2021年中考数学专题三数形结合思想复习题及答案

合集下载

2021年中考数学复习专题4 数形结合、转化思想(精讲练习)

2021年中考数学复习专题4 数形结合、转化思想(精讲练习)

专题4 数形结合、转化思想一、选择题1.回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是(A )A .数形结合B .类比C .演绎D .公理化2.我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为3x(x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是(A )A .转化思想B .函数思想C .数形结合思想D .公理化思想3.(2020·黔东南州)如图,正方形ABCD 的边长为2,O 为对角线的交点,点E ,F 分别为BC ,AD 的中点.以C 为圆心,2为半径作圆弧BD ,再分别以E ,F 为圆心,1为半径作圆弧BO ,OD ,则图中阴影部分的面积为(B )A .π-1B .π-2C .π-3D .4-π4.(2020·南通)如图①,E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿折线B -E -D 运动到点D 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们的运动速度都是1 cm /s .现P ,Q 两点同时出发,设运动时间为x(s ),△BPQ 的面积为y(cm 2),若y 与x 的对应关系如图②所示,则矩形ABCD 的面积是(C )A .96 cm 2B .84 cm 2C .72 cm 2D .56 cm 2 二、填空题5.(2020·天津)如图,▱ABCD 的顶点C 在等边△BEF 的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG.若AD =3,AB =CF =2,则CG 的长为__32__.(第5题图)(第6题图)6.(2020·十堰)如图,圆心角为90°的扇形ACB 内,以BC 为直径作半圆,连接AB.若阴影部分的面积为(π-1),则AC =__2____.7.如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数y =1x (x >0)与y=-5x(x <0)的图象上,则tan ∠BAO 的值为__ 5 __.三、解答题8.(2020·吉林)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5 L ,在整个过程中,油箱里的油量y(单位:L )与时间x(单位:min )之间的关系如图所示.(1)机器每分钟加油量为________L ,机器工作的过程中每分钟耗油量为________L . (2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围. (3)直接写出油箱中油量为油箱容积的一半时x 的值.解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L ),机器工作的过程中每分钟耗油量为:(30-5)÷(60-10)=0.5(L );(2)当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,⎩⎪⎨⎪⎧10a +b =30,60a +b =5, 解得⎩⎪⎨⎪⎧a =-0.5,b =35, 即机器工作时y 关于x 的函数解析式为y =-0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5,当-0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40.9.(2020·自贡)我国著名数学家华罗庚说过“数缺形时少直观,形少数时难入微”,数形结合是解决数学问题的重要思想方法.例如,代数式|x -2|的几何意义是数轴上x 所对应的点与2所对应的点之间的距离:因为|x +1|=|x -(-1)|,所以|x +1|的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.(1)发现问题:代数式|x +1|+|x -2|的最小值是多少?(2)探究问题:如图,点A ,B ,P 分别表示数-1,2,x ,AB =3.∵|x +1|+|x -2|的几何意义是线段PA 与PB 的长度之和,∴当点P 在线段AB 上时,PA +PB =3,当点P 在点A 的左侧或点B 的右侧时,PA +PB >3.∴|x +1|+|x -2|的最小值是3.(3)解决问题:①|x -4|+|x +2|的最小值是________;②利用上述思想方法解不等式:|x +3|+|x -1|>4;③当a 为何值时,代数式|x +a|+|x -3|的最小值是2. 解:①|x -4|+|x +2|的最小值是6;②如图所示,满足|x +3|+|x -1|>4的x 范围为x <-3或x >1;③当a 为-1或-5时,代数式|x +a|+|x -3|的最小值是2.10.(2020·衡阳)在平面直角坐标系xOy 中,关于x 的二次函数y =x 2+px +q 的图象过点(-1,0),(2,0).(1)求这个二次函数的表达式;(2)求当-2≤x ≤1时,y 的最大值与最小值的差;(3)一次函数y =(2-m)x +2-m 的图象与二次函数y =x 2+px +q 的图象交点的横坐标分别是a 和b ,且a <3<b ,求m 的取值范围.解:(1)由二次函数y =x 2+px +q的图象经过(-1,0)和(2,0)两点,∴⎩⎪⎨⎪⎧1-p +q =0,4+2p +q =0,解得⎩⎪⎨⎪⎧p =-1,q =-2, ∴此二次函数的表达式y =x 2-x -2;(2)∵抛物线开口向上,对称轴为直线x =12 ,∴在-2≤x ≤1范围内,当x =-2,函数有最大值为:y =4;当x =12 是函数有最小值:y =-94 ,∴的最大值与最小值的差为:4-(-94 )=254; (3)由题意得x 2-x -2=(2-m)x +2-m ,整理得x 2+(m -3)x +m -4=0,解得:x 1=-1,x 2=4-m ,∵a <3<b ,∴a =-1,b =4-m >3,解得m <1,即m 的取值范围是m <1.。

中考数学专题复习之数形结合思想 练习题及答案

中考数学专题复习之数形结合思想 练习题及答案

数形结合思想1.已知直线y 1=2x -1和y 2=-x -1的图象如图X5-1所示,根据图象填空. (1)当x ______时,y 1>y 2;当x ______时,y 1=y 2;当x ______时,y 1<y 2;(2)方程组的解集是____________.图X5-1图X5-22.已知二次函数y 1=ax 2+bx +c (a ≠0)与一次函数y 2=kx +m (k ≠0)的图象相交于点A (-2,4),B (8,2)(如图X5-2所示),则能使y 1>y 2成立的x 的取值范围是____________. 3.(2012年四川内江)如图X5-3,正三角形ABC 的边长为3 cm ,动点P 从点A 出发,以每秒1 cm 的速度,沿A →B →C 的方向运动,到达点C 时停止.设运动时间为x (单位:秒),y =PC 2,则y 关于x 的函数的图象大致为( )ABCD图X5-3图X5-421,1y x y x =-⎧⎨=--⎩4.(2011年四川泸州)如图X5-4,半径为2的圆内接等腰梯形ABCD,它的下底AB是圆的直径,上底CD的端点在圆周上,则该梯形周长的最大值是______.5.(2012年广东湛江)某市实施“农业立市,工业强市,旅游兴市”计划后,2009年全市荔枝种植面积为24万亩.调查分析结果显示,从2009年开始,该市荔枝种植面积y(单位:万亩)随着时间x(单位:年)逐年成直线上升,y与x之间的函数关系如图X5-5.(1)求y与x之间的函数关系式(不必注明自变量x的取值范围);(2)该市2012年荔枝种植面积为多少万亩?图X5-56.某公司推销一种产品,设x(单位:件)是推销产品的数量,y(单位:元)是推销费,图X5-6表示该公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?图X5-67.(2011年山东菏泽)如图X5-7,抛物线y =12x 2+bx -2与x 轴交于A ,B 两点,与y轴交于C 点,且A (-1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.图X5-78.(2012年广东节选)如图X5-8,抛物线y =12x 2-32x -9与x 轴交于A ,B 两点,与y轴交于点C ,连接BC ,AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A ,B 不重合),过点E 作直线l 平行BC ,交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围.图X5-89.(2012年山东临沂)如图X5-9,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置.(1)求点B 的坐标;(2)求经过点A ,O ,B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P ,O ,B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,说明理由.图X5-910.(2012年广东广州模拟)在平面直角坐标系中,平行四边形ABOC如图X5-10放置,点A,C的坐标分别为(0,3),(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C,A,A′,求此抛物线的解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.图X5-10数形结合思想1.(1)x >0 x =0 x <0 (2)⎩⎪⎨⎪⎧x =0,y =-12.x 1<-2或x >8 3.C 4.105.解:(1)设函数的解析式为y =kx +b ,由图形可知,其经过点(2 009,24)和(2 011,26), 则⎩⎪⎨⎪⎧ 2 009k +b =24,2 011k +b =26,解得⎩⎪⎨⎪⎧k =1,b =-1 985. ∴y 与x 之间的关系式为y =x -1 985.(2)令x =2 012,得y =2 012-1 985=27(万亩). ∴该市2012年荔技种植面积为27万亩. 6.解:(1)y 1=20x ,y 2=10x +300.(2)y 1是不推销产品时,没有推销费,且每推销10件产品得推销费200元,y 2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y 1的付费方案;否则,选择y 2的付费方案.7.解:(1)把点A (-1,0)的坐标代入抛物线的解析式 y =12x 2+bx -2,整理后,解得b =-32. 所以抛物线的解析式为y =12x 2-32x -2.顶点D ⎝⎛⎭⎫32,-258. (2)∵AB =5,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20, ∴AC 2+BC 2=AB 2.∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C ′,则C ′(0,2),OC ′=2.连接C ′D 交x 轴于点M .根据轴对称性及两点之间线段最短可知,此时,MC +MD 的值最小.设抛物线的对称轴交x 轴于点E . 显然有△C ′OM ∽△DEM . ∴OM EM =OC ′ED .∴m 32-m =2258.∴m =2441. 8.解:(1)在y =12x 2-32x -9中,令x =0,得y =-9,∴C (0,-9).令y =0,即12x 2-32x -9=0,解得x 1=-3,x 2=6,∴A (-3,0),B (6,0). ∴AB =9,OC =9.(2)∵ED ∥BC ,∴△AED ∽△ABC . ∴S △AED S △ABC=⎝⎛⎭⎫AE AB 2,即s 12·9·9=⎝⎛⎭⎫m 92. ∴s =12m 2(0<m <9).9.解:(1)如图D94,过点B 作BC ⊥x 轴,垂足为点C ,图D94∵OA =4,将线段OA 绕点O 顺时针旋转120°至OB 位置,∴∠BOC =60°,OB =4. ∴BC =4×sin60°=2 3,OC =4×cos60°=2. ∵点B 在第三象限,∴点B (-2,-2 3).(2) 由函数图象,得抛物线通过(-2,-2 3),(0,0),(4,0)三点.设抛物线的解析式为y =ax 2+bx ,由待定系数法,得⎩⎨⎧4a -2b =-2 3,16a +4b =0,解得⎩⎨⎧a =-36,b =2 33.∴此抛物线的解析式为y =-36x 2+2 33x . (3)存在.理由:如图D ,抛物线的对称轴是x =-b2a,解得x =2.设直线x =2与x 轴的交点为D ,设点P (2,y ).①若OP =OB ,则22+|y |2=42,解得y =±2 3. 即点P 坐标为(2,2 3)或(2,-2 3).又点B (-2,-2 3),∴当点P 为(2,2 3)时,点P ,O ,B 共线,不合题意,舍去.故点P 坐标为(2,-2 3).②若BO =BP ,则42+|y +2 3|2=42,解得y =-2 3,点P 的坐标为(2,-2 3). ③若PO =PB ,则22+|y |2=42+|y +2 3|2,解得y =-2 3,点P 坐标为(2,-2 3). 综上所述,符合条件的点P 只有一个,其坐标为(2,-2 3).10.解:(1)∵▱A ′B ′OC ′由▱ABOC 旋转得到,且点A 的坐标为(0,3),点A ′的坐标为(3,0).∴抛物线过点C (-1,0),A (0,3),A ′(3,0). 设抛物线的解析式为y =ax 2+bx +c (a ≠0),代入,可得⎩⎪⎨⎪⎧ a -b +c =0,c =3,9a +3b +c =0.解得⎩⎪⎨⎪⎧a =-1,b =2,c =3.∴此抛物线的解析式为y =-x 2+2x +3.(2)∵AB ∥CO ,∴∠OAB =∠AOC =90°. ∴OB =OA 2+AB 2=10.又∠OC ′D =∠OCA =∠B ,∠C ′OD =∠BOA , ∴△C ′OD ∽△BOA 又OC ′=OC =1. ∴△C ′OD 的周长△BOA 的周长=OC ′OB =110.又△ABO 的周长为4+10,∴△C ′OD 的周长为4+1010=1+2105.(3)连接OM ,设点M 的坐标为(m ,n ), ∵点M 在抛物线上,∴n =-m 2+2m +3. ∴S △AMA ′=S △AMO +S △OMA ′-S △AOA ′=12OA ·m +12OA ′·n -12OA ·OA ′ =32(m +n )-92=32(m +n -3) =-32(m 2-3m )=-32(m -32)2+278.∵0<m <3,∴当m =32,n =154时,△AMA ′的面积有最大值.∴当点M 的坐标为⎝⎛⎭⎫32,154时,△AMA ′的面积有最大值,且最大值为278.。

2021年中考数学试题及解析:湖南永州-解析版

2021年中考数学试题及解析:湖南永州-解析版

湖南省永州市2021年中考数学试卷一、填空题(本大题共8小题,每小题3分,共24分)1、(2021•永州)的倒数是2021.考点:倒数。

专题:计算题。

分析:根据倒数的意义,乘积为1的两个数互为倒数.所以求一个数的倒数即用1除以这个数,所得的商即是.解答:解:的倒数为:1÷=2021,故答案为:2021.点评:此题考查的知识点是倒数,关键是要明确倒数的意义,要求一个数的倒数即用1除以这个数.2、(2021•永州)根据第六次全国人口普查公布的数据,按标准时间2021年11月1日0时登记的大陆人口约为1339000000人,将1339000000用科学记数法表示为 1.339×109人.考点:科学记数法—表示较大的数。

专题:推理填空题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:1 339 000 000人=1.339×109人.故答案为:1.339×109人.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、因式分解:m2﹣m=m(m﹣1).考点:因式分解-提公因式法。

专题:计算题。

分析:式子的两项含有公因式m,提取公因式即可分解.解答:解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).点评:本题主要考查了提取公因式分解因式,正确确定公因式是解题的关键.4、(2021•永州)永州市新田县的龙家大院至今已有930多年历史,因该村拥有保存完好的“三堂九井二十四巷四十八栋”明清建筑,而申报为中国历史文化名村.如图是龙家大院的一个窗花图案,它具有很好的对称美,这个图案是由:①正六边形;②正三角形;③等腰梯形;④直角梯形等几何图形构成,在这四种几何图形中既是轴对称图形又是中心对称图形的是①(只填序号).考点:中心对称图形;轴对称图形。

专题复习数形结合(含答案)

专题复习数形结合(含答案)

专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。

2。

」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。

数形结合思想专题练习 (含答案)

数形结合思想专题练习  (含答案)

数形结合思想单元测试一、选择题.1.设全集U =R ,集合A =(1,+∞),集合B =(-∞,2)。

则ðU (A∩B)=( ) A .(-∞,1)∪(2,+∞) B .(-∞,1)∪[2,+∞) C .(-∞,1]∪[2,+∞) D .(-∞,1]∪(2,+∞)解析:涉及数集的运算,画出数轴可求{}A B=/12x x ⋂<<,进而得ðU (A∩B)=(-∞,1]∪[2,+∞); 2.如图,直线A x +B y +C =0(AB ≠0)的右下方有一点(m ,n ),则A m +B n +C 的值( ) A 与A 同号,与B 同号 B 与A 同号,与B 异号 C 与A 异号,与B 同号D 与A 异号,与B 异号A,D ,不妨设 A>0, 则B<0,C<0,因为点(m ,n )在直线的下方,所以A m +B n +C>0,故选B.3.设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β.则a 的取值范围是( ); A (–2,–3)∪(–3,2) B (–2,–3) C (–3,2) D 不确定 解析:作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2).故选A 。

4.方程sin(x –4π)=41x 的实数解的个数是( )A.2B.3C.4D.以上均不对解析:由函数与方程思想知:方程的根转化为对应函数图像的交点的横坐标,分别作出函数y=sin(x –4π)和函数y=41x 的图像,由图像知交点个数为3个,故方程的根有3个。

5.已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A.α<a <b <βB.α<a <β<bC.a <α<b <βD.a <α<β<b解析:令g (x )= f (x ) +2=(x –a )(x –b )(其中a <b ),可知函数f (x )的图像向上平移2个单位可得函数g (x ),而方程g (x )=0的两个跟为a ,b ,结合图像可知α<a <b <β。

2021年中考数学专题复习:数轴类动点问题

2021年中考数学专题复习:数轴类动点问题

2021年中考数学专题复习:数轴类动点问题1.已知:a是最大的负整数,b是最小的正整数,且c=a+b,请回答下列问题:(1)请直接写出a,b,c的值:a=;b=;c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,请在如图的数轴上表示出A,B,C三点;(3)在(2)的情况下.点A,B,C开始在数轴上运动,若点A,点C以每秒1个单位的速度向左运动,同时,点B以每秒5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,请问:AB﹣BC的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出AB﹣BC的值.2.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=,b=,c=;(2)a、b、c所对应的点分别为A、B、C,点P为一动点,点A、B、C开始在数轴上运动,若点A以每秒2n(n>0)个单位长度的速度向左运动,同时,点B和点C分别以每秒2n个单位长度和6n个单位长度的速度向右运动,假设经过t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.3.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,c满足|a+2|+(c﹣7)2=0.(1)a=,b=,c=.(2)①若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合.②点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,则AC=.(用含t的代数式表示)(3)在(2)②的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.4.在数轴上有三点A,B,C分别表示数a,b,c,其中b是最小的正整数,且|a+2|与(c﹣7)2互为相反数.(1)a=,b=,c=;(2)若将数轴折叠,使点A与点C重合,则点B与表示数的点重合;(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时点B和点C分别以每秒2个单位长度的速度和4个单位长度的速度向右运动,若点A与点B的距离表示为AB,点A与点C的距离表示为AC,点B与点C的距离表示为BC,则t秒钟后,AB=,AC=,BC=;(用含t的式子表示)(4)请问:3BC﹣2AB的值是否随时间t的变化而变化?若变化,请说明理由;若不变,请直接写出其值.5.如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b﹣6)2=0.(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,直接写出C点表示的数;(3)若点D,E,F,G是线段AB上从左到右的四个点,并且AD=DE=EF =FG=GB.计算与点F所表示的数最接近的整数.6.已知b是最小的正整数,且a,b,c满足(c﹣5)2+|a+b|=0.(1)填空:a=,b=,c=;(2)a,b,c在数轴上所对应的点分别为A,B,C,点P为数轴上一动点,其对应的数为x,点P在1到2之间运动时(即1≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x﹣5|(请写出化简过程);.(3)在(1),(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒m(m<5)个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,点B与点C 之间的距离表示为BC,点A与点B之间的距离表示为AB.若BC﹣AB的值保持不变,求m的值.7.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且PA+PB+PC =7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.8.点A,B在数轴上对应的数分别是a,b,其中a,b满足(a﹣4)2+|b+6|=0.(1)求a,b的值;(2)数轴上有一点C使得AC+BC=AB,求点C所对应的数;(3)点D为A,B中点,O为原点,数轴上有一动点P,求PA+PB+PD﹣PO 的最小值及点P所对应的数的取值范围.9.阅读下面的材料并解答问题:A点表示数a,B点表示数b,C点表示数c,且点A到点B的距离记为线段AB的长,线段AB的长可以用右边的数减去左边的数表示,即AB=b﹣a.若b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0.(1)b=,c=.(2)若将数轴折叠,使得A与C点重合:①点B与数表示的点重合;②若数轴上P、Q两点之间的距离为2018(P在Q的左侧),且P、Q两点经折叠后重合,则P、Q两点表示的数是、.(3)点A、B、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,设运动时间为t秒,试探索:3AC﹣5AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求出其值.10.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和1的两点之间的距离是.(2)数轴上表示x和﹣1的两点之间的距离表示为.(3)在数轴上点A表示数a,点B表示数b,点C表示数c,且满足|a+2|+(c ﹣7)2+|b﹣1|=0,若P是数轴上任意一点,点P表示的数是x,当PA+PB+PC =11时,x的值为多少?参考答案1.解:(1)由题意可得a=﹣1,b=1,c=﹣1+1=0 (2)(3)∵BC=(1+5t)﹣(0﹣t)=1+6tAB=(1+5t)﹣(﹣1﹣t)=2+6t∴AB﹣BC=2+6t﹣(1+6t)=1∴AB﹣BC的值不会随着时间的变化而改变,AB﹣BC的值为1.2.解:(1)由最小的正整数为1,得到b=1,∵(c﹣5)2+|a+b|=0,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)BC﹣AB的值不随着时间t的变化而改变,∵BC=5+6nt﹣(1+2nt)=4+4nt,AB=1+2nt﹣(﹣1﹣2nt)=2+4nt,∴BC﹣AB=4+4nt﹣(2+4nt)=2,所以BC﹣AB的值不随着时间t的变化而改变.3.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)①(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.②AC=t+4t+9=5t+9;故答案为:5t+9;(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.4.解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.5.解:(1)∵|a+2|+(b﹣6)2=0,∴a+2=0,b﹣6=0,∴a=﹣2,b=6,∴AB的距离=|b﹣a|=8;(2)设数轴上点C表示的数为c.∵AC=2BC,∴|c﹣a|=2|c﹣b|,即|c+2|=2|c﹣6|.∵AC=2BC>BC,∴点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有﹣2≤c≤6,得c+2=2(6﹣c),解得c=;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c﹣6),解得c=14.故当AC=2BC时,c=或c=14;(3)∵AB=8,∴,∴AF=3AD=4.8,∴点F对应的有理数为﹣2+4.8=2.8,所以与点F最接近的整数是3.6.解:(1)∵(c﹣5)2+|a+b|=0,∴c﹣5=0,a+b=0,b是最小的正整数,∴a=﹣1,b=1,c=5;故答案为:﹣1;1;5;(2)|x+1|﹣|x﹣1|+2|x﹣5|=(x+1)﹣(x﹣1)+2(5﹣x)=x+1﹣x+1+10﹣2x=﹣2x+12,故答案为﹣2x+12;(3)根据题意得,BC=(5+5t)﹣(1+mt)=4+5t﹣mt,AB=(1+mt)﹣(﹣1﹣t)=2+mt+t,∴BC﹣AB=(4+5t﹣mt)﹣(2+mt+t)=2+4t﹣2mt=2+(4﹣2m)t,若BC﹣AB的值保持不变,则4﹣2m=0,∴m=2.7.解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵PA+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.8.解:(1)∵(a﹣4)2+|b+6|=0,∴a=4,b=﹣6;(2)设点C对应的数是c,∵AC+BC=AB,∴|x﹣4|+|x+6|=×10=15,∴x=﹣8.5或x=6.5,∴C点对应的数是﹣8.5或6.5;(3)∵点D为A,B中点,∴D点表示的数是﹣1,设P点表示的数是p,∴PA+PB+PD﹣PO=|p﹣4|+|p+6|+|p+1|﹣|p|,当p≤﹣6时,原式=4﹣p﹣p﹣6﹣p﹣1+p=﹣2p﹣3,最小值为9,当﹣6<p<﹣1时,原式=﹣p+4+p+6﹣p﹣1+p=9,当﹣1≤p≤0时,原式=4﹣p+p+6+p+1+p=2p+11,最小值为9,当0<p<4时,原式=4﹣p+p+6+p+1﹣p=11,当p≥4时,原式=p﹣4+p+6+p+1﹣p=2P+3,最小值为11.9.解:(1)∵b是最小的正整数,∴b=1,∵(c﹣5)2+|a+b|=0.∴c=5,a=﹣b=﹣1,故答案为:1,5;(2)①∵将数轴折叠,使得A与C点重合:∴AC的中点表示的数是=2,∴与点B重合的数=2﹣1+2=3,②点P表示的数为2﹣=﹣1008,点Q表示的数为2+=1012,故答案为:①3;②﹣1008;1012;(3)3AC﹣5AB的值不变.理由:3AC﹣5AB=3[(5+3t)﹣(﹣1﹣2t)]﹣5[(1+t)﹣(﹣1﹣2t)]=8,所以4AC﹣5AB的值不变,值为8.10.解:(1)数轴上表示﹣2和1的两点之间的距离是1﹣(﹣2)=3.故答案为:3;(2)数轴上表示x和﹣1的两点之间的距离表示为|x+1|,故答案为:|x+1|;(3)∵|a+2|+(c﹣7)2+|b﹣1|=0,∴a=﹣2,b=1,c=7,∴PA+PC最小值为:7﹣(﹣2)=7+2=9,∵PA+PB+PC=11,∴|x﹣1|+9=11,解得x=3或x=﹣1。

2021年浙江中考数学复习练习课件:§8.2 数形结合思想

2021年浙江中考数学复习练习课件:§8.2 数形结合思想

2.如图,函数y=mx-4m(m<0)的图象分别交x轴、y轴于点M,N,线段MN上A,B两点在x轴上的射影分别为A1, B1,若OA1+OB1>4,则△OAA1的面积S1与△OBB1的面积S2的大小关系是 ( )
A.S1>S2
B.S1=S2
C.S1<S2
D.不确定
答案
A
设A(a,am-4m),B(b,bm-4m),结合图象知,S1=
3.如图,已知函数y=x+b和y=ax+3图象的交点为P,则不等式x+b>ax+3的解集为
.
答案 x>1 解析 观察图象知,当x+b>ax+3时,x>1.
4.(2018湖北黄冈,24,14分)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象 限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度做匀速运动,点N从A出 发沿边AB→BC→CO以每秒2个单位长的速度做匀速运动.过点M作直线MP垂直于x轴并交折线OCB 于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停 止运动.
1
2a(am-4m),S2=
1
1
2b(bm-4m),S1-S2= 2
1
am(a-4)- 2
bm(b-
4)=
1 2
m×(a2-4a-b2+4b)=
1 2
m·[(a+b)(a-b)-4(a-b)]=
1 2
m(a-b)(a+b-4),∵OA1+OB1=a+b>4,m<0,a<b,∴S1-S2=

专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)

专题3因式分解(共41题)-2021年中考数学真题分项汇编(解析版)

专题3因式分解(共41题)姓名:__________________ 班级:______________ 得分:_________________一、单选题1.(2021·广西贺州市·中考真题)多项式32242x x x -+因式分解为( )A .()221x x -B .()221x x +C .()221x x -D .()221x x +【答案】A【分析】先提取公因式2x ,再利用完全平方公式将括号里的式子进行因式分解即可【详解】解:32242x x x -+()()2222121x x x x x =-+=-故答案选:A .【点睛】本题考查了提公因式法和公式法进行因式分解.正确应用公式分解因式是解题的关键.2.(2021·浙江杭州市·中考真题)因式分解:214y -=( )A .()()1212y y -+B .()()22y y -+C .()()122y y -+D .()()212y y -+【答案】A【分析】利用平方差公式因式分解即可.【详解】解:214y -=()()1212y y -+,故选:A .【点睛】本题考查利用平方差公式进行因式分解,是重要考点,难度较易,掌握相关知识是解题关键. 3.(2021·贵州铜仁市·中考真题)下列等式正确的是( )A .3tan452-+︒=-B .()5510x xy x y ⎛⎫÷= ⎪⎝⎭C .()2222a b a ab b -=++D .()()33x y xy xy x y x y -=+- 【答案】D【分析】依据绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,逐项计算即可.【详解】 A. 3tan45314-+︒=+=,不符合题意B. ()55555105y y y x xy x y x ⎛⎫÷=⨯⎪= ⎝⎭,不符合题意 C. ()2222a b a ab b -=-+,不符合题意D. ()()3322()x y xy xy x y xy x y x y -=-=+-,符合题意 故选D .【点睛】本题考查了绝对值的计算,特殊角的三角函数,积的乘方,同底数幂的除法运算,完全平方公式,因式分解,解决本题的关键是牢记公式与定义.4.(2021·广西玉林市·中考真题)观察下列树枝分杈的规律图,若第n 个图树枝数用n Y 表示,则94Y Y -=( )A .4152⨯B .4312⨯C .4332⨯D .4632⨯【答案】B【分析】根据题目中的图形,可以写出前几幅图中树枝分杈的数量,从而可以发现树枝分杈的变化规律,进而得到规律21n n Y =-,代入规律求解即可.【详解】解:由图可得到:11223344211213217211521n n Y Y Y Y Y =-==-==-==-==-则:9921Y =-,∴944942121312Y Y -=--+=⨯,故答案选:B .【点睛】本题考查图形规律,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题5.(2021·四川成都市·中考真题)因式分解:24x -=__________.【答案】(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-6.(2021·云南中考真题)分解因式:34x x -=______.【答案】x (x +2)(x ﹣2).【详解】试题分析:34x x -=2(4)x x -=x (x+2)(x ﹣2).故答案为x (x+2)(x ﹣2).考点:提公因式法与公式法的综合运用;因式分解.7.(2021·山东临沂市·中考真题)分解因式:2a 3﹣8a=________.【答案】2a (a+2)(a ﹣2)【详解】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,()()()222a 8a 2a a 4=2a a+2a 2-=--.8.(2021·广西柳州市·中考真题)因式分21x -= .【答案】(1)(1)x x +-.【详解】原式=(1)(1)x x +-.故答案为(1)(1)x x +-.考点:1.因式分解-运用公式法;2.因式分解.9.(2021·浙江宁波市·中考真题)分解因式:23x x -=_____________.【答案】x(x -3)【详解】直接提公因式x 即可,即原式=x (x -3).10.(2021·江苏宿迁市·中考真题)分解因式:2ab a -=______.【答案】a (b +1)(b ﹣1).【详解】解:原式=2(1)a b -=a (b +1)(b ﹣1),故答案为a (b +1)(b ﹣1).11.(2021·浙江丽水市·中考真题)分解因式:24m -=_____.【答案】(2)(2)m m +-【分析】直接根据平方差公式进行因式分解即可.【详解】24(2)(2)m m m -=+-,故填(2)(2)m m +-【点睛】本题考查利用平方差公式进行因式分解,解题关键在于熟练掌握平方差公式.12.(2021·江苏盐城市·中考真题)分解因式:a 2+2a +1=_____.【答案】(a +1)2【分析】直接利用完全平方公式分解.【详解】a 2+2a +1=(a +1)2.故答案为()21+a .【点睛】此题考查了因式分解—运用公式法,熟练掌握完全平方公式是解本题的关键.13.(2021·吉林长春市·中考真题)分解因式:22a a +=_____.【答案】22(2)a a a a +=+【分析】直接提公因式法:观察原式22a a +,找到公因式a ,提出即可得出答案.【详解】 22(2)a a a a +=+.【点睛】考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.该题是直接提公因式法的运用.14.(2021·江苏连云港市·中考真题)分解因式:2961x x ++=____.【答案】(3x +1)2【分析】原式利用完全平方公式分解即可.【详解】解:原式=(3x +1)2,故答案为:(3x +1)2【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.15.(2021·江苏苏州市·中考真题)因式分解221x x -+=______.【答案】()21x -【分析】直接利用乘法公式分解因式得出答案.【详解】解:221x x -+=(x ﹣1)2.故答案为:(x ﹣1)2.【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.16.(2021·浙江台州市·中考真题)因式分解:xy -y 2=_____.【答案】y (x -y )【分析】根据提取公因式法,即可分解因式.【详解】解:原式= y (x -y ),故答案是:y (x -y ).【点睛】本题主要考查分解因式,掌握提取公因式法分解因式,是解题的关键.17.(2021·江西中考真题)因式分解:224x y -=______.【答案】(2)(2)x y x y +-【分析】直接利用平方差公式分解即可.【详解】解:224(2)(2)x y x y x y -=+-.故答案为:(2)(2)x y x y +-.【点睛】本题考查了分解因式-公式法,熟练掌握平方差公式的结构特征是解题的关键.18.(2021·甘肃武威市·中考真题)因式分解:242m m -=___________.【答案】()22m m -【分析】先确定242m m -的公因式为2m ,再利用提公因式分解因式即可得到答案.【详解】解:()24222.m m m m -=- 故答案为:()22m m -【点睛】本题考查的是提公因式分解因式,掌握公因式的确定是解题的关键.19.(2021·湖北黄石市·中考真题)分解因式:322a a a -+=______.【答案】()21a a -.【分析】观察所给多项式有公因式a ,先提出公因式,剩余的三项可利用完全平方公式继续分解.【详解】解:原式()221a a a =-+, ()21a a =-,故答案为:()21a a -.【点睛】本题考查了用提公因式法和公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,有公因式要先提公因式,再考虑运用公式法分解,注意一定要分解到无法分解为止.20.(2021·四川泸州市·)分解因式:244m -=___________.【答案】()()411m m +-.【分析】先提取公因式4,再利用平方差公式分解即可.【详解】解:()()()224441411m m m m -=-=+-. 故答案为:()()411m m +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.(2021·四川乐山市·中考真题)因式分解:249a -=________.【答案】(23)(23)a a -+【分析】此多项式可直接采用平方差公式进行分解.【详解】解:22249(2)3a a -=-=(23)(23)a a -+.故答案为:(23)(23)a a -+.【点睛】本题考查了公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.22.(2021·江苏无锡市·中考真题)分解因式:328x x -=_________.【答案】2x (x +2)(x -2)【分析】先提取公因式2x ,再利用平方差公式分解即可得.【详解】解:原式=2x (x 2-4)=2x (x +2)(x -2);故答案为:2x (x +2)(x -2).【点睛】本题主要考查了因式分解,解题的关键是掌握提公因式法和平方差公式.23.(2021·广西来宾市·中考真题)分解因式:224a b -=______.【答案】()()22a b a b +-【分析】利用平方差公式进行因式分解即可.【详解】解:224a b -=()222a b -=()()22a b a b +-.故答案为()()22a b a b +-.【点睛】本题考查了因式分解.熟练掌握平方差公式是解题的关键.24.(2021·浙江绍兴市·中考真题)分解因式:221x x ++= ___________ .【答案】2(1)x +【分析】根据完全平方公式因式分解即可.【详解】解:221x x ++=2(1)x +故答案为:2(1)x +.【点睛】此题考查的是因式分解,掌握利用完全平方公式因式分解是解决此题的关键. 25.(2021·湖北恩施土家族苗族自治州·中考真题)分解因式:2a ax -=__________.【答案】()()11a x x +-【分析】利用提公因式及平方差公式进行因式分解即可.【详解】解:()()()22111a ax a x a x x -=-=+-;故答案为()()11a x x +-.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.26.(2021·山东菏泽市·中考真题)因式分解:322a a a -+-=______.【答案】2(1)a a --【分析】先提取公因式,后采用公式法分解即可【详解】∴322a a a -+-=-a 22)1(a a -+=2(1)a a --故答案为: 2(1)a a --.【点睛】本题考查了因式分解,熟记先提取公因式,后套用公式法分解因式是解题的关键. 27.(2021·湖北十堰市·中考真题)已知2,33xy x y =-=,则322321218x y x y xy -+=_________.【答案】36【分析】先把多项式因式分解,再代入求值,即可.【详解】∴2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点睛】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键. 28.(2021·湖南长沙市·中考真题)分解因式:22021x x -=______.【答案】(2021)x x -【分析】利用提公因式法进行因式分解即可得. 【详解】解:22021(2021)x x x x -=-, 故答案为:(2021)x x -. 【点睛】本题考查了利用提公因式法进行因式分解,熟练掌握提公因式法是解题关键. 29.(2021·湖南株洲市·中考真题)因式分解:264x xy -=__________. 【答案】()232x x y - 【分析】直接提出公因式2x 即可完成因式分解. 【详解】解:()264232x xy x x y -=-;故答案为:()232x x y -. 【点睛】本题考查了提公因式法进行因式分解,解决本题的关键是找到它们的公因式,提出公因式后再检查分解是否彻底即可,本题为基础题,考查了学生对基础知识的掌握与运用. 30.(2021·陕西中考真题)分解因式:3269x x x ++=______. 【答案】()23x x + 【分析】题目中每项都含有x ,提取公因式x ;先提取公因式,再用完全平方公式即可得出答案. 【详解】()322269(69)3x x x x x x x x ++=+++=故答案为()23x x +. 【点睛】本题考查了整式的因式分解,提公因式法和公式法,熟练掌握提公因式法分解因式、完全平方公式法分解因式是解题关键.31.(2021·湖南岳阳市·中考真题)因式分解:221x x ++=______. 【答案】()21x +. 【详解】解:()22211x x x ++=+.故答案为:()21x +. 【点睛】此题考查了运用公式法因式分解,熟练掌握完全平方公式是解答此题的关键. 32.(2021·湖南邵阳市·中考真题)因式分解:23xy x -=______. 【答案】()()x y x y x -+ 【分析】提公因式与平方差公式相结合解题. 【详解】解:2322()()()xy x x y x x y x y x -=-=-+, 故答案为:()()x y x y x -+. 【点睛】本题考查因式分解,涉及提公因式与平方差公式,是重要考点,难度较易,掌握相关是解题关键. 33.(2021·四川眉山市·中考真题)分解因式:3x y xy -=______. 【答案】()()11xy x x +- 【分析】先利用提公因式法提出公因式xy ,再利用平方差公式法进行变形即可. 【详解】解:()()()32111x y xy xy x xy x x -=-=+-;故答案为:()()11xy x x +-. 【点睛】本题考查了提公因式法和公式法(平方差公式)进行的因式分解的知识,解决本题的关键是牢记因式分解的特点和基本步骤,分解的结果是几个整式的积的形式,结果应分解到不能再分解为止,即分解要彻底,本题易错点是很多学生提公因式后以为分解就结束了,因此要对结果进行检查. 34.(2021·湖南衡阳市·中考真题)因式分解:239a ab -=__________. 【答案】()33a a b - 【分析】利用提取公因式法因式分解即可 【详解】解:()23933a ab a a b -=-故答案为: ()33a a b - 【点睛】本题考查提取公因式法因式分解,熟练掌握因式分解的方法是关键 35.(2021·北京中考真题)分解因式:2255x y -=______________. 【答案】()()5x y x y +- 【分析】根据提公因式法及平方差公式可直接进行求解. 【详解】解:()()()22225555x y x y x y x y -=-=+-;故答案为()()5x y x y +-. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键. 36.(2021·浙江温州市·中考真题)分解因式:2218m -=______. 【答案】()()233m m +- 【分析】原式提取2,再利用平方差公式分解即可. 【详解】 解:2218m -=2(m 2-9) =2(m +3)(m -3).故答案为:2(m +3)(m -3). 【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 37.(2021·黑龙江绥化市·中考真题)在实数范围内分解因式:22ab a -=_________.【答案】(a b b .【分析】利用平方差公式22()()a b a b a b -=+-分解因式得出即可. 【详解】 解:22ab a - =2(2)a b -=(a b b故答案为:(a b b .【点睛】此题主要考查了利用平方差公式22()()a b a b a b -=+-分解因式,熟练应用平方差公式是解题关键.三、解答题38.(2021·黑龙江大庆市·中考真题)先因式分解,再计算求值:328x x -,其中3x =. 【答案】()()222+-x x x ,30 【分析】先利用提公因式法和平方差公式进行因式分解,再代入x 的值即可. 【详解】解:()()()322824222x x x x x x x -=-=+-,当3x =时,原式235130=⨯⨯⨯=. 【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.39.(2021·黑龙江齐齐哈尔市·中考真题)(1)计算:()201 3.144cos4512π-⎛⎫-+-+︒- ⎪⎝⎭.(2)因式分解:3312xy xy -+.【答案】(1)6(2)3(2)(2)xy y y -+- 【分析】(1)先计算乘方、特殊三角函数值、绝对值的运算,再利用四则运算法则计算即可; (2)先提取公因式,再利用平方差公式分解因式即可. 【详解】(1)解:原式4141)2=++⨯-411=++6=+(2)解:原式23(4)xy y =--3(2)(2)xy y y =-+-【点睛】本题考查的是实数的运算、因式分解,熟练运用乘方公式、特殊三角函数值、绝对值、正确提取公因式等是解题的关键.40.(2021·四川凉山彝族自治州·中考真题)已知112,1x y x y-=-=,求22x y xy -的值. 【答案】-4 【分析】根据已知求出xy =-2,再将所求式子变形为()xy x y -,代入计算即可. 【详解】解:∴2x y -=,∴1121y x x y xy xy---===,∴2xy =-,∴()()22224xy x x y xy y ==---⨯=-.【点睛】本题考查了代数式求值,解题的关键是掌握分式的运算法则和因式分解的应用.41.(2021·重庆中考真题)如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,并把数M 分解成M A B =⨯的过程,称为“合分解”. 例如6092129=⨯,21和29的十位数字相同,个位数字之和为10,609∴是“合和数”.又如2341813=⨯,18和13的十位数相同,但个位数字之和不等于10,234∴不是“合和数”.(1)判断168,621是否是“合和数”?并说明理由;(2)把一个四位“合和数”M 进行“合分解”,即M A B =⨯.A 的各个数位数字之和与B 的各个数位数字之和的和记为()P M ;A 的各个数位数字之和与B 的各个数位数字之和的差的绝对值记为()Q M .令()()()P M G M Q M =,当()G M 能被4整除时,求出所有满足条件的M .【答案】(1)168不是“合和数”,621是“合和数,理由见解析;(2)M 有1224,1221,5624,5616. 【分析】(1)首先根据题目内容,理解“合和数”的定义:如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为10,则称数M 为“合和数”,再判断168,621是否是“合和数”;(2)首先根据题目内容,理解“合分解”的定义.引进未知数来表示A 个位及十位上的数,同时也可以用来表示B .然后整理出:()()()P M G M Q M =,根据能被4整除时,通过分类讨论,求出所有满足条件的M .【详解】 解:(1)168不是“合和数”,621是“合和数”. 1681214=⨯,2410+≠,168∴不是“合和数”,6212327=⨯,十位数字相同,且个位数字3710+=, 621∴是“合和数”.(2)设A 的十位数字为m ,个位数字为n (m ,n 为自然数,且39m ≤≤,19n ≤≤), 则10,1010A m n B m n =+=+-.∴()10210,()()(10)210P M m n m n m Q M m n m n n =+++-=+=+-+-=-. ∴()()21054()2105P M m m G M k Q M n n ++====--(k 是整数).39m ≤≤,8514m ∴≤+≤,k 是整数,58m ∴+=或512m +=,∴当58m +=时,5851m n +=⎧⎨-=⎩或5852m n +=⎧⎨-=⎩, 36341224M ∴=⨯=或3733=1221M =⨯.∴当512m +=时,51251m n +=⎧⎨-=⎩或51253m n +=⎧⎨-=⎩, 76745623M ∴=⨯=或78725616M =⨯=.综上,满足条件的M 有1224,1221,5624,5616. 【点睛】本题考查了新定义问题,解题的关键是:首先要理解题中给出的新定义和会操作题目中所涉及的过程,结合所学知识去解决问题,充分考察同学们自主学习和运用新知识的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学专题三数形结合思想复习题及答

1.(2020年四川自贡)伟伟从学校匀速回家,刚到家发觉当晚要完成的试卷不记得在学校,因此赶忙以更快的速度匀速沿原路返回学校.在这一情形中,速度v 和时刻t 的函数图象(不考虑图象端点情形)大致是( )
A B C D
2.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,现在小明的位置在( )
A .玩具店
B .文具店
C .文具店西边40米
D .玩具店东边-60米 3.已知实数a ,b 在数轴上的对应点依次在原点的右边和左边,那么( ) A .ab <b B .ab >b C .a +b >0 D .a -b >0
4.已知函数y =x 和y =x +2的图象如图Z3-3,则不等式x +2>x 的解集为( ) A .-2≤x <2 B .-2≤x ≤2 C .x <2 D .x >2
图Z3-3
5.如图Z3-4,直线l 1∥l 2,⊙O 与直线l 1和直线l 2分别相切于点A 和点B .点M 和点N 分别是直线l 1和直线l 2上的动点,MN 沿l 1和l 2平移.⊙O 的半径为1,∠1=60°.下列结论错误的是( )
图Z3-4
A .MN =4 33
B .若MN 与⊙O 相切,则AM =3
2
C .若∠MON =90°,则MN 与⊙O 相切
D .直线l 1和直线l 2的距离为2
6.如图Z3-5,已知四边形OABC 为正方形,边长为6,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且点D 的坐标为(2,0),点P 是OB 上的一个动点,则PD +P A 的最小值是( )
图Z3-5
A.210 B.10 C.4 D.6
7.(2020年天津)某电视台“走基层”栏目的一位记者乘汽车赴360 km外的农村采访,全程的前一部分为高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时刻x(单位:h)之间的关系如图Z3-6,则下列结论正确的是()
A.汽车在高速公路上的行驶速度为100 km/h
B.乡村公路总长为90 km
C.汽车在乡村公路上的行驶速度为60 km/h
D.该记者在动身后4.5 h到达采访地
图Z3-6
8.(2020年山东日照)二次函数y=ax2+bx+c(a≠0)的图象如图Z3-7,给出下列结论:①b2-4ac>0;②2a+b<0;③4a-2b+c=0;④a∶b∶c=-1∶2∶3.其中正确的是()
图Z3-7
A.①②B.②③C.③④D.①④
9.(2010年广东茂名)张师傅驾车运送荔枝到某地出售,汽车动身前油箱有50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(单位:升)与行驶时刻t(单位:时)之间的关系如图Z3-8.
请依照图象回答下列问题:
(1)汽车行驶________小时后加油,中途加油________升;
(2)求加油前油箱剩余油量y与行驶时刻t的函数关系式;
(3)已知加油前、后汽车都以70千米/时的速度匀速行驶,假如加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由?
图Z3-8
10.(2011年湖南邵阳)如图Z3-9,在平面直角坐标系xOy 中,已知点A ⎝⎛⎭⎫-9
4,0,点C (0,3),点B 是x 轴上的一点(位于点A 右侧),以AB 为直径的圆恰好通过点C .
(1)求∠ACB 的度数;
(2)已知抛物线y =ax 2+bx +3通过A ,B 两点,求抛物线的解析式;
(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形?若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.
图Z3-9
11.(2020年四川宜宾)如图Z3-10,抛物线y =x 2-2x +c 的顶点A 在直线l ∶y =x -5上. (1)求抛物线顶点A 的坐标;
(2)设抛物线与y 轴交于点B ,与x 轴交于点C ,D (点C 在点D 的左侧),试判定△ABD 的形状;
(3)在直线l 上是否存在一点P ,使以点P ,A ,B ,D 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.
图Z3-10
专题三 数形结合思想 【专题演练】
1.A 2.B 3.D 4.A 5.B 6.A 7.C 8.D
9.解:(1)3 31
(2)设y 与t 的函数关系式是y =kt +b (k ≠0),
依照题意,得⎩
⎪⎨⎪⎧
50=b ,
14=3k +b ,
解得k =-12,b =50.
因此,加油前油箱剩余油量y 与行驶时刻t 的函数关系式是y =-12t +50. (3)由图可知:汽车每小时用油(50-14)÷3=12(升),因此汽车要预备油(210÷70)×12=
36(升).
因为45升>36升,因此油箱中的油够用. 10.解:(1)如图D60,∠ACB =90°. (2)∵△AOC ∽△COB ,
图D60

AO CO =CO OB
. 又∵A ⎝⎛⎭⎫-9
4,0,C (0,3), ∴ AO =9
4
,OC =3.
∴解得OB =4.
∴B (4,0).把 A ,B 两点坐标代入解得:
y =-13x 2+7
12x +3.
(3)存在.
直线BC 的方程为3x +4y =12,设点D (x ,y ). ①若BD =OD ,则点D 在OB 的中垂线上,点D 的横坐标为2,纵坐标为3
2,即点D 1(2,
3
2
)为所求. ②若OB =BD =4,则y CO =BD BC ,x BO =CD BC ,得y =125,x =45,点D 2(45,12
5
)为所求.
11.解:(1)∵顶点A 的横坐标为x =--2
2
=1,且顶点A 在y =x -5上,
∴当x =1时,y =1-5=-4. ∴A (1,-4).
(2)△ABD 是直角三角形.
将A (1,-4)代入y =x 2-2x +c , 可得1-2+c =-4,∴c =-3. ∴y =x 2-2x -3.∴B (0,-3).
当y =0时,x 2-2x -3=0,x 1=-1,x 2=3, ∴C (-1,0),D (3,0).
∵BD 2=OB 2+OD 2=18,AB 2=(4-3)2+12=2,AD 2=(3-1)2+42=20, ∴BD 2+AB 2=AD 2. ∴∠ABD =90°,即△ABD 是直角三角形. (3)存在.
由题意知:直线y =x -5交y 轴于点E (0,-5),交x 轴于点F (5,0).∴OE =OF =5.又∵OB =OD =3,
∴△OEF 与△OBD 差不多上等腰直角三角形. ∴BD ∥l ,即P A ∥BD .
则构成平行四边形只能是P ADB 或P ABD ,如图D61,
图D61
过点P 作y 轴的垂线,过点A 作x 轴的垂线交过P 且平行于x 轴的直线于点G . 设P (x 1,x 1-5),则G (1,x 1-5).
则PG =||1-x 1,AG =||5-x 1-4=||1-x 1. P A =BD =3 2, 由勾股定理,得:
(1-x 1)2+(1-x 1)2=18, x 21-2x 1-8=0,x 1=-2或4. ∴P (-2,-7)或P (4,-1).
存在点P (-2,-7)或P (4,-1)使以点A ,B ,D ,P 为顶点的四边形是平行四边形.。

相关文档
最新文档