中考数学试题及答案

漯河市2018年中考数学试题及答案

漯河市2018年中考数学试题及答案注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟。

2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上。

答在试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1. -52的相反数是( ) A. -52B. 52 C.-25 D. 252. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿元”用科学记数法表示为( ) A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113. 某正方体的每个面上那有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是( )A.厉B.害C.了D.我 4. 下列运算正确的是( ) A.(-x 2)3=-x5B.x 2+x 3=x 5C.x 3·x 4=x 7D.2x 3-x 3=15.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%,关于这组数据,下列说法正确的是( ) A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是06.《九章算术》中记载:”今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱.问:合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为 ) A.B.C.D.7. 下列一元二次方程中,有两个不相等实数根的是( )A.x 2+6x +9=0 B.x 2=x C.x 2+3=2x D.(x -1)2+1=08. 现有4张卡片,其中3张卡片正面上的图案是“۞”,1张卡片正面上的图案是“ ”,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张卡片,则这两张卡片正面图案相同的概率是( ) A.169 B.43 C.83 D.21 9. 如图,已知Y AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于21DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G .则点G 的坐标为( )A.,2)B.2)C.(-2)D.,2)10. 如图,点F 从菱形ABCD 的顶点A 出发,沿A →D →B 以1cm/s 的速度匀速运到点B .图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s)变化的关系图象,则a 的值为( )A.B.2C.25二、填空题(每小题3分,共15分)11. 计算:-512. 如图,直线AB ,C D 相交于点O ,EO ⊥AB 于点O ,∠EOD =50°,则∠BOC 的度数为_______.13.不等式组x524x3+>⎧⎨-≥⎩,的最小整数解是_______.14.如图,在△ABC中,∠A CB=90°,AC=BC=2.将△ABC绕AC的中点D逆时针旋转90°得到△A B C''',其中点B的运动路径为¼'BB,则图中阴影部分的面积为______.15.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△'A BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交'A B所在直线于点F,连接'A E.当△'A EF为直角三角形时,AB的长为________.三、解答题(本大题共8个小题,满分75分)16.(8分)先化简,再求值:)÷,其中x =.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(k>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是圆0的直径,DO垂直于点O,连接DA交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO于点F。

河南省漯河市2024-2025学年上学期九年级数学期中考试卷[含答案]

河南省漯河市2024-2025学年上学期九年级数学期中考试卷[含答案]

2024-2025九年级上第二次数学教学评估总分120分 时间100分钟一、选择题(每小题3分,共10题,满分30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.下列是一元二次方程的是( )A .210x +=B .21x y +=C .2210x x ++=D .211x x +=3.关于x 的一元二次方程ax 2﹣5x +a 2+a =0的一个根是0,则a 的值是( )A .0B .1C .﹣1D .0或﹣14.一次会议上,每两个参加会议的人都相互握了一次手,经统计所有人一共握了66次手,则这次会议到会的人数是( )A .11B .12C .22D .335.如图,AB 是O e 的直径,点C ,D 在O e 上,70AC AD AOD =Ð=°,,则BCO Ð的度数是( )A .30°B .35°C .40°D .55°6.已知点()12,A y -,()21,B y ,()35,C y 在二次函数23y x k =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .123y y y <<B .321y y y <<C .312y y y <<D .132y y y <<7.函数2y ax bx c =++的图象如图所示,则选项中函数()2y a x b c =-+的图象正确的是( )A .B .C .D .8.已知⊙O 的半径为3 cm ,点P 是直线l 上一点,OP 长为5 cm ,则直线l 与⊙O 的位置关系为( )A .相交B .相切C .相离D .相交、相切、相离都有可能9.如图,AB 为O e 的直径,PB ,PC 分别与⊙O 相切于点B ,C ,过点C 作AB 的垂线,垂足为E ,交O e 于点D .若CD PB ==BE 长为( )A .1B .2C .3D .410.新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数22y x x c =-+(c 为常数)在14x -<<的图象上存在两个二倍点,则c 的取值范围是( )A .54c -<<B .01c <<C .51c -<<D .04c <<二、填空题(每小题3分,共5题,满分15分)11.若关于x 的方程()21230k x x -+-=是一元二次方程,则k 的值可以是 .(写出一个即可)12.如果正三角形ABC 的内切圆半径为1,那么三角形的边长为 .13.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为 cm .14.已知二次函数222022y x x =--的图象上有两点(),1A a -和(),1B b -,则223a b +-的值等于 .15.如图,已知直线y=34x ﹣3与x 轴、y 轴分别交于A 、B 两点,P 在以C (0,1)为圆心,1为半径的圆上一动点,连结PA 、PB ,则△PAB 面积的最大值是 .三、解答题(共8题,满分75分)16.解方程(1)2210x x +-=(2)()221 42x x -=-17.已知关于x 的一元二次方程22210x mx m -+-=.(1)求证:方程总有两个实数根;(2)若方程的一根大于2,一根小于1,求m 的取值范围.18.如图,在Rt △ABC 中,∠ACB=90°,以AC 为直径作⊙O 交AB 于D 点,连接CD .(1)求证:∠A=∠BCD ;(2)若M 为线段BC 上一点,试问当点M 在什么位置时,直线DM 与⊙O 相切?并说明理由.19.如图,是一个抛物线形拱桥的截面图,在正常水位时,水位线AB 与拱桥最高点的距离为9m ,水面宽30m AB =.(1)请你建立合适的平面直角坐标系xOy ,并根据建立的平面直角坐标系求出该抛物线的解析式.(2)已知一艘船(可近似看成长方体)在此航行时露出水面的高度为4m ,若这艘船的宽度为18m ,当水位线比正常水位线高出1m 时,这艘船能否从该抛物线形拱桥下方顺利通过,请说明理由.20.如图,四边形ABCD 内接于O e ,AB 是O e 的直径,点C 为 BD的中点,弦CE AB ^于点F ,与BD 交于点G .(1)求证:BG CG =;(2)若1OF =,求AD 的长.21.某商家销售一批“中国制造”的吉祥物“拉伊卜”毛绒玩具,已知每个毛绒玩具“拉伊卜”的成本为40元,销售单价不低于成本价,且不高于成本价的1.8倍,在销售过程中发现,毛绒玩具“拉伊卜”每天的销售量y (个)与销售单价x (元)满足如图所示的一次函数关系.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)每个毛绒玩具“拉伊卜”的售价为多少元时,该商家每天的销售利润为2400元?(3)当毛绒玩具“拉伊卜”的销售单价为多少元时,该商家每天获得的利润最大?最大利润是多少元?22.定义:在平面直角坐标系中,图形G 上点P (x,y )的纵坐标y 与其横坐标x 的差y x -称为P 点的“坐标差”,而图形G 上所有点的“坐标差”中的最大值称为图形G 的“特征值”.(1)①点()1,3A 的“坐标差”为 ;②抛物线233y x x =-++的“特征值”为 ;(2)某二次函数()20y x bx c c =-++¹的“特征值”为1,点(),0B m 与点C 分别是此二次函数的图象与x 轴和y 轴的交点,且点B 与点C 的“坐标差”相等.①直接写出m = ;(用含c 的式子表示)②求b 的值.23.如图,△ABC 与△CDE 是等边三角形,连接AD ,取AD 的中点P ,连接BP 并延长至点M ,使PM=BP ,连接AM ,EM ,AE ,将△CDE 绕点C 顺时针旋转.(1)观察猜想在图1中,当点D 在BC 上,点E 在AC 上时,AE 与AM 的数量关系是________,∠MAE=________;(2)探究证明将△CDE 绕点C 顺时针旋转至图2的位置,(1)中的结论是否依然成立,若成立,请给出证明;若不成立,请说明理由;(3)拓展应用若CD=12BC ,将△CDE 由图1位置绕点C 顺时针旋转α(0°<α<360°),当时,请直接写出α的值.1.D【分析】本题考查了中心对称图形:一个图形绕着某固定点旋转180°后能够与原来的图形重合;根据此定义判断即可.【详解】解:A .该图形不是中心对称图形,故此选项不合题意;B .该图形不是中心对称图形,故此选项不合题意;C .该图形不是中心对称图形,故此选项不合题意;D .该图形是中心对称图形,故此选项符合题意.故选:D .2.C【分析】一元二次方程的概念:只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,据此逐项判断即可.【详解】解:A 中方程的未知数的最高次数是1次,故不是一元二次方程,不符合题意;B 中方程含有两个未知数,故不是一元二次方程,不符合题意;C 中方程是一元二次方程,符合题意;D 中方程不是整式方程,故不是一元二次方程,不符合题意.故选:C .【点睛】本题主要考查一元二次方程的概念,熟知一元二次方程满足的条件是解答的关键.3.C【分析】根据一元二次方程的解的定义得到a 2+a =0,解得a 1=0,a 2=﹣1,然后根据一元二次方程的定义确定满足条件的a 的值.【详解】解:把x =0代入ax 2﹣5x +a 2+a =0得a 2+a =0,解得a 1=0,a 2=﹣1,而a ≠0,所以a =﹣1.故选:C .【点睛】本题考查一元二次方程的解、解一元二次方程等知识,是基础考点,掌握相关知识是解题关键.4.B【分析】可设参加会议有x 人,每个人都与其他()1x -人握手,共握手次数为()112x x -,根据一共握了66次手列出方程求解.【详解】解:设参加会议有x 人,依题意得,()11662x x -=,整理,得21320x x --=,解得112x =,211x =-,(舍去)则参加这次会议的有12人.故选:B .【点睛】考查了一元二次方程的应用,计算握手次数时,每两个人之间产生一次握手现象,故共握手次数为()112x x -.5.B【分析】首先由70AC AD AOD =Ð=°,可得70AOC AOD Ð=Ð=°,再由OB OC =可得出1352OBC OCB AOC Ð=Ð=Ð=°.【详解】解:∵在O e 中,70AC AD AOD =Ð=°,∴70AOC AOD Ð=Ð=°,∵OB OC =,∴1352OBC OCB AOC Ð=Ð=Ð=°, 故选:B .【点睛】此题考查了弧与圆心角的关系、等腰三角形的性质及三角形外角的性质,掌握数形结合思想的应用是解题的关键.6.C【分析】根据题意可得二次函数23y x k =-+的图象的对称轴为y 轴,从而得到点()12,A y -关于对称轴的对称点为()12,y ,再由当0x >时,y 随x 的增大而减小,即可求解.【详解】解:∵二次函数23y x k =-+的图象的对称轴为y 轴,∴点()12,A y -关于对称轴的对称点为()12,y ,∵30-<,∴当0x >时,y 随x 的增大而减小,∵125<<,∴312y y y <<.故选:C【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.7.B【分析】本题考查了二次函数的图象与系数的关系.先根据函数2y ax bx c =++的图象判断出0,0,0a c b <>>,再根据二次函数的图象特点逐一判断选项即可.【详解】解:∵函数2y ax bx c =++的开口向下,与y 轴的交点位于正半轴,且对称轴位于y 轴的右侧,0,0,02b a c a\<>->,>0b \,∴函数()2y a x b c =-+的开口向下,对称轴为直线0x b =>,与y 轴的交点位于负半轴,观察四个选项可知,只有选项B 符合,故选:B .8.D【分析】直线和圆的位置关系与数量之间的联系:若d <r ,则直线与圆相交;若d=r ,则直线于圆相切;若d >r ,则直线与圆相离.【详解】因为垂线段最短,所以圆心到直线的距离小于等于5.此时和半径3的大小不确定,则直线和圆相交、相切、相离都有可能.故答案为相切,相交或相离.【点睛】考查直线和圆的位置关系,需要求出圆心到直线的距离,与半径进行比较即可得出结论.9.C【分析】作CH PB ^于H ,由垂径定理得到CE 的长,从而求出PH 的长,由勾股定理求出CH 的长,即可求出BE 的长.【详解】解:作CH PB ^于H ,∵直径AB CD ^于H ,∴12CE DE CD ==,∵PC ,PB 分别切O e 于C ,B ,∴PB PC CD ===AB PB ^,∴四边形ECHB 是矩形,∴BH CE ==,BE CH =,∴.PH PB BH =-==∴.3CH ===,∴3BE CH ==.故选:C .【点睛】本题考查切线的性质,切线长定理,矩形的判定与性质,勾股定理,关键是通过辅助线构造直角三角形,应用勾股定理求出CH 的长.10.D【分析】由点的纵坐标是横坐标的2倍可得二倍点在直线2y x =上,由14x -<<可得二倍点所在线段AB 的端点坐标,结合图象,通过求抛物线与线段的交点求解.【详解】解:由题意可得二倍点所在直线为2y x =,将1x =-代入2y x =得2y =-,将4x =代入2y x =得8y =,设(1,2)A --,(4,8)B ,如图,联立2y x =与22y x x c =-+,得方程222x x c x -+=,即240x x c -+=Q 抛物线与直线2y x =有两个交点,\2440c D =->,解得4c <,当直线1x =-和直线4x =与抛物线交点在点A ,B 上方时,抛物线与线段AB 有两个交点,把1x =-代入22y x x c =-+,得3y c =+,把4x =代入22y x x c =-+得8y c =+,\3288c c +>-ìí+>î,解得0c >,04c \<<.故选D .【点睛】本题考查二次函数图象与正比例函数图象的交点问题,解题关键掌握函数与方程及不等式的关系,将代数问题转化为图形问题求解.11.0(答案不唯一)【分析】根据一元二次方程的定义,可得二次项系数不为0,据此即可求解.【详解】解:∵关于x 的方程()21230k x x -+-=是一元二次方程,∴10k -¹解得:1k ¹,∴k 的值可以是0(答案不唯一).故答案为:0(答案不唯一).【点睛】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.12.【分析】本题主要考查等边三角形的性质、三角形内切圆的性质、解直角三角形,关键在于作辅助线构建直角三角形.过O 点作OD AB ^,则1OD =,在Rt OAD V 中,即可解答;【详解】解:如图,过O 点作OD AB ^,则1OD =.∵O 是ABC V 的内心,ABC V 是等边三角形,∴30,OAD OA OB AD BD Ð=°==,,在Rt OAD V 中,301OAD OD Ð=°=,,∴tan 30OD AD ==°,∴2AB AD ==故答案为:13.42【详解】∵将△ABC 绕点B 顺时针旋转60°,得到△BDE ,∴△ABC ≌△BDE ,∠CBD =60°,∴BD =BC =12cm ,△BCD 为等边三角形,∴CD =BC =BD =12cm ,在Rt △ACB 中,AB =13,△ACF 与△BDF 的周长之和=AC +AF +CF +BF +DF +BD =AC +AB +CD +BD =5+13+12+12=42(cm ),故答案为:42.14.2022【分析】由题意可得a 、b 是方程2220221x x --=-的两个根,则有2a b +=,又由222021a a =+,将所求式子变形为2232202123a b a b +-=++-,然后再求值即可.【详解】解:Q 点(),1A a -和(),1B b -在二次函数222022y x x =--的图象上,a \、b 是方程2220221x x --=-的两个根,2a b \+=,Q 将(),1A a -代入222022y x x =--,\2220221a a --=-,\222021a a =+,\22()2322021232201842018202a b a b a b +-=++-=++=+=,故答案为:2022.【点睛】本题考查二次函数图象上点的坐标特点,熟练掌握二次函数的图象与性质,二次函数与方程之间的关系是解题的关键.15.212【详解】由题意得:A(4,0),B(0,-3),作CD AB ^ ,sin CD OA CBD BC ABÐ== ,即416455CD CD == ,则max 2115h CD =+= ,则△PAB 面积的最大值是211215=522´´ .16.(1)11x =-+21x =-(2)1213,22x x ==【分析】(1)运用配方法求解;(2)先化成一般式,再运用公式法或配方法求解.【详解】(1)2210x x +-=,2(1)2x +=,∴1x +=1x +=∴11x =-21x =-(2)()221 42x x -=-,23204x x -+=,21(1)4x -=,∴112x -=或112x -=-.∴1213,22x x ==【点睛】本题考查一元二次方程的求解;掌握一元二次方程的求解方法是解题的关键.17.(1)见解析(2)12m <<【分析】(1)表示出D ,根据D 的数值判断即可;(2)利用公式求出两根,根据两根及其条件列出不等式,并解不等式即可.【详解】(1)解:依题意,得∵()2222(2)41144440m m m m D =--´´-=-+=>∴方程总有两个实数根;(2)解:方程22210x mx m -+-=由(1)得Δ4=∴1x m ==±,∴11x m =+,21x m =-,∵方程的一根大于2,一根小于1,11m m +>-∴1211m m +>ìí-<î∴12m <<.∴m 的取值范围是12m <<.【点睛】本题考查了一元二次方程,相关知识点有:根的判别式、解一元二次方程等,熟悉一元二次方程的知识点是解题关键.18.(1)证明见试题解析;(2)M 为BC 的中点.【详解】试题分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A ;(2)当MC=MD 时,直线DM 与⊙O 相切,连接DO ,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM 与⊙O 相切.试题解析:(1)证明:∵AC 为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A ;(2)当MC=MD (或点M 是BC 的中点)时,直线DM 与⊙O 相切;解:连接DO ,∵DO=CO ,∴∠1=∠2,∵DM=CM ,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM 与⊙O 相切,故当MC=MD (或点M 是BC 的中点)时,直线DM 与⊙O 相切.考点:切线的判定.19.(1)抛物线的解析式为2125y x =-(答案不唯一,建立的平面直角坐标系不同则答案不同)(2)这艘船能从该抛物线形拱桥下方顺利通过,理由见解析【分析】(1)根据拱桥的实际问题建立直角坐标系,再根据建立直角坐标系得到抛物线的解析式即可解答;(2)根据题意得到船的最高点的纵坐标为4-,再根据抛物线的解析式为2125y x =-得到10x =±,进而得到这艘船最高点在同一水平面的拱桥的宽度为20m 即可解答.【详解】(1)解:建立的平面直角坐标系xOy 如解图所示.观察图象,可知该抛物线的顶点为()0,0,点()15,9A --.∴可设该抛物线的解析式为2y ax =.将点()15,9A --代入2y ax =中,得9225a -=,解得125a =-.∴该抛物线的解析式为2125y x =-;(答案不唯一,建立的平面直角坐标系不同则答案不同);(2)解:能,理由如下:当水位线比正常水位线高出1m 时,此时船的最高点的纵坐标为9144-++=-.将4y =-代入2125y x =-中,解得10x =±,∴此时与这艘船最高点在同一水平面的拱桥的宽度为10220´=(m ).∵2018>,∴这艘船能从该抛物线形拱桥下方顺利通过.【点睛】本题考查了二次函数与实际问题,掌握二次函数的性质是解题的关键.20.(1)见解析(2)2【分析】(1)根据垂径定理以及圆周角定理可得 BCBE CD ==,进而得到CBD CDB BCE Ð=Ð=Ð,再根据等腰三角形的判定可得BG CG =;(2)利用圆心角、弦、弧之间的关系以及垂径定理证得()Rt Rt HL BOM EOF =△△,可得1OM OF ==,再结合三角形中位线定理可得答案.【详解】(1)证明:∵点C 为 BD的中点,∴ BCCD =,又∵弦CE AB ^,AB 是直径,∴ BCBE =,∴ BCBE CD ==,∴CBD CDB BCE Ð=Ð=Ð,∴BG CG =;(2)解:如图,过点O 作OM BD ^,垂足为M ,连接OD ,OE ,∵ BCBE CD ==,∴ BCCD BC BE +=+,即 BDCE =,∴BD CE =,又∵OM BD ^,OF CE ^,∴12DM BM BD ==,12EF CF CE ==,则BM EF =,又∵OB OE =,∴()Rt Rt HL BOM EOF =△△,∴1OM OF ==,∵OA OB =,∴OM 是ABD △的中位线,∴12OM AD =,∴22AD OM ==.【点睛】本题考查垂径定理、圆周角定理以及圆心角、弦、弧、圆心距之间的关系定理,掌握垂径定理、圆周角定理,圆心角、弦、弧之间的关系定理以及等腰三角形的判定方法、全等三角形的判定及性质、三角形中位线定理是正确解答的前提.21.(1)2220y x =-+,4072x ££(2)70元(3)当毛绒玩具“拉伊卜”的销售单价为72元时,该商家每天获得的利润最大,最大利润为2432元【分析】本题考查了一次函数及二次函数的应用,一元二次方程的应用,理解题意,正确求得函数解析式及方程是解决本题的关键.(1)设()0y kx b k =+¹,利用待定系数法即可求得一次函数的解析式,再根据销售单价不低于成本价,且不高于成本价的1.8倍,即可求得x 的取值范围;(2)根据题意即可列出一元二次方程,解方程即可求解;(3)设每天获得的利润为w 元,根据题意即可求得二次函数,再根据二次函数的性质,即可求解.【详解】(1)解:设()0y kx b k =+¹,把点()50,120,()60,100分别代入解析式,得5012060100k b k b +=ìí+=î,解得:2220k b =-ìí=î,∴2220y x =-+,∵销售单价不低于成本价,且不高于成本价的1.8倍,∴自变量x 的取值范围是:4072x ££;(2)解:根据题意得:()()2220402400x x -+-=,整理得:215056000x x -+=,解得170x =,280x =,∵4072x ££,∴280x =不合题意,舍去,答:每个吉祥物“拉伊卜”的售价为70元时,该商家每天的销售利润为2400元;(3)解:设每天获得的利润为w 元,根据题意得:()()()22222040230088002752450w x x x x x =-+-=-+-=--+∵20-<,∴抛物线开口向下,∵抛物线对称轴为75x =,销售单价不得高于72元,∴当4072x ££时,w 随x 的增大而增大,∴当72x =时,w 有最大值,最大值为()22727524502432-´-+=,答:当毛绒玩具“拉伊卜”的销售单价为72元时,该商家每天获得的利润最大,最大利润为2432元.22.(1)①2;②4(2)①m c =-;②3-3+【分析】(1)①由题中所给“坐标差”的定义即可得到点()1,3A 的坐标差.②由坐标差的定义可得:二次函数233y x x =-++图象上点的坐标差为:223323y x x x x x x -=-++-=-++,利用二次函数求最值,即可得出“特征值”.(2)①由题意可得:00m c -=-,由此可得:m c =-.②由m c =-可得点B 的坐标为(),0c -,把点B 的坐标代入()20y x bx c c =++¹中可得()10c c b -+=,由0c ¹可得10c b -+=,即1b c =+,再由()()210y x x b x c c -=-+-+¹的特征值为1可得:()2114b c -+=,两者即可解得b 和c 的值.【详解】(1)解:①由题意,得:点()1,3A 的“坐标差”为312-=,故答案为2;②抛物线233y x x =-++的“坐标差”为()222332314y x x x x x x x -=-++-=-++=--+,∴当1x =时,y x -的值最大,为4,所以抛物线233y x x =-++的“特征值”为4.故答案为4;(2)①∵点C 是此二次函数的图象与y 轴的交点,∴()0,C c ,∵点B 与点C 的“坐标差”相等.∴00c m-=-∴m c =-,故答案为:m c =-.②∵m c=-∴B (),0c -将其代入2y x bx c =-++中,得20c bc c --+=∴()10c c b -+-=∵0c ¹∴10c b +-=,∴1b c =-+①∴其“坐标差”为:()221y x x bx c x x b x c -=-++-=-+-+.∴()221124b b y x x c -éù-æö-=--++ç÷êúèøëû∵“特征值”为1,∴()2114b c -+=②.将①代入②中,244c c +=解得=±-2c ,当2c =,()1213b c =-+=--+=-当2c =-,()1213b c =-+=--+=+综上:b 的值为:3-或3+.【点睛】本题考查新定义“坐标差”“特征值”,仔细阅读,掌握新定义的特征,二次函数的性质,一元二次方程的解法,解题的解题关键是能够正确利用题意进行计算,正确利用“特征值”的定义计算.23.(1)观察猜想:相等,60°;(2)探究证明:成立,见解析;(3)拓展应用:60°或300°【分析】(1)证明四边形ABDM是平行四边形即可解决问题.(2)如图2中,连接BD,DM,BD交AC于点H.证明△BCD@△ACE,推出BD=AE,∠CBD=∠CAE,即可解决问题.(3)首先证明△AEM是等边三角形,画出图形分别求解即可.【详解】解:(1)结论:AM=AE,∠MAE=60°.理由:如图1中,∵AP=PD,BP=PM,∴四边形ABDM是平行四边形,∴AM∥BC,∴∠MAE=∠C=60°,∠MDC=∠ABC=60°∴△MAE和△CDE为等边三角形,∴MA=AE.故答案为AM=AE,60°.(2)如图2中,连接BD,DM,BD交AC于点O,交AE于G.∵△ABC与△CDE是等边三角形,,∴BC=AC,CD=CE,∵∠ACB=∠DCE=60°,∴∠BCD =∠ACE ,∴△BCD @△ACE ,∴BD=AE ,∠CBD =∠CAE ,∴∠ABD +∠CAE=∠CBD +∠ABD =∠ABC=60°,∴∠BAC +∠HAC +∠ABH =60°+60°=120°,∴∠AHB =60°∵AP =PD ,BP =PM ,∴四边形ABDM 是平行四边形,∴AM ∥BD ,AM =BD ,∴∠MAE =∠BHA =60°,AM=AE ,(3)结合(1)的结论,当CD=12BC ,0°<α<360°时,,如图3,∴,又ME=AE ,∴△AEC 为直角三角形,∴∠ACE=60°,∴α的值可能为60°或300°综上所述,满足条件的α的值为60°或300°.【点睛】本题属于四边形综合题,考查了等边三角形的判定和性质,平行四边形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南漯河中考数学试卷及答案注意事项:1、本试卷共8页,三大题,满分120分,考题时间100分钟。

请用钢笔或圆珠笔答在试卷指定位置上。

2、答卷前请在指定的位置填好自己的座号,并将密封线内的项目填写清楚。

题号 一 二 三 总分 16 17 18 19 20 21 22 23 得分一、 选择题(本题满分18分,共有6道小题,每小题3分)下列每小题都给出代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的。

请将各小题所选答案的代号填写在下面的表格内相应题号下面。

选择题答题位置 题号 1 2 3 4 5 6 答案1.-7的相反数是( ) A. 7 B. -7 C.71 D.17- 2.直角三角形在正方形网格纸中的位置如图所示,则cos α的值是( )A.43 B. 34 C. 53 D. 543.如图,是中国共产主义青年团团旗上的图案,点A 、B 、C 、D 、E 五等分圆,则A B C D E ∠+∠+∠+∠+∠等于( )A. ︒360B. ︒180C. ︒150D. ︒1204.初三年级某班十名男同学“俯卧撑”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A. 9,10,11 B.10,11,9 C.9,11,10 D.10,9,115.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠ 6.如图,已知□ABCD 中,AB=4,AD=2,E 是AB 边上的一动点(动点E 与点A 不重合,可与点B 重合),设AE=x ,DE 的延长线交CB 的延长线于点F ,设CF=y ,则下列图象能正确反映y 与x 的函数关系的是( )得分 评卷人二、填空题(本题满分27分,共有9道小题,每小题3分)7.16的平方根是8.如图,直线a,b 被直线c 所截,若a ∥b ,︒=∠501,则=∠2 9.样本数据3,6,a,4,2的平均数是5,则这个样本的方差是10.如图所示,AB 为⊙0的直径,AC 为弦,OD ∥BC 交AC 于点D ,若AB=20cm,︒=∠30A ,则AD= cm11.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm12.如图,矩形ABCD 的两条线段交于点O ,过点O 作AC 的垂线EF,分别交AD 、BC 于点E 、F ,连接CE,已知CDE ∆的周长为24cm ,则矩形ABCD 的周长是 cm13、在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 14、如图是二次函数2)1(2++=x a y 图像的一部分,该图在y 轴右侧与x 轴交点的坐标 是15、如图,直线2-==kx y (k >0)与双曲线ky =在第一象限内的交点面积为R ,与x 轴的交点为P ,与y 轴的交得分 评卷人三、解答题(本题满分75分,共8道小题) 16、(本小题满分8分)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来。

17. (本小题满分9分)如图,已知:在四边形ABFC 中,ACB ∠=90BC ,︒的垂直平分线EF 交BC 于点D,交AB 于点E,且CF=AE (1) 试探究,四边形BECF 是什么特殊的四边形;(2) 当A ∠的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论. (特别提醒:表示角最好用数字)18. (本小题满分9分)已知2x 2x 是关于x 的一元二次方程062=+-k x x 的两个实数根,且21x 22x —1x —2x =115(1)求k 的值;(2)求21x +22x +8的值。

19、(本小题满分9分)某校300名优秀学生,中考数学得分范围是70—119(得分都是整数),为了了解该校这300名学生的中考数学成绩,从中抽查了一部分学生的数学分数,通过数据处理,得到如下频率分布表和频率分布直方图.请你根据给出的图标解答:(1)填写频率分布表中未完成部分的数据; (2)指出在这个问题中的总体和样本容量;(3)求出在频率分布直方图中直角梯形ABCD 的面积;(4)请你用.样.本.估.计.总.体,可以得到哪些信息?(写一条即可)分组 频数 频率109.5—119.5 15 0.3099.5--109.5 10 0.2089.5—99.5 1879.5—89.5 69.5—79.5 3 0.06 合计 1.0020、(本题满分9分)在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务。

问接到指示后,该部队每天加固河堤多少米?21、(本题满分10分)如图,在小山的西侧A处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C处,这时热气球上的人发现,在A处的正东方向有一处着火点B,十分钟后,在D处测得着火点B的俯角为15°,求热气球升空点A与着火点B的距离。

(结果保留根号,参照数据:(42615sin -=︒,42615cos +=︒,3215tan-=︒,3215cot+=︒)。

22、(本题满分10分)(1)求证:AB=AC ;(2)当BC AB =45时,①求tan ∠ABE 的值;②如果AE=1120,求AC 的值。

23、(本题满分11分)如图,抛物线c bx ax y ++=2与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C ,且当x =O 和x =4时,y 的值相等。

直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M 。

(1)求这条抛物线的解析式;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值。

参照答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)﹣7的相反数是()A.7 B.﹣7 C.D.考点:相反数.解析:根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(﹣7的相反数)+(﹣7)=0,则﹣7的相反数是7.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)三角形在正方形网格中的位置如图所示,则cosa的值是()A.B.C.D.考点:锐角三角函数的定义.专题:网格型.解析:根据网格的特点及三角函数的定义解答即可.解答:解:读图可得:α的对边是4个单位,邻边是3个单位,则斜边是5个单位,故cosa=.故选C.点评:本题考查锐角三角函数的概念:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.3.(3分)(2008•濮阳)如图,是中国共产主义青年团团旗上的图案,点A,B,C,D,E五等分圆,则∠A+∠B+∠C+∠D+∠E 等于()A.360°B.180°C.150°D.120°考点:圆周角定理;三角形内角和定理.解析:连接CD,根据圆周角定理,可得∠ECD=∠B,∠BDC=∠E;此时这五个角的度数和正好是△ACD的三个内角的和,根据三角形内角和定理可得,这五个角的度数和应是180°.解答:解:连接CD,则有∠B=∠ECD,∠E=∠CDB;∴∠A+∠B+∠C+∠D+∠E=∠A+∠ECD+∠C+∠D+∠CDB=∠A+∠ADC+∠ACD=180°.故选B.4.(3分)初三某班10名男同学“引体向上”的测试成绩(单位:次数)分别是:9,14,10,15,7,9,16,10,11,9,这组数据的众数,中位数,平均数依次是()A.9,10,11 B.10,11,9 C.9,11,10 D.10,9,11考点:中位数;算术平均数;众数.解析:先把数据按大小排列,然后根据众数、中位数和平均数的定义求解.解答:解:从小到大排列此数据为:7,9,9,9,10,10,11,14,15,16.数据9出现了三次最多为众数;处在第5位、第6位的均为10,所以10为中位数;平均数为:(7+9+9+9+10+10+11+14+15+16)÷10=11.故选A.点评:本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠0考点:根的判别式.专题:压轴题.解析:若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.解答:解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.6.(3分)如图,已知▱ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点A不重合,可与点B重合),设AE=x,DE的延长线交CB的延长线于点F,设CF=y,则下列图象能正确反映y与x的函数关系的是()A.B.C.D.专题:压轴题;动点型.解析:本题考查动点函数图象的问题.解答:解:∵动点E与点A不重合,可与点B重合,AB=4,AE=x.∴0<x≤4.即包括4;故选B.点评:本题各个x的取值范围都不同,所以只需从x的取值考虑即可.二、填空题(共9小题,每小题3分,满分27分)7.(3分)16的平方根是±4.考点:平方根.专题:计算题.解析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.(3分)如图,直线a,b被直线c所截,若a∥b,∠1=50°,则∠2=50 度.考点:平行线的性质;对顶角、邻补角.专题:计算题.解析:先利用平行线的性质可得∠3=∠1,又由对顶角相等推出∠2=∠3,故∠2的度数可求.解答:解:∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2=∠3,∴∠2=∠1=50°.点评:本题应用的知识点为:两直线平行,同位角相等;对顶角相等.9.(3分)样本数据:3,6,a,4,2的平均数是5,则这个样本的方差是8 .考点:方差;算术平均数.解析:本题可先求出a的值,再代入方差的公式即可.解答:解:依题意得:a=5×5﹣3﹣6﹣4﹣2=10,方差S2=[(3﹣5)2+(6﹣5)2+(10﹣5)2+(4﹣5)2+(2﹣5)2]=×40=8.故填8.点评:本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.考点:圆周角定理;特殊角的三角函数值.解析:由圆周角定理,可知∠C=90°,已知OD∥BC,因此△AOD是直角三角形,在这个直角三角形中,半径OA=10cm,∠A=30°,通过解直角三角形可求出AD的长.解答:解:∵AB是⊙O的直径,∴∠C=90°;∵OD∥BC,∴∠ADO=90°;在Rt△AOD中,OA=10cm,∠A=30°;AD=AO•cosA=10×=5cm.点评:本题主要考查了圆周角定理、平行线的性质、余弦函数等知识的应用.11.(3分)某花木场有一块如等腰梯形ABCD的空地(如图),各边的中点分别是E、F、G、H,用篱笆围成的四边形EFGH场地的周长为40cm,则对角线AC= 20 cm.考点:等腰梯形的性质;三角形中位线定理.解析:利用等腰梯形和中位线定理和已知条件,即可推出结论.解答:解:∵等腰梯形的对角线相等,EF、HG、GF、EF均为梯形的中位线,∴EF=HG=GF=EF=AC.又∵EF+HG+GF+EF=40cm,即2AC=40cm,则AC=20cm.对角线AC=20cm.故答案为:20.点评:本题考查的是等腰梯形的性质即三角形中位线的性质,属一般题目.12.(3分)如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是48 cm.考点:矩形的性质.专题:计算题.解析:利用FE垂直平分AC可得到AE=CE,那么△CDE的周长就可以表示为AD+CD,也就求出了矩形的周长.解答:解:∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.点评:本题主要是利用矩形的对角线相互平分的性质和垂直平分线的性质求得DE+CD+CE=AE+DE+CD=24.13.(3分)在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为x2+40x﹣75=0 .考点:由实际问题抽象出一元二次方程.专题:几何图形问题.解析:如果设金色纸边的宽为xcm,那么挂图的长和宽应该为(50+2x)和(30+2x),根据总面积即可列出方程.解答:解:设金色纸边的宽为xcm,那么挂图的长和宽应该为(50+2x)和(30+2x),根据题意可得出方程为:(50+2x)(30+2x)=1800,∴x2+40x﹣75=0.点评:一元二次方程的运用,此类题是看准题型列面积方程,题目不难,重在看准题.14.(3分)如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是(1,0).考点:二次函数的图象.专题:压轴题.解析:由二次函数y=a(x+1)2+2可知对称轴x=﹣1,从图象上看出与x轴左侧交点为(﹣3,0),利用二次函数的对称性可知该图在对称轴右侧与x轴交点坐标.解答:解:由y=a(x+1)2+2可知对称轴x=﹣1,根据对称性,图象在对称轴左侧与x轴交点为(﹣3,0),所以该图在对称轴右侧与x轴交点的坐标是(1,0).点评:要求熟悉二次函数图象的对称性,能从图象和解析式中解析得出对称轴和关于对称轴对称的点,并利用对称性求得另一个点.15.(3分)如图,直线y=kx﹣2(k>0)与双曲线y=在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积比是4:1,则k= .考点:反比例函数综合题;相似三角形的判定与性质.专题:压轴题.解析:先通过相似三角形的性质得到OQ:RM=2:1,得到RM=1,即R的纵坐标为1,于是有R的坐标为(,1),再代入y=即可求出k的值.解答:解:∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积比是4:1,∴OQ:RM=2:1,∵Q为y=kx﹣2与y轴交点,∴OQ=2,∴RM=1,即R的纵坐标为1,把y=1代入直线y=kx﹣2,得x=,所以R的坐标为(,1),把它代入y=,得×1=k(k>0),解得k=±.∵图象在第一三象限,∴k=,故答案为.点评:观察图象,函数经过一定点,将此点坐标代入函数解析式(k≠0)即可求得k的值.三、解答题(共8小题,满分75分)16.(8分)解不等式组并把解集在已画好的数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.解析:先解不等式组中的每一个不等式,再根据“大大取较大,小小取较小,大小小大取中间,大大小小无解”,把它们的解集用一条不等式表示出来.解答:解:解不等式1,得x≤3;解不等式2,得x>.把解集在数轴上表示为:∴原不等式组的解集是<x≤3.点评:本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.17.(9分)如图,已知:在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究,四边形BECF是什么特殊的四边形?(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.(特别提醒:表示角最好用数字)考点:菱形的判定;线段垂直平分线的性质;正方形的判定.专题:几何综合题.解析:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,根据四边相等的四边形是菱形即可判断;(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度.解答:解:(1)四边形BECF是菱形.证明:∵BC的垂直平分线为EF,∴BF=FC,BE=EC,∴∠1=∠3,∵∠ACB=90°,∴∠1+∠2=90°,∠3+∠A=90°,∴∠2=∠A,∴EC=AE,又∵CF=AE,BE=EC∴BE=EC=CF=BF,∴四边形BECF是菱形.(2)当∠A=45°时,菱形BECF是正方形.证明:∵∠A=45°,∠ACB=90°,∴∠1=45°,∴∠EBF=2∠A=90°,∴菱形BECF是正方形.点评:本题利用了:菱形的判定和性质及中垂线的性质、直角三角形的性质.18.(9分)已知x1,x2是关于x的一元二次方程x2﹣6x+k=0的两个实数根,且x12x22﹣x1﹣x2=115.(1)求k的值;(2)求x12+x22+8的值.考点:根与系数的关系;解一元二次方程-直接开平方法;根的判别式.专题:压轴题.解析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围,再利用根与系数的关系,x12x22﹣x1﹣x2=115.即x12x22﹣(x1+x2)=115,即可得到关于k的方程,求出k的值.(2)根据(1)即可求得x1+x2与x1x2的值,而x12+x22+8=(x1+x2)2﹣2x1x2+8即可求得式子的值.解答:解:(1)∵x1,x2是方程x2﹣6x+k=0的两个根,∴x1+x2=6,x1x2=k,∵x12x22﹣x1﹣x2=115,∴k2﹣6=115,解得k1=11,k2=﹣11,当k1=11时,△=36﹣4k=36﹣44<0,∴k1=11不合题意当k2=﹣11时,△=36﹣4k=36+44>0,∴k2=﹣11符合题意,∴k的值为﹣11;(2)∵x1+x2=6,x1x2=﹣11∴x12+x22+8=(x1+x2)2﹣2x1x2+8=36+2×11+8=66.点评:总结:(1)一元二次方程根的情况与判别式△的关系:①△>0⇔方程有两个不相等的实数根;②△=0⇔方程有两个相等的实数根;③△<0⇔方程没有实数根.(2)根与系数的关系是:x1+x2=,x1x2=.根据根与系数的关系把x12x22﹣x1﹣x2=115转化为关于k的方程,解得k的值是解决本题的关键.19.(9分)某校300名优秀学生,中考数学得分范围是70﹣119(得分都是整数),为了了解该校这300名学生的中考数学成绩,从中抽查了一部分学生的数学分数,通过数据处理,得到如下频率分布表和频率分布直方图.请你根据给出的图标解答:(1)填写频率分布表中未完成部分的数据;(2)指出在这个问题中的总体和样本容量;(3)求出在频率分布直方图中直角梯形ABCD的面积;(4)请你用样本估计总体,可以得到哪些信息?(写一条即可)考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.专题:图表型.解析:(1)根据各小组频数之和等于数据总和,各小组频率之和等于1,可得答案;(2)由总体及样本容量的意义,可得:总体是300名学生的中考数学成绩.样本容量为50;(3)由图形的对称性可得S梯形ABCD=S矩形ABGF+S矩形CDEG,可求出答案;(4)根据样本中的频率就等于总体的频率,用样本估计总体即可,答案不唯一.解答:解:(1)根据第一组的频数为15,频率为0.30,所以这次被抽查的学生人数是50人,第三组的频率为=0.36,分数在79.5~89.5之间的人数为50﹣15﹣10﹣18﹣3=4人,频率为=0.08,如图:(2)总体是300名学生的中考数学成绩,样本容量为50;(3)∵∠DOE=∠AOF,∠E=∠AFO=90°,DE=AF,∴△DOE≌△AOF,∴S梯形ABCD=S矩形ABGF+S矩形CDEG=0.08+0.36=0.44;(4)本题有多个结论,例如,300名初中毕业年级学生数学分数在89.5~99.5的人数最多,约为108人;或300名初中毕业年级学生数学分数在69.5~79.5的人数最少,约为18人.点评:本题属于统计内容,考查解析频数分布直方图和频率的求法.解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图.20.(9分)在暴雨到来之前,武警某部承担了一段长150米的河堤加固任务,加固40米后,接到上级抗旱防汛指挥部的指示,要求加快施工进度,为此,该部队在保证施工质量的前提下,投入更多的兵力,每天多加固15米,这样一共用了3天完成了任务.问接到指示后,该部队每天加固河堤多少米?考点:分式方程的应用;解一元二次方程-因式分解法.专题:应用题.解析:求的是原计划的工效,工作总量明显,一定是根据工作时间来列等量关系,本题的关键描述语是:一共用了3天完成了任务.等量关系为:40米所用时间+其余米数所用时间=3.解答:解:设接到指示后,该部队每天加固河堤x米,则接到指示前每天加固(x﹣15)米(1分)根据题意,得(5分)两边乘以x(x﹣15)得40x+110(x﹣15)=3x(x﹣15)整理,得x2﹣65x+550=0(6分)解得,x1=55,x2=10(7分)经检验,x1=55,x2=10都是原方程的根,但当x=10时x﹣15=10﹣15<0,∴x=10不合题意,只取x=55.(8分)答:接到指示后,该部队每天加固河堤55米.(9分)点评:应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,解析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(10分)如图,在小山的西侧A处有一热气球,以30米/分钟的速度沿着与垂直方向所成夹角为30°的方向升空,40分钟后到达C处,这时热气球上的人发现,在A处的正东方向有一处着火点B,十分钟后,在D处测得着火点B的俯角为15°,求热气球升空点A与着火点B的距离.(结果保留根号,参照数据:sin15°=,cos15°=,tan15°=2﹣,cot15°=2+)考点:解直角三角形的应用-仰角俯角问题.专题:应用题.解析:首先解析图形:根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造等量关系,进而可求出答案.解答:解:由题意可知,AD=(40+10)×30=1500(米)过点D作DH⊥BA,交BA延长线于点H.在Rt△DAH中,DH=AD•sin60°,=1500×=750(米).AH=AD•cos60°=1500×=750(米).在Rt△DBH中,BH=DH•cot15°=750×(2+)=(1500+2250)(米),∴BA=BH﹣AH=1500+2250﹣750=1500(+1)(米).答:热气球升空点A与着火点B的距离为1500(+1)(米).点评:本题要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)如图,△ABC内接于⊙O,过点B作⊙O的切线,交于CA的延长线于点E,∠EBC=2∠C.(1)求证:AB=AC;(2)当=时,①求tan∠ABE的值;②如果AE=,求AC的值.考点:切割线定理;勾股定理;解直角三角形.专题:几何综合题;压轴题.解析:(1)BE切⊙O于点B,根据弦切角定理得到∠ABE=∠C,把求证AB=AC的问题转化为证明∠ABC=∠C的问题.(2)①连接AO,交BC于点F,tan∠ABE=tan∠ABF=,转化为求AF的问题.②在△EBA和△ECB中,∠E=∠E,∠EBA=∠ECB,得到△EBA∽△ECB,再由切割线定理,得EB2=EA×EC=EA(EA+AC),就可以求出AC的长.解答:(1)证明:∵BE切⊙O于点B,∴∠ABE=∠C.∵∠EBC=2∠C,即∠ABE+∠ABC=2∠C.∴∠ABC=∠C.∴AB=AC.(2)解:①如图,连接AO,交BC于点F∵AB=AC,∴;∴AO⊥BC,且BF=FC.∵∴∴;设AB=m,BF=2m,由勾股定理,得AF==;∴tan∠ABE=tan∠ABF=.②在△EBA和△ECB中,∵∠E=∠E,∠EBA=∠ECB,∴△EBA∽△ECB,∴;∵,∴EB=EA(※);由切割线定理,得EB2=EA×EC=EA(EA+AC);将(※)式代入上式,得EA2=EA(EA+AC);∵EA≠0,∴AC=EA=×=4.点评:本题主要考查了相似三角形的性质,对应边的比相等,以及切割线定理.23.(11分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x﹣16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M 重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.考点:二次函数综合题.专题:压轴题.解析:(1)x=O和x=4时,y的值相等,即可得到函数的对称轴是x=2,把x=2和x=3分别代入直线y=4x﹣16就可以求出抛物线上的两个点的坐标,并且其中一点是顶点,利用待定系数法,设出函数的顶点式一般形式,就可以求出函数的解析式;(2)根据待定系数法可以求出直线OM的解析式,设OQ的长为t,即P,Q的横坐标是t,把x=t代入直线OM的解析式,就可以求出P点的纵坐标,得到PQ的长,四边形PQCO的面积S=S△COQ+S△OPQ,很据三角形的面积公式就可以得到函数解析式;(3)从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显当然点P运动到点M时,S最值;(4)在直角△OPQ中,根据勾股定理就可以求出点P的坐标.解答:解:(1)∵当x=0和x=4时,y的值相等,∴c=16a+4b+c,(1分)∴b=﹣4a,∴x=﹣=﹣=2将x=3代入y=4x﹣16,得y=﹣4,将x=2代入y=4x﹣16,得y=﹣8.(2分)∴设抛物线的解析式为y=a(x﹣2)2﹣8将点(3,﹣4)代入,得﹣4=a(x﹣2)2﹣8,解得a=4.∴抛物线y=4(x﹣2)2﹣8,即y=4x2﹣16x+8.(3分)(2)设直线OM的解析式为y=kx,将点M(2,﹣8)代入,得k=﹣4,∴y=﹣4x.(4分)则点P(t,﹣4t),PQ=4t,而OC=8,OQ=t.S=S△COQ+S△OPQ=×8×t+×t×4t=2t2+4t(5分)t的取值范围为:0<t≤2(6分)(3)随着点P的运动,四边形PQCO的面积S有最大值.从图象可看出,随着点P由O→M运动,△COQ的面积与△OPQ的面积在不断增大,即S不断变大,显然当点P运动到点M时,S值最大(7分)此时t=2时,点Q在线段AB的中点上(8分)因而S=×2×8+×2×8=16.当t=2时,OC=MQ=8,OC∥MQ,∴四边形PQCO是平行四边形.(9分)(4)随着点P的运动,存在t=,能满足PO=OC(10分)设点P(t,﹣4t),PQ=4T,OQ=t.由勾股定理,得OP2=(4t)2+t2=17t2.∵PO=OC,∴17t2=82,t1=<2,t2=﹣(不合题意)∴当t=时,PO=OC.(11分)点评:本题主要考查了待定系数法求二次函数的解析式.注意数与形的结合是解决本题的关键.。

相关文档
最新文档