有导师学习神经网络分类识别

合集下载

智能控制

智能控制

1、智能控制: 即设计一个控制器(或系统),使之具有学习、抽象、推理、决策等功能,并能根据环境(包括被控对象或被控过程)信息的变化做出适应性反应,可以有各种人工智能的水平,从而实现由人来完成的任务。

2、智能控制由哪几部分组成?各自的特点是什么?①模糊控制(通过模拟人脑的思维方法设计控制器,可实现复杂系统的控制)②神经网络控制(从机理上对人脑生理系统进行简单结构的模拟,具有并行机制、模式识别、记忆和自学习能力的特点,能充分逼近任意复杂的非线性系统,能够学习与适应不确定系统的动态特性,有很强的鲁棒性和容错性)③遗传算法(可用于模糊控制规则的优化及神经网络参数及权值的学习)3、比较智能控制和传统控制的特点传统控制和智能控制的主要区别:①传统控制方法在处理复杂化和不确定性问题方面能力很低;智能控制在处理复杂性、不确定性方面能力较高。

智能控制系统的核心任务是控制具有复杂性和不确定性的系统,而控制的最有效途径就是采用仿人智能控制决策。

②传统控制是基于被控对象精确模型的控制方式;智能控制的核心是基于知识进行智能决策,采用灵活机动的决策方式迫使控制朝着期望的目标逼近。

传统控制和智能控制的统一:智能控制擅长解决非线性、时变等复杂控制问题,而传统控制适于解决线性、时不变等相对简单的控制问题。

智能控制的许多解决方案是在传统控制方案基础上的改进,因此,智能控制是对传统控制的扩充和发展,传统控制是智能控制的一个组成部分。

在这个意义上,传统控制和智能控制可以统一在智能控制的框架下,而不是被智能控制所取代。

智能控制研究对象的特点:(1)不确定性的模型 (2)高度的非线性 (3)复杂的任务要求智能控制的特点:(1)分层递阶的组织结构 (2)自学习能力 (3)自适应能力 (4)自组织能力(5)优化能力4、专家系统:是一类包含着知识和推理的智能计算机程序,其内部含有大量的某个领域的专家水平的知识和经验,具有解决专门问题的能力。

专家控制:是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。

人工神经网络基础与应用-幻灯片(1)

人工神经网络基础与应用-幻灯片(1)
24
4.4.2 根据连接方式和信息流向分类
反馈网络
y1 y2 ... y n 特点
仅在输出层到输入层存在反 馈,即每一个输入节点都有 可能接受来自外部的输入和 来自输出神经元的反馈,故 可用来存储某种模式序列。
应用
x 1 x 2 .... xn
神经认知机,动态时间序列 过程的神经网络建模
25
4.4.2 根据连接方式和信息流向分类
w ij : 从ui到xj的连接权值(注意其下标与方向);
s i : 外部输入信号;
y i : 神经元的输出
18
4.3.2 人工神经元的激励函数
阈值型 f 1 0
分段线性型
f
f max k
f
Neit10
Nei t0 Nei t0
Net i
0
0NietNie0 t
fNiet kNietNie0tNie0tNietNi1 et
典型网络
回归神经网络(RNN)
x 1 x 2 .... xn
27
第4.5节 人工神经网络的学习
连接权的确定方法: (1)根据具体要求,直接计算出来,如Hopfield网络作 优化计算时就属于这种情况。 (2)通过学习得到的,大多数人工神经网络都用这种方 法。
学习实质: 针对一组给定输入Xp (p=1,2,…, N ),通过学习使网络动态 改变权值,从而使其产生相应的期望输出Yd的过程。
树 突
细胞核 突

细胞膜 细胞体
轴 突
来自其 它细胞 轴突的 神经末 稍
神经末稍
11
4.2.1 生物神经元的结构
突触:是神经元之间的连接 接口。一个神经元,通过其 轴突的神经末梢,经突触与 另一个神经元的树突连接, 以实现信息的传递。

智能控制题目及解答

智能控制题目及解答

1. 神经网络的模型分类,分别画出网络图,简述其特点。

1)前向网络:神经网元分层排列,组成输入层,隐含层和输出层。

每一层的神经元只能接收前一层神经元的输入.输入模式经过各层的顺次变换后,得到输出层数输出。

个神经元之间不存在反馈.感知器和误差反向传播算法中使用的网络都属于这种模型.1).2)2)反馈网络:这种网路结构指的是只有输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈。

这种模式可用来存储某种模式序列,也可以动态时间序列系统的神经网络建模.3)相互结合型网络:属于网状结构,这种神经网络模型在任意两个神经元之间都可能存在连接.信号要在神经元之间反复往返传递,网络处在一种不断改变的状态之中。

从某个初态开始,经过若干次变化,才能达到某种平衡状态,根据网络结构和神经元的特性,还有可能进入周期震荡或混沌状态。

4)混合型网络:是层次型网络和网状结构网络的一种结合。

通过层内神经元的相互结合,可以实现同一层内的神经元的横向抑制或兴奋机制,这样可以限制每层内能同时动作的神经元数,或者把每层内的神经元分成若干组,让每组作为一个整体来动作. 2. 神经网络学习算法有几种,分别画出网络图,简述其特点。

1)有导师学习:所谓有导师学习就是在训练过程中,始终存在一个期望的网络输出。

期望输出和实际输出之间的距离作为误差度量并用于调整权值.1。

2)无导师学习:网络不存在一个期望的输出值,因而没有直接的误差信息,因此,为实现对网络训练,需建立一个间接的评价函数,一对网络的某种行为趋向作出评价. 3、简述神经网络泛化能力。

答:人工神经网络容许某些变化,如当输入矢量带有噪声时,即与样本输出矢量存在差异时,其神经网络的输出同样能够准确地呈现出应有的输出。

这种能力就成为泛化能力.4、单层BP 网络与多层神经网络学习算法的区别。

1)单层神经网络的Delta 学习算法是通过对目标函数∑==Npp E E1的极小来实现的,其中E 的极小是通过有序地对每一个样本数据的输出误差Ep 的极小化来得到。

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验

实验七基于神经网络的模式识别实验一、实验目的利用神经网络实现模式识别,并验证其性能。

掌握基于神经网络的模式识别方法。

二、实验原理1.神经网络神经网络是一种模仿生物神经系统的计算模型,它由大量的神经元节点相互连接而成。

在模式识别中,我们一般采用多层前向神经网络进行模式的训练和识别。

2.神经网络的训练过程神经网络的训练过程可以分为两步:前向传播和反向传播。

前向传播是指将输入样本通过网络的各个层传递到输出层,并计算输出结果。

反向传播是指根据输出结果和目标结果之间的误差,将误差反向传播到网络的各个层,并根据误差调整网络中的权值。

3.模式识别对于模式识别问题,我们首先需要将输入模式转化为特征向量,然后通过神经网络来训练这些特征向量,并将其与已知类别的模式进行比较,从而进行模式的识别。

三、实验步骤1.数据准备选择适当的模式识别数据集,例如手写数字识别的MNIST数据集,将其分为训练集和测试集。

2.特征提取对于每个输入模式,我们需要将其转化为一个特征向量。

可以使用各种特征提取方法,例如像素值,轮廓等。

3.神经网络设计设计合适的神经网络结构,包括输入层、隐藏层和输出层,并确定各层的神经元数目。

4.神经网络训练使用训练集对神经网络进行训练,包括前向传播和反向传播过程。

可以使用各种优化算法,例如梯度下降法。

5.模式识别使用测试集对训练好的神经网络进行测试和验证,计算识别的准确率和性能指标。

6.性能评估根据得到的结果,评估神经网络的性能,并分析可能的改进方法。

四、实验结果通过实验我们可以得到神经网络模式识别的准确率和性能指标,例如精确度、召回率和F1-score等。

五、实验总结在本次实验中,我们利用神经网络实现了模式识别,并验证了其性能。

通过实验,我们可以掌握基于神经网络的模式识别方法,了解神经网络的训练和识别过程,以及模式识别中的特征提取方法。

实验结果表明,神经网络在模式识别问题中具有较好的性能,并且可以根据需要进行改进和优化。

神经网络的分类方法

神经网络的分类方法

神经网络的分类方法
神经网络的分类方法主要有以下几种:
1.前馈神经网络(Feedforward Neural Network):也叫全连接神经网络,网络中的神经元按照一定的顺序层层连接,信号只能从输入层流入隐藏层,从隐藏层流入输出层,没有反馈。

2.循环神经网络(Recurrent Neural Network):网络中的神经元可以与自身或前面的神经元相连,实现对时间序列数据的建模和处理。

3.自编码器神经网络(Autoencoder Neural Network):用于无监督学习的一种神经网络,通过让网络尽可能地还原输入数据,来提取输入数据最重要的特征。

4.卷积神经网络(Convolutional Neural Network):主要用于图像处理、语音识别等方面,通过卷积和池化操作提取图像中的特征。

5.深度置信网络(Deep Belief Network):通过堆叠多个自编码器来构建的一种深度神经网络,用于无监督学习和特征提取。

6.长短时记忆网络(Long Short-Term Memory):一种特殊的循环神经网络,通过门控机制来解决长期依赖问题,广泛应用于语音识别、机器翻译等领域。

7.递归神经网络(Recursive Neural Network):一种特殊的循环神经网络,用于处理树形结构和序列数据,常用于自然语言处理和计算机视觉等领域。

神经网络基本理论d

神经网络基本理论d

5
神经网络简介
3 复兴期(1982-1986) 1982年,物理学家Hoppield提出了Hoppield神经网络模型, 该模型通过引入能量函数,实现了问题优化求解,1984年 他用此模型成功地解决了旅行商路径优化问题(TSP)。 在1986年,在Rumelhart和McCelland等出版《Parallel Distributed Processing》一书,提出了一种著名的多层 神经网络模型,即BP网络。该网络是迄今为止应用最普遍 的神经网络。
反馈网络:从输出层到输入层有反馈, 每一个神经元同时接收外来输入和来自其 它神经元的反馈输入,其中包括神经元输 出信号引回自身输入的自环反馈。
混合型网络:前向网络的同一层神经 元之间有互联的网络。
23
神经网络的构成和分类
(2)从激发函数的类型上划分 高斯基函数神经网络、小波基函数神经网络、样条基函数神经网络等等 (3)从网络的学习方式上划分 ①有导师学习神经网络 为神经网络提供样本数据,对网络进行训练,使网络的输入输出关系逼 近样本数据的输入输出关系。 ②无导师学习神经网络 不为神经网络提供样本数据,学习过程中网络自动将输入数据的特征提 取出来。 (4)从学习算法上来划分: 基于BP算法的网络、基于Hebb算法的网络、基于竞争式学习算法的网络、 基于遗传算法的网络。
11
神经网络简介
神经元具有如下功能:
(1) 兴奋与抑制:如果传入神经元的冲动经整和后使细胞膜
电位升高,超过动作电位的阈值时即为兴奋状态,产生神 经冲动,由轴突经神经末梢传出。如果传入神经元的冲动 经整和后使细胞膜电位降低,低于动作电位的阈值时即为 抑制状态,不产生神经冲动。
(2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作

智能控制

智能控制

第一章复杂系统的特点在传统的控制系统中,控制的任务要求输出为定值,或者要求输出量跟随期望的值变化,因此控制任务比较单一。

而对于复杂的控制任务:如:智能机器人系统、复杂工业过程控制系统、计算机集成制造系统、航天航空控制系统、社会经济管理系统、环境及能源系统等,传统的控制理论都无能为力。

传统控制理论的局限性1.传统的控制理论建立在精确的数学模型基础上——用微分或差分方程来描述。

不能反映人工智能过程:推理、分析、学习。

丢失许多有用的信息2.不能适应大的系统参数和结构的变化自适应控制和自校正控制——通过对系统某些重要参数的估计以克服小的、变化较慢的参数不确定性和干扰。

鲁棒控制——在参数或频率响应处于允许集合内,保证被控系统的稳定。

注:自适应控制鲁棒控制不能克服数学模型严重的不确定性和工作点剧烈的变化。

3.传统的控制系统输入信息模式单一通常处理较简单的物理量:电量(电压、电流、阻抗);机械量(位移、速度、加速度)复杂系统要考虑:视觉、听觉、触觉信号,包括图形、文字、语言、声音等。

智能定义(Albus):按系统的一般行为特性,指在不确定环境中作出合适动作的能力是自动控制(Au tomati c Control)和人工智能(A rtifi cial Intelligen ce)的交集和运筹学(OR)模糊控制与传统控制的区别:传统控制是从被控制对象的数学模型上考虑进行控制;模糊控制是从人类智能活动的角度和基础上去考虑实施控制。

模仿人的控制经验而不是依赖控制对象的模型智能控制的几个重要分支:一、专家系统和专家控制二、模糊控制三、神经网络控制四、学习控制智能控制系统的结构1. 定义a. 实现某种控制任务的智能系统。

智能系统是具备一定智能行为的系统。

若对于一个问题的激励输入,系统具备一定的智能行为,能够产生合适的求解问题的响应。

举例:智能洗衣机b.(Saridis的定义)通过驱动自主智能机来实现其目标而无需操作人员参与的系统举例:智能机器人智能控制系统的特点一混合控制过程,数学模型和非数学广义模型表示;适用于含有复杂性、不完全性、模糊性、不确定性和不存在已知算法的生产过程。

人工神经元网络介绍

人工神经元网络介绍
人工神经网络的概念:
人工神经网络 (artificial neural network, ANN)是模拟人脑细胞的分布式 工作特点和自组织功能,且能实现并行处理、自学习和非线性映射等 能力的一种系统模型。神经网络系统实质上是由大量的,同时也是很 简单的处理单元广泛地互相连接而形成的复杂网络系统。它不是人脑 神经系统的真实写照,而是对其做出的简化抽象和模拟。
假设3:空间整合特性和阈值特性
神 经 元 的 人 工 模 型
作为ANN的基本处理单元,必须对全部输入信号进行整 合,以确定各类输入的作用总效果,图(c)表示组合输 人信号的“总和值”,相应于生物神经元的膜电位。 神经元激活与否取决于某一阈值电平,即只有当其输 入总和超过阈值时, 神经元才被激活而发放脉冲, 否 则神经元不会产生输出信号。
活状态之间的关系,最常用的转移函数有4
种形式。
常用的神经元数学模型:
(1)阈值型(如图a所示)
f (Neti )
1 Neti 0 0 Neti 0
(2) sigmoid函数型(如图b所示)
f (Neti )
1
Neti
1e T
(3) 分段线性型(如图c所示)
f
( Neti
)
第三章 人工神经元网络
专业:电路与系统 姓名:程兴宏 学号:201021005
3.1 引言
模糊逻辑控制的现状:
模糊逻辑控制解决了人类智能行为语言的描述和推理问题,尤其是一 些不确定性语言的描述和推理问题,从而在机器模拟人脑的感知和推 理等智能行为方面迈出了重大的一步。然而在处理数值数据和自学习 能力等方面还远没有达到人脑的境界。
x1
wi1
ui
的数学抽象和结构、功能
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)确定隐b含1层1与b输1出2层 间权值b和1Q阈值s0.p8r3e2a6d
(4)输出层神经元输出计算
ai expC(pi 2bi)
Wt
ni
LW
Q
ai
2 ,1
a
i j
j 1
yi purel(inni)
GRNN网络函数命令 net = newgrnn (P,T,spread) sim_grnn = sim (net,p_test)
采集到150组不同类型鸢尾花的4种属性,萼片长度、萼片宽度、花瓣长度和花瓣宽度,样本编号与4种 属性的关系如图所示,其中1-50为Setosa,51-100为Versicolour,101-150为Virginica。从图中大致可以看出, 花瓣长度、花瓣宽度与鸢尾花类型间有较好的线性关系,而萼片长度、萼片宽度与鸢尾花类型间呈现出非 线性的关系。
20
PR为输入变量的最小及最大值构成的矩阵;S为竞争层神经元个数;KLR为权值的学习速率(默认为 0.01);CLR为阈值的学习速率(默认为0.001);net为创建好的竞争网络。
SOFM神经网络
由输入层和自组织特征映射层(竞争层)组成,CNN的竞争层的各个神经元以相互竞争的形式来赢得对 输入模式的响应,最终只有一个神经元赢得胜利,并使与该获胜神经元相关的各连接权值和阈值向着更有 利于其竞争的方向发展,而其他神经元对应的权值和阈值保持不变;而SOFM的邻近范围内的权值和阈值 都进行调整,很大程度改善了网络的学习和泛化能力。
(1)确定隐含层神经元径向基函数中心
PNN的学习算法
p11
P
p21
pR1
p12 p1Q
p22
p2Q
pR2
PRQ
t11 t12 t1Q
T
t 21
t22
t
2Q
t S 1
tS 2
t
SQ
R为输入变量的维数,S为输出变量的维数;Q为训练集样本数
C P'
(2)确定隐含层神经元阈值
2、概率神经网络概述(PNN) 与GRNN类似,由输入层、隐含层和输出层组成。与GRNN不同的是,PNN的输出层采用竞争输出代替线
性输出,各神经元只依据Parzen方法来求和估计各类的概率,从而竞争输入模式的响应机会,最后仅有一个 神经元竞争获胜,获胜的神经元即表示对输入模式的分类。
隐含层空间维数 - 网络逼近精度 - 网络复杂度
实例 植物的分类与识别是植物学研究和农林业生产经营中的重要基础工作,对于区分植物种类,探索植物 间的亲缘关系、阐明植物系统的进化规律具有重要意义。目前常用的植物种类鉴别方法是利用分类检索表 进行鉴定,但该方法花费时间较长,需要投入大量的财力物力。 叶片是植物的重要组成部分,叶子的外轮廓是其主要形态特征。在提取叶子形态特征的基础上,利用计 算机进行辅助分类与识别成为当前的主要研究方向和研究热点。
无导师学习神经网络的分类 — 矿井突水水源判别
概念 无导师学习神经网络在学习过程中无需知道期望的输出。其与真实人脑中的神经网络类似,可以通过不 断的观察、分析与比较,自动揭示样本中的内在规律与本质,从而可以对具有近似特征(属性)的样本进 行准确地分类和识别。 包括两种网络:
竞争神经网络和自组织特征映射神经网络
竞争神经网络函数命令 net = newsom(P,[D1,D2,…],TFCN,DFCN,STEPS,IN)
sim_sofm = sim (net,p_test)
P 为 网 络 输 入 向 量 , Di 为 网 络 第 i 层 的 维 数 ( 默 认 为 [5 8] ) ; TFCN 为 网 络 的 拓 扑 函 数 ( 默 认 为 “hextop”);DFCN为网络的距离函数(默认为“linkdist”);STEPS为邻近距离递减到1的步数(默认为 100);IN为初始的邻近距离(默认为3);net为创建好的竞争网络。
有导师学习神经网络分类识别
2020/11/26
1
1.基础理论
1. GRNN的结构 GRNN由输入层、隐含层和输出层组成。 输入层:将样本送入隐含层,不参与运算; 隐含层:神经元个数等于训练集样本数,权值为欧式距离;传递函数为径向基函数; 输出层:线性输出层,其权函数为规范化点积权函数。
GRNN的学习算法 (1)确定隐含层神经元径向基函数中心
p11
P
p21
pR1
p12 p1Q
p22
p2Q
pR2
PRQ
t11 t12 t1Q
T
t 21
t22
t
2Q
t S 1
tS 2
t
SQ
R为输入变量的维数,S为输出变量的维数;Q为训练集样本数
C P'
(2)确定隐含层神经元阈值
其中,
spbre1ad 为[径b向1基1 ,b 函1数2 ,的 扩展,b速1Q 度]。'
竞争网络 由输入层和竞争层组成,输入层只负责数据的传递,竞争层的各个神经元以相互竞争的形式来赢得对输
入模式的响应,最终只有一个神经元赢得胜利,并使与该获胜神经元相关的各连接权值和阈值向着更有利 于其竞争的方向发展,而其他神经元对应的权值和阈值保持不变。
仅仅有输入信息,无需输出信息
竞争神经网络函数命令 net = newc (PR,S,KLR,CLR) sim_compet = sim (net,p_test)
实例
采集39个水源样本,分别来自于4个主要含水层,二灰和奥陶纪含水层、八灰含水层、顶板砂含水层和 第四系含水层。以每个水源样本中的离子Na、K、Ca、Mg、Cl、硫酸根和次氯酸根离子的含量作为判别因 素,试利用CNN和SOFM分别建立判别模型,并对模型的性能进行综合评价。
谢谢!
2020/11/26
(1) 利用GRNN和PNN分别建立鸢尾花种类识别模型,并对模型性能进行评价; (2) 利用GRNN和PNN分别建立各个属性集属性组合与鸢尾花种类间的识别模型,比较模型的性能及运算时 间。
产生训练集/测试集
解题思路与步骤 创建GRNN
仿真测试 试集预测类别与真实类别间的误差,可以对模型的泛化能力进行评价。
其中,
spbre1ad 为[径b向1基1 ,b 函1数2 ,的 扩展,b速1Q 度]。'
(3)确定隐b含1层1与b输1出2层 间权值b和1Q阈值s0.p8r3e2a6d
(4)输出层神经元输出计算
ai expC(pi 2bi)
Wt
ni LW2,1ai
yi comp(enti)
PNN网络函数命令 net = newpnn (P,T,spread) sim_grnn = sim (net,p_test)
相关文档
最新文档