高考生物必备]物理力学压轴题集

合集下载

高考和自主招生物理力学模拟压轴题2

高考和自主招生物理力学模拟压轴题2

1、如图4.1(a)、(b ),在质量M =1kg 的木板上有质量m =0.1kg 的小雪橇。

雪橇上的马达牵引着一根绳子,使雪橇以速度v 0=0.1m/s 运动。

忽略桌面与木板之间的摩擦。

木板与雪橇之间的摩擦系数μ=0.02。

把住木板,起动马达。

当雪橇达到速度v 0时,放开木板。

在此瞬间,雪橇与木板端面的距离L =0.5m 。

绳子拴在(a )远处的桩子,(b )木板的端面上。

试描述两种情形下木板与雪橇的运动。

雪橇何时到达木板端面?mML μmML μ图4.1(a ) 图4.1(b )解:(a )在第一种情形中(如图4.1(a )),雪橇处于匀速运动状态。

雪橇与木板以不同的速度运动。

这样引起的最大摩擦力为mg ,它作用在木板上,产生的加速度Mmga μ=,直至木板达到雪橇的速度v 0为止。

加速时间为mgMv a v t μ000===5.1s在这段时间内,雪橇的位移为mgM v a v S μ2220200===0.255m 因此,雪橇离木板右端点的距离为0.5m -0.255m =0.245m雪橇不能达到木板的一端,因为这段时间以后,木板与雪橇以相同的速度v 0一起运动。

在木板加速期间,马达必须用力mg 牵引绳子,但以后马达不能施加力的作用,它只是卷绳子。

(b )在第二种情形中(如图 4.1(b )),木板与桌面之间无摩擦。

木板与雪橇形成一个孤立系统,可以用动量守恒定律。

当我们放开木板时,雪橇的动量为mv 0,释放后的木板具有速度v 2,它由下式决定: mv 0=M v 2+m (v 0+v 2)此式表明v 2=0,所以木板保持不动,雪橇以同一速度继续前进。

雪橇达到木板右端的时间为1.05.00==v L t =5 s 2、长L 的光滑平台固定在地面上,平台中间放有小物体A 和B ,两者彼此接触。

A 的表面是半径为R (R <<L )的半圆形轨道,轨道顶端距台面的高度为h 处有一小物体C ,A 、B 、C 的质量均为m 。

力学压轴选择题(全国甲卷和Ⅰ卷)-高考物理十年压轴真题与模拟(原卷版)

力学压轴选择题(全国甲卷和Ⅰ卷)-高考物理十年压轴真题与模拟(原卷版)

力学压轴选择题(全国甲卷和Ⅰ卷)高考物理力学压轴题是考查学生物理学科素养高低的试金石,表现为综合性强、求解难度大、对考生的综合分析能力和应用数学知识解决物理问题的能力要求高等特点。

一、命题范围1.万有引力与宇宙航行(压轴指数★★★)①行星冲日问题。

结合开普勒第二定律和万有引力定律解决。

②结合最近航天事业发展的最新动态,利用万有引力与宇宙航行的知识解决相关问题。

2、牛顿运动定律综合性题目(压轴指数★★★★)整体法和隔离法在牛顿第二定律中的应用,临界问题和瞬时性问题。

3、共点力平衡(压轴指数★★★)三力平衡的处理方法,除常规的合成法,正交分解法,还要注意一些特殊的方法,例如相似三角形法和正弦定理和余弦定理处理相关问题。

4、机械能守恒定律和能量守恒定律(压轴指数★★★★★)利用机械能守恒定律或动能定理、能量守恒定律处理力学综合类题目。

二、命题类型1.力学情境综合型。

物理情境选自生活生产情境或学习探究情境,物理力学情境综合型试题的物理模型有:斜面、板块、弹簧等模型。

研究对象包含两个或两个以上物体、物理过程复杂程度高。

已知条件情境化、隐秘化、需要仔细挖掘题目信息。

求解方法技巧性强、灵活性高、应用数学知识解决问题的能力要求高的特点。

命题点常包含:匀变速直线运动、圆周运动、抛体运动等。

命题常涉及运动学、力学、功能关系等多个物理规律的综合运用,有时也会与相关图像联系在一起。

2.单一物体多过程型、多物体同一过程型问题。

对单一物体多过程型问题,比较多过程的不同之处,利用数学语言列方程求解。

对于多物体同一过程型问题,要灵活选取研究对象,善于寻找相互联系。

选取研究对象,或采用隔离法,或采用整体法,或将隔离法与整体法交叉使用。

预测2023年高考物理压轴题重点要放在单个物体与弹簧模型结合的直线运动、圆周运动与抛体运动以及多物体与板块模型、运动图像相结合的直线运动问题上。

在复习备考中应注意以下几点:1.读懂题目情境,要注重审题,深究细琢,纵观全局重点推敲,挖掘并应用隐含条件,梳理解题思路、用数学语言表达物理过程。

2022高考物理复习冲刺压轴题精练力学部分专题8 动量守恒定律(力学部分)(解析版)

2022高考物理复习冲刺压轴题精练力学部分专题8 动量守恒定律(力学部分)(解析版)

2022高考物理复习冲刺压轴题精练力学部分专题8动量守恒定律一、单选题1.若采用下图中甲、乙两种实验装置来验证动量守恒定律(图中小球半径相同、质量均已知,且m A>m B,B、B´两点在同一水平线上),下列说法正确的是A.采用图甲所示的装置,必需测量OB、OM、OP和ON的距离B.采用图乙所示的装置,必需测量OB、B´N、B´P和B´M的距离C.采用图甲所示的装置,若m A•ON=m A•OP+m B•OM,则表明此碰撞动量守恒=,则表明此碰撞机械能也守恒D.2.如图所示,一质量为0.5kg的一块橡皮泥自距小车上表面1.25m高处由静止下落,恰好落入质量为2kg、速度为2.5m/s沿光滑水平地面运动的小车上,并与小车一起沿水平地面运动,取g=10m/s2,不计空气阻力,下列说法正确的是A.橡皮泥下落的时间为0.3sB.橡皮泥与小车一起在水平地面上运动的速度大小为3.5m/sC.橡皮泥落入小车的过程中,橡皮泥与小车组成的系统动量守恒D.整个过程中,橡皮泥与小车组成的系统损失的机械能为7.5J3.我国女子短道速滑队在2013年世锦赛上实现女子3000m接力三连冠.观察发现,“接棒”的运动员甲提前站在“交棒”的运动员乙前面,并且开始向前滑行,待乙追上甲时,乙猛推甲一把,使甲获得更大的速度向前冲出.在乙推甲的过程中,忽略运动员与冰面间在水平方向上的相互作用,则()A.甲对乙的冲量一定等于乙对甲的冲量B.甲、乙的动量变化一定大小相等方向相反C.甲的动能增加量一定等于乙的动能减少量D.甲对乙做多少负功,乙对甲就一定做多少正功4.一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为()A.v 0-v 2B.v 0+v 2C.21021m v v v m =-D.5.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑则()A.在以后的运动过程中,小球和槽的动量始终守恒B.在下滑过程中小球和槽之间的相互作用力始终不做功C.被弹簧反弹后,小球和槽都做速率不变的直线运动D.被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处二、多选题6.如图所示,水平面上固定着两根足够长的平行导槽,质量为2m 的U 形管恰好能在两导槽之间自由滑动,一质量为m 的小球沿水平方向,以初速度0v 从U 形管的一端射入,从另一端射出。

高中物理压轴题之力学(高中题型整理,突破提升,有答案)

高中物理压轴题之力学(高中题型整理,突破提升,有答案)

高中物理压轴题之力学(高中题型整理,突破提升,有答案)简介本篇文档汇总了高中物理力学部分的压轴题,旨在帮助学生突破提升。

以下是一些经典问题及其答案。

第一题问题:一个质量为2kg的物体在水平地面上,受到一个力120N的作用,加速度为多少?答案:根据牛顿第二定律,力等于质量乘以加速度,即 F = ma。

代入已知数据:120N = 2kg * a解得加速度 a = 60m/s²。

第二题问题:一个力为30N的物体在水平桌面上受到3N的摩擦力,求物体的加速度。

答案:首先,我们需要考虑摩擦力的方向。

根据题目描述,摩擦力的方向与物体运动的方向相反,所以摩擦力是阻碍运动的力。

根据牛顿第二定律,合力等于质量乘以加速度,即 F = ma。

考虑到摩擦力的影响,我们可以得到 F - f = ma,其中 F 是施在物体上的力,f 是摩擦力。

代入已知数据:30N - 3N = 3kg * a解得加速度 a = 9.0m/s²。

第三题问题:一个质量为10kg的物体处于自由下落状态,求它的重力加速度。

答案:根据牛顿第二定律,重力等于质量乘以重力加速度,即 F = mg。

根据题目的描述,物体处于自由下落状态,没有受到任何其他力的影响,所以重力就是唯一的力。

代入已知数据:F = 10kg * g解得重力加速度g ≈ 9.8m/s²。

......这里仅列举了几个例子,更多高中物理力学题目及其答案可以参考相关教材或习题集。

通过不断练习这些题目,你将能够更好地掌握物理力学知识,提升你的解题能力。

2024年高考物理压轴题

2024年高考物理压轴题

2024年高考物理压轴题一、在双缝干涉实验中,若增大双缝间距,同时保持光源和观察屏的位置不变,则干涉条纹的间距将如何变化?A. 增大B. 减小C. 不变D. 无法确定(答案:B)二、一质点以初速度v₀沿直线运动,先后经过A、B、C三点,已知AB段与BC段的距离相等,且质点在AB段的平均速度大小为3v₀/2,在BC段的平均速度大小为v₀/2,则质点在B 点的瞬时速度大小为?A. v₀B. (√3 + 1)v₀/2C. (3 + √3)v₀/4D. (3 - √3)v₀/4(答案:A,利用匀变速直线运动的中间时刻速度等于全程平均速度以及位移速度关系式求解)三、在电场中,一电荷q从A点移动到B点,电场力做功为W。

若将该电荷的电量增大为2q,再从A点移动到B点,则电场力做功为?A. W/2B. WC. 2WD. 4W(答案:C,电场力做功与电荷量的多少成正比)四、一均匀带电球体,其内部电场强度的大小与距离球心的距离r的关系是?A. 与r成正比B. 与r成反比C. 与r的平方成正比D. 在球内部,电场强度处处为零(答案:D,对于均匀带电球体,其内部电场强度处处为零,由高斯定理可证)五、在核反应过程中,质量数和电荷数守恒是基本规律。

下列哪个核反应方程是可能的?A. ²H + ³H →⁴He + n + 能量B. ²H + ²H →³H + p + 能量C. ²H + ²H →⁴He + 2p - 能量D. ³H + ³H →⁴He + ²H + 能量(答案:B,根据质量数和电荷数守恒判断)六、一弹簧振子在振动过程中,当其速度减小时,下列说法正确的是?A. 回复力增大B. 位移增大C. 加速度减小D. 动能增大(答案:A、B,弹簧振子速度减小时,正向平衡位置运动,回复力增大,位移增大,加速度增大,动能减小)七、在光电效应实验中,若入射光的频率增加,而光强保持不变,则单位时间内从金属表面逸出的光电子数将?A. 增加B. 减少C. 不变D. 无法确定(答案:B,光强不变意味着总的光子数不变,频率增加则单个光子能量增加,因此光子数减少,导致逸出的光电子数减少)八、在相对论中,关于时间和长度的变化,下列说法正确的是?A. 高速运动的物体,其内部的时间流逝会变慢B. 高速运动的物体,在其运动方向上测量得到的长度会变长C. 无论物体运动速度如何,时间和长度都是不变的D. 以上说法都不正确(答案:A,根据相对论的时间膨胀和长度收缩效应,高速运动的物体内部时间流逝会变慢,沿运动方向上的长度会变短)。

高中物理力学压轴题及解析

高中物理力学压轴题及解析

高中物理力学压轴题及解析高中物理力学是高中阶段物理课程的重要组成部分,压轴题往往考察学生对力学知识的综合运用能力。

本文将针对高中物理力学压轴题,给出详细的题目及解析,帮助同学们巩固力学知识,提高解题能力。

一、高中物理力学压轴题题目:一质量为m的小车,在水平地面上受到一恒力F作用,从静止开始加速运动。

已知小车所受阻力与速度成正比,比例系数为k。

求小车在力F作用下的加速度a与速度v的关系。

二、解析1.首先,根据题目描述,小车受到的合力F合= F - kv,其中F为恒力,kv为阻力。

2.根据牛顿第二定律,合力等于质量乘以加速度,即F合= ma。

3.将合力表达式代入牛顿第二定律,得到ma = F - kv。

4.整理得到加速度a的表达式:a = (F - kv) / m。

5.由于小车从静止开始加速,可以使用初速度为0的匀加速直线运动公式v = at,将加速度a代入,得到v = (F - kv)t / m。

6.进一步整理得到速度v与时间t的关系:v = (F/m)t - (k/m)t^2。

7.由于要求速度v与加速度a的关系,可以将v对a求导,得到dv/da = (F/m) - 2(k/m)t。

8.令dv/da = 0,求得极值点,即t = F / (2km)。

将此值代入v的表达式,得到v = F^2 / (4km)。

9.因此,小车在力F作用下的加速度a与速度v的关系为:a = F / m - 2k/m * v。

三、总结通过对本题的解析,我们可以发现,解决这类力学压轴题的关键在于熟练运用牛顿第二定律、运动学公式,以及掌握阻力与速度成正比的关系。

此外,同学们在解题过程中要注意合理运用数学知识,如求导、求极值等,以提高解题速度和准确度。

注意:本文所提供的题目及解析仅供参考,实际考试题目可能有所不同。

各高考物理压轴题精编附有祥解36道

各省市高考物理压轴题精编(附有祥解)1、如图所示,一质量为 M 长为I 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块A , m 〈 M 现以地面为参照系,给A 和B以大小相等、方向相反的初速度 (如图5),使A 开始向左运动、 开始向右运动,但最后 A 刚好没有滑离L 板。

以地面为参照系。

(1) 若已知A 和B 的初速度大小为v o ,求它们最后的速度的大小和 方向。

(2) 若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。

解法1:(1)AM m 、亠亠亠 解得: v v o , 方向向右 M m(2) A 在B 板的右端时初速度向左,而到达程中必经历向左作减速运动直到速度为零,B 板左端时的末速度向右,可见 A 在运动过 再向右作加速运动直到速度为 V 的两个阶段。

设l i 为A 开始运动到速度变为零过程中向左运动的路程,本题第(2)问的解法有很多种,上述解法 2只需运用三条独立方程即可解得结果,显然是比较简捷的解法。

2、如图所示,长木板 A 右边固定一个挡板,包括挡板在内的总质量为 光滑的水平面上,小木块 B 质量为M ,从A 的左端开始以初度。

设此速度为v , A 和B 的初速度的大小为 V o ,则由动量守恒可得:Mv 0 mv 0 (M m)v过程中向右运动的路程,L 为A 从开始运动到刚到达 B 的最左端的过程中 B 运动的路程,如 A 与B之间的滑动摩擦力为f ,则由功能关系可知: 1 2 Mv 2 2 图6所示。

设 对于 对于Afl l 12 fL mv 0 2 1 2 2mv o fl 21 2mv2由几何关系 (I 1 I 2) 由①、②、 ③、④、⑤式解得 解法2: 对木块A 和木板 fl 〔(M m)v 2 2由①③⑦式即可解得结果ml4MB 组成的系统,由能量守恒定律得:1 2 -(M m)v 2 ⑦2M m l11l4Ml iB 吕風化h ---------- 1---------------------- 尹ffl 5刚好没有滑离B 板,表示当A 滑到B 板的最左端时,A 、B 具有相同的速I 2为A 从速度为零增加到速度为 V 的1? _________n1 -------------- 1 1 1 1 1 1 111 - _ 1h1.5M ,静止在故在某一段时间里 B 运动方向是向左的条件是2V p 15g2V 0I 3 -⑧20g3、光滑水平面上放有如图所示的用绝缘材料料成的型滑板,(平面部分足够长)速度V o 在A 上滑动,滑到右端与挡板发生碰撞, 已知碰撞过程时间极短,碰后木块B 恰好滑到A 的左端停止,已知 B 与A 间的动摩擦因数为,B 在A 板上单程滑行长度为I ,求:…3v 0 (1) 若-,在B 与挡板碰撞后的运动过程中,摩擦力对木板A 做正功还是负160g功?做多少功?(2) 讨论A 和B 在整个运动过程中,是否有可能在某一段时间里运动方向是向左的, 如果不可能,说明理由;如果可能,求出发生这种情况的条件。

力学三大观点的综合应用(解析版)-2023年高考物理压轴题专项训练(新高考专用)

压轴题04力学三大观点的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一应用三大动力学观点创新解决经典模型问题 (2)热点题型二应用三大动力学观点解决多过程问题 (5)热点题型三借助碰撞、爆炸等模型综合考察能量观、动量观及运动观 (8)三.压轴题速练 (13)一,考向分析1.本专题是力学三大观点在力学中的综合应用,高考中本专题将作为计算题压轴题的形式命题。

2.熟练应用力学三大观点分析和解决综合问题。

3.用到的知识、规律和方法有:动力学观点(牛顿运动定律、运动学规律);动量观点(动量定理和动量守恒定律);能量观点(动能定理、机械能守恒定律、功能关系和能量守恒定律)。

5.本专题的核心问题与典型模型的表现形式(1)直线运动:水平面上的直线运动、斜面上的直线运动、传送带上的直线运动。

(2)圆周运动:绳模型圆周运动、杆模型圆周运动、拱形桥模型圆周运动。

(3)平抛运动:与斜面有关的平抛运动、与圆轨道有关的平抛运动。

6.本专题的常见过程与情境7.应对策略(1)力的观点解题:要认真分析运动状态的变化,关键是求出加速度。

(2)两大定理解题:应确定过程的初、末状态的动量(动能),分析并求出过程中的冲量(功)。

(3)过程中动量或机械能守恒:根据题意选择合适的初、末状态,列守恒关系式,一般这两个守恒定律多用于求某状态的速度(率)。

8.力学三大观点对比力学三大观点对应规律表达式动力学观点牛顿第二定律F 合=ma匀变速直线运动规律v =v 0+atx =v 0t +12at 2v 2-v 02=2ax 等能量观点动能定理W 合=ΔE k 机械能守恒定律E k1+E p1=E k2+E p2功能关系W G =-ΔE p 等能量守恒定律E 1=E 2动量观点动量定理I 合=p ′-p 动量守恒定律p 1+p 2=p 1′+p 2′9.选用原则(1)当物体受到恒力作用做匀变速直线运动(曲线运动某一方向可分解为匀变速直线运动),涉及时间与运动细节时,一般选用动力学方法解题.(2)当涉及功、能和位移时,一般选用动能定理、机械能守恒定律、功能关系或能量守恒定律解题,题目中出现相对位移(摩擦生热)时,应优先选用能量守恒定律.(3)不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别是对于打击类问题,因时间短且冲力随时间变化,应用动量定理求解.(4)对于碰撞、爆炸、反冲、地面光滑的板—块问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.二.题型及要领归纳热点题型一应用三大动力学观点创新解决经典模型问题【例1】(2022·全国乙卷·T25)如图(a ),一质量为m 的物块A 与轻质弹簧连接,静止在光滑水平面上:物块B 向A 运动,0=t 时与弹簧接触,到02t t =时与弹簧分离,第一次碰撞结束,A 、B 的v t -图像如图(b )所示。

物理力学压轴题集

1.质量为M 的平板车在光滑的水平地面上以速度v0向右做匀速直线运动,若将一个质量为m (M= 4m )的沙袋轻轻地放到平板车的右端,沙袋相对平板车滑动的最大距离等于车长的41,若将沙袋以水平向左的速度扔到平板车上,为了不使沙袋从车上滑出,沙袋的初速度最大是多少?解:设平板车长为L ,沙袋在车上受到的摩擦力为f 。

沙袋轻轻放到车上时,设最终车与沙袋的速度为v′,则()v m M Mv '+=0 =-fL ()2022121Mv v m M -'+ 又M= 4m 可得:258mv fL =设沙袋以水平向左的初速度扔到车上,显然沙袋的初速度越大,在车上滑行的距离越长,沙袋刚好不从车上落下时,相对与车滑行的距离为L ,其初速度为最大初速设为v ,车的最终速度设为v 终,以向右为坐标的正方向,有:()终v m M mv Mv +=-0 =-fL ()2202212121mv Mv v m M --+终又M= 4m2058mv fL =可得:v=v0(v=3v0舍去)车的最终速度设为v 终=053v 方向向左2在光滑的水平面上有一质量M=2kg 的木版A ,其右端挡板上固定一根轻质弹簧,在靠近木版左端的P 处有一大小忽略不计质量m=2kg 的滑块B 。

木版上Q 处的左侧粗糙,右侧光滑。

且PQ 间距离L=2m ,如图所示。

某时刻木版A 以υA=1m/s 的速度向左滑行,同时滑块B 以υB=5m/s 的速度向右滑行,当滑块B 与P 处相距L43时,二者刚好处于相对静止状态,若在二者其共同运动方向的前方有一障碍物,木块A 与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。

求B 与A 的粗糙面之间的动摩擦因数μ和滑块B 最终停在木板A 上的位置。

(g 取10m/s2)解: 设M.m 共同速度为v ,由动量守恒得 mvB-MV A=(m+M)v 代入数据得: v=2m/s对AB 组成得系统,由能量守恒4143umgL=21MV A2+21mvB2—21(M+m)V2代入数据得: u=0.6木板A 与障碍物发生碰后以原速度反弹,假设B 向右滑行,并与弹簧发生相互作用,当AB 再次处于相对静止时,共同速度为u由动量守恒得mv —Mv=(m+m)u 设B 相对A 的路程为s ,由能量守恒得umgs=(m+M)v2--( m+M)u2 代入数据得:s=32(m)由于s>41L ,所以B 滑过Q 点并与弹簧相互作用,然后相对A 向左滑动到Q 点左边,设离Q 点距离为s1 S1=s-41L=0.17(m)3.(15分)一轻质弹簧,两端连接两滑块A 和B ,已知mA=0.99kg , mB=3kg ,放在光滑水平桌面上,开始时弹簧处于原长。

2023年高考生物压轴题汇编大全(带答案)

2023年高考生物压轴题汇编大全(带答案)本文档汇编了2023年高考生物科目的压轴题,共计50道,并附带所有题目的详细解答和注释。

以下是其中的部分题目:选择题1. 某种鱼类体内含有一定数量的甲状腺素,那么下列哪些部位或器官会受到调节?A. 肝脏B. 肾脏C. 肠道D. 心脏答案:A、B、C解析:甲状腺素能够通过血液循环到达人体的各个器官组织,肝脏和肾脏具有清除体内废物和分解代谢产物的功能,而肠道中存在着极其丰富的各种代谢酶,所以这三个器官都会受到甲状腺激素的影响。

2. 在质体内,有一个大小为160S的大复合体:50S、40S各1个、30S各2个,其中40S和30S互为对称,50S为此复合体的骨架部分,这个复合物是什么?A. 核糖体B. 细胞色素C. 核磁共振结构D. 核孔复合物答案:A解析:根据题目描述,完整的核糖体结构由大量蛋白质和RNA组成,其中50S和30S就是大核糖体子单位和小核糖体子单位的主要成分之一,而40S则是小核糖体子单位另外一个主要组成部分,因此本题答案为A。

判断题1. 细胞核是一个完全隔离的空间。

答案:错误解析:细胞核是细胞内谷粒染色体所在位置,另外还有核仁、核膜等组成部分。

尽管核膜能够部分隔离细胞核和细胞质,但核孔使得核内和细胞质之间依然存在着物质交换。

2. 红细胞不具备RNA和核糖体。

答案:正确解析:红细胞正是因为缺乏细胞核和细胞器,才能够提供更大的表面积相对于体积,从而更高效地进行氧气和二氧化碳的转运。

因此本题答案为正确。

简答题1. 什么是DNA指纹图谱,它有什么应用?DNA指纹图谱是对DNA序列的独特性进行分析后,制成的基于几率的识别标记。

它具有极高的独特性和准确性,在医学鉴定、刑事侦查和亲属关系鉴定等方面具有重要应用。

2. RNA剪接是如何实现的?RNA剪接是细胞在转录过程中,通过移除内含子等组分,抑制细胞对无用信息的继续转录和翻译,从而在同一基因组中实现多种形式的基因表达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.质量为M 的平板车在光滑的水平地面上以速度v0向右做匀速直线运动,若将一个质量为m (M= 4m )的沙袋轻轻地放到平板车的右端,沙袋相对平板车滑动的最大距离等于车长的41,若将沙袋以水平向左的速度扔到平板车上,为了不使沙袋从车上滑出,沙袋的初速度最大是多少?解:设平板车长为L ,沙袋在车上受到的摩擦力为f 。

沙袋轻轻放到车上时,设最终车与沙袋的速度为v′,则()v m M Mv '+=0 =-fL ()2022121Mv vm M -'+又M= 4m 可得:258mv fL =设沙袋以水平向左的初速度扔到车上,显然沙袋的初速度越大,在车上滑行的距离越长,沙袋刚好不从车上落下时,相对与车滑行的距离为L ,其初速度为最大初速设为v ,车的最终速度设为v 终,以向右为坐标的正方向,有:()终v m M mv Mv +=-0 =-fL ()2202212121mv Mv v m M --+终又M= 4m2058mv fL =可得:v=v0(v=3v0舍去)车的最终速度设为v 终=053v 方向向左2在光滑的水平面上有一质量M=2kg 的木版A ,其右端挡板上固定一根轻质弹簧,在靠近木版左端的P 处有一大小忽略不计质量m=2kg 的滑块B 。

木版上Q 处的左侧粗糙,右侧光滑。

且PQ 间距离L=2m ,如图所示。

某时刻木版A 以υA=1m/s 的速度向左滑行,同时滑块B 以υB=5m/s 的速度向右滑行,当滑块B 与P 处相距L 43时,二者刚好处于相对静止状态,若在二者其共同运动方向的前方有一障碍物,木块A 与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。

求B 与A 的粗糙面之间的动摩擦因数μ和滑块B 最终停在木板A 上的位置。

(g 取10m/s2)解: 设M.m 共同速度为v ,由动量守恒得 mvB-MV A=(m+M)v 代入数据得: v=2m/s对AB 组成得系统,由能量守恒4143umgL=21MV A2+21mvB2—21(M+m)V2代入数据得: u=0.6木板A 与障碍物发生碰后以原速度反弹,假设B 向右滑行,并与弹簧发生相互作用,当AB 再次处于相对静止时,共同速度为u由动量守恒得mv —Mv=(m+m)u 设B 相对A 的路程为s ,由能量守恒得umgs=(m+M)v2--( m+M)u2 代入数据得:s=32(m)由于s>41L ,所以B 滑过Q 点并与弹簧相互作用,然后相对A 向左滑动到Q 点左边,设离Q 点距离为s1 S1=s-41L=0.17(m)3.(15分)一轻质弹簧,两端连接两滑块A 和B ,已知mA=0.99kg , mB=3kg ,放在光滑水平桌面上,开始时弹簧处于原长。

现滑块A 被水平飞来的质量为mc=10g ,速度为400m/s的子弹击中,且没有穿出,如图所示,试求:(1)子弹击中A 的瞬间A 和B 的速度 (2)以后运动过程中弹簧的最大弹性势能 (3)B 可获得的最大动能 解:(1)子弹击中滑块A 的过程中,子弹与滑块A 组成的系统动量守恒mCv =(mC+mA )vA400=+=v m m v m v AC C A(2)对子弹滑块A 、B 和弹簧组成的系统,A 、B 速度相等时弹性势能最大。

根据动量守恒定律和功能关系可得:vm m m v m B A C C )(0++=10=++=v m m m m v BA C C22)(21)(21v m m m v m m E B A C A A C P ++-+= =6 J(3)设B 动能最大时的速度为vB ′,A 的速度为vA ′,则'')()(BB A AC A A C v m v m m v m m ++=+2'2'221)(21)(21B B A A C A A C v m v m m v m m ++=+2)()(2'=+++=a B a c A C B v m m m m m v B 获得的最大动能6212'==B B KB v m E4.(16分)光滑水平面上放有如图14所示的用绝缘材料制成的L 形滑板(平面部分足够长),质量为4m .距滑板的A 壁为1L 距离的B 处放有一质量为m ,电量为+q 的大小不计的小物体,物体与板面的摩擦不计.整个装置置于场强为E 的匀强电场中,初始时刻,滑板与物体都静止.试问:(1)释放小物体,第一次与滑板A 壁碰前物体的速度1V 多大?(2)若物体与A 壁碰后相对水平面的速度大小为碰前速率的3/5,则物体在第二次跟A 碰撞之前,滑板相对于水平面的速度2V 和物体相对于水平面的速度3V 分别为多大?(3)物体从开始到第二次碰撞前,电场力做功为多大?(设碰撞经历时间极短且无能量损失) 解:(1)释放小物体,物体在电场力作用下水平向右运动,此时滑板静止不动.对于小物体,由动能定理mA B得:21121mVEqL=mE q LV112=(2)碰后小物体反弹,由动量守恒定律得:211453mVVmmV+-=⋅得mEqLVV11225252==之后滑板以2V做匀速运动,直到与物体第二次碰撞.从第一次碰撞到第二次碰撞时,物体与滑板位移相等,时间相等,平均速度相等123152253VVVV==+-得mEqLVV11325757==(3)电场力做功等于系统所增加的动能:222342121mVmVW⋅+=电得:1215131013EqLmVW==电5.(14分)如图,在光滑的水平面上有一质量为M的平木板正以速度v向右运动。

现把一质量为m的木块无初速地放到平木板的右端,由于木块与平木板间摩擦力的作用,平木板的速度将要发生变化。

为使平木板保持原有的速度不变,必须及时对平木板施加一向右的水平恒力。

当水平恒力作用一段时间后把它撤去时,木块恰能随平木板一起以速度v共同向右运动。

求:在上述过程中,水平恒力对平木板做的功。

解.设木块和平木板间的动摩擦因数为μ。

当木块无初速放上木板后,由于相对滑动,使木板受到向左的摩擦力,要使木板能保持匀速不变,水平恒力F的大小应满足:F=μmg……①而木块在滑动摩擦力的作用下,作匀加速运动,设历时t,将与木板速度相同。

则:mamg=μ又atv=所以:gvtμ=……②在这段时间内,木板的位移:gvvtSμ2==…………③所以,水平恒力对木板做的功为:2mvFSW==……④6.(16分)如图所示,光滑水平面上,质量为2m的小球B连接着轻质弹簧,处于静止;质量为m的小球A以初速度v0向右匀速运动,接着逐渐压缩弹簧并使B运动,过一段时间,A与弹簧分离。

(弹簧始终处于弹性限度以内)(1)在上述过程中,弹簧的最大弹性势能是多大;(2)若开始时在B球的右侧某位置固定一块挡板(图中未画出),在A 球与弹簧分离之前使B球与挡板发生碰撞,并在碰后立刻将挡板撤走。

设B球与固定挡板的碰撞时间极短,碰后B球的速度大小不变但方向相反。

试求出此后弹簧的弹性势能最大值的范围。

解.⑴当A球与弹簧接触以后,在弹力作用下减速运动,而B球在弹力作用下加速运动,弹簧势能增加,当A、B速度相同时,弹簧的势能最大。

FF/设A 、B 的共同速度为v ,弹簧的最大势能为E ,则A 、B 系统动量守恒:vm m mv )2(0+=由机械能守恒:E v m m mv ++=220)2(2121…②联立两式得:2031mv E = ……③⑵设B 球与挡板碰撞前瞬间的速度为vB ,此时A 的速度为vA 。

系统动量守恒:BA mv mv mv 20+=………④B 与挡板碰后,以vB 向左运动,压缩弹簧,当A 、B 速度相同(设为v 共)时,弹簧势能最大,为Em ,则:共mv mv mv B A 32=-……⑤m E mv mv +⨯=22032121共……⑥由④⑤两式得:340B v v v -=共 代入⑥式,化简得:]163)4([382020v v v mE B m +--=⑦而当弹簧恢复原长时相碰,vB 有最大值vBm ,则: mv0=mvA ′+2mvBm mv02/2=mvA ′2/2+2mvBm2/2 联立以上两式得:vBm =032v 即vB 的取值范围为:320v v B ≤<⑧结合⑦式可得:当vB =40v 时,Em 有最大值为:2021mv …⑨ 当vB =320v 时,Em 有最小值为:2271mv ⑩7将一个动力传感器连接到计算机上,我们就可以测量快速变化的力。

如图所示就是用这种方法测得的小滑块在半球形碗内的竖直平面内来回滑动时,对碗的压力随时间变化的曲线。

从这条曲线提供的信息,你能对小滑块本身及其运动做出哪些推论和判断?要求陈述得出这些推论和判断的论证过程. 解:由牛顿第二定律在平衡位置可建立方程:R vm mg F 20=-①------(2分)在最大偏角处可建立方程:0cos =-A A mg F θ②------(2分)其中A θ为最大偏角,FA 为小滑块运动至最大偏角时所受支持力,由机械能守恒得:)cos 1(2120A mgR mv θ-=③------(3分)由①②③式解得小滑块的质量和最大偏角分别为:g F F m A30+=④------(1分)AA A F F F 23cos 0+=θ⑤------(1分)由图线读得数可知,在t=0.1s 时,小滑块第一次运动到平衡位置,对碗的压力F0=1.6N ;在t=0.6s 时,小滑块第一次运动到最大偏角位置,对碗的压力FA=0.1N ;由④⑤式可得m=60g ,cos A θ=1/6. ------(2分)从以上分析可以得出以下判断:(1)小球的质量m=60g ;(2)由于摆幅很大,故小球在碗中来回滑动虽近似周期运动,T=2.0s ;但不是简谐运动。

------(2分) 8.(15分)如图所示,粗糙斜面与光滑水平面通过半径可忽略的光滑小圆弧平滑连接,斜面倾角α=370,A 、B 是两个质量均为 m=1㎏的小滑块(可视为质点),C 为左端附有胶泥的质量不计的薄板,D 为两端分别连接B 和C 的轻质弹簧。

当滑块A 置于斜面上且受到大小F=4N ,方向垂直斜面向下的恒力作用时,恰能向下匀速运动。

现撤去F ,让滑块A 从斜面上距斜面底端L=1m 处由静止下滑,若g 取10m/s2,sin370=0.6,cos370=0.8。

(1)求滑块A 到达斜面底端时的速度大小v1;(2)滑块A 与C 接触后粘连在一起,求此后两滑块和弹簧构成的系统在相互作用过程中,弹簧的最大弹性势能Ep 。

解.(1)滑块A 匀速下滑时,共受四力作用,如图4所示。

由平衡条件:1sin37mg N μ︒= ① (1分)1cos37N mg F=︒+ ② (1分)即: s i n 37(c o s 37m g m g F μ︒=︒+简化后得:sin37cos37mg mg F μ︒=︒+ , 代入数据得:0.5μ= (1分)撤去F 后,滑块A 受三力作用匀加速下滑,受力图见图5。

相关文档
最新文档