3D打印材料的发展及其制备现状

合集下载

3D打印技术的现状和发展趋势

3D打印技术的现状和发展趋势

3D打印技术的现状和发展趋势正文:一、3D打印技术的现状3D打印技术是指通过数字化制造技术,将扫描或设计的3D模型数据,利用3D打印机直接切割压缩机床制造而成的物体,并逐层逐层逐渐增加熔化的塑料、金属粉末等原料来形成物体。

目前,3D打印技术的应用范围越来越广泛,主要包括以下几个方面:1.工业制造领域:3D打印技术可以快速制造出零件、模型等,可以节省更多的成本和时间。

2.医疗领域:3D打印技术可以快速制造出人体模型或者人工植入物,大大提高医学效率和成功率。

3.智能科技领域:3D打印技术可以直接制造出智能工具、装置和机器人等,实现智能化和自动化操作。

二、3D打印技术发展趋势1. 宣传力度将会加大随着3D打印技术应用领域的不断拓宽,未来3D打印技术的宣传力度将会越来越大。

因为3D打印技术在医疗、体育、建筑等方面的应用已经日益成熟,人们对于技术的兴趣也越来越高。

2. 材料研究将会更多元化随着3D打印技术的普及和应用,更多的材料研究会呈现多元化的趋势。

3D打印技术可以方便快捷地制造高质量的物品,比如金属、塑料和陶瓷等。

未来,随着材料研究的不断深入,更多的新材料将会被开发出来,供3D打印技术使用。

3. 软件工具将会变得更加强大随着3D打印技术不断的发展,软件工具也将变得更加强大。

3D打印的工程师,为了开发新的打印技术或材料,需要一些能够处理大量信息的软件工具,以确保受到良好的支持并提高他们的工作效率。

4. 3D打印技术将会在更多领域得到广泛应用3D打印技术作为一项高科技技术,其应用领域也将越来越广泛。

未来,3D打印技术将在汽车制造、医疗、建筑、航空航天、交通运输等多个领域实现广泛应用,带来高效、低成本、高效率的制造方式。

结论:随着技术的发展,3D打印技术的应用范围越来越广泛。

未来,3D打印技术将成为一项更加普及且人们所普遍使用的技术,届时3D打印技术将为人们带来更多美好的生活和发展空间。

3D打印技术的现状和关键技术分析

3D打印技术的现状和关键技术分析

3D打印技术的现状和关键技术分析3D打印技术是一种快速成型技术,它是一种通过逐层堆叠材料来制作物体的技术。

最初,3D打印技术被用于制造原型,但现在已经广泛应用于各种领域,包括医疗、航天、汽车和消费品制造等。

本文将通过对3D打印技术的现状和关键技术进行分析,探讨3D打印技术的发展趋势和应用前景。

一、3D打印技术的现状1. 发展历程3D打印技术最早可以追溯到20世纪80年代,当时美国麻省理工学院的Charles Hull 发明了第一台3D打印机,并且于1986年申请了第一项3D打印技术的专利。

随后,3D打印技术逐渐向各个领域渗透,不断发展和完善,取得了显著的进展。

目前,全球各种类型的3D打印设备和材料已经不断涌现,3D打印技术已经进入了成熟阶段。

2. 应用领域3D打印技术的应用领域非常广泛,包括医疗、航空航天、汽车、电子产品和消费品制造等。

在医疗领域,3D打印技术被用于制造高精度的人工关节、牙齿和器官模型,为医生提供更精准的手术方案。

在航空航天领域,3D打印技术被用于制造轻量化的航空部件和复杂结构的发动机部件,提高了航空器的性能。

在汽车制造领域,3D打印技术被用于制造汽车零部件和定制化的汽车配件,提高了汽车的安全性和性能。

在消费品制造领域,3D打印技术被用于制造个性化的饰品、家具和玩具,满足了消费者对个性化产品的需求。

3. 发展趋势随着3D打印技术的不断发展,未来它将在更多领域得到应用。

随着3D打印设备的不断升级和成本的不断降低,3D打印技术将逐渐普及,成为工业生产的主流技术。

随着3D打印材料的不断改进和多样化,将能够制造更多种类的产品,包括金属制品、有机材料和复合材料。

随着3D打印技术的结构优化和工艺改进,将能够制造更大尺寸的产品,包括建筑结构、桥梁和飞机机翼等。

二、关键技术分析1. 打印设备3D打印设备是3D打印技术的核心部件,主要包括打印头、打印平台和控制系统。

打印头是用于堆叠材料的部件,可以根据产品的设计要求选择不同的打印头,以打印出不同材料的产品。

国内外金属3D打印材料现状与发展

国内外金属3D打印材料现状与发展

3、应用领域

3D打印金属材料在航空航天、汽车制造、医疗等领域得到广泛应用。例如, 在航空航天领域,3D打印金属零件可有效降低制造成本和提高制造效率。在医疗 领域,3D打印金属材料可用于制造定制的医疗器械,如定制的钛合金假肢。
三、关键技术
1、材料改性
为了提高3D打印金属材料的性能,需要进行材料改性研究。例如,通过添加 合金元素对材料进行微合金化处理,以提高其力学性能和耐腐蚀性。
谢谢观看
四、金属3D打印工艺的特点和应 用
金属3D打印工艺的特点在于其成型原理和打印流程。金属粉末或金属丝在激 光或其他能源的作用下熔化,然后逐层堆积形成三维实体。这种工艺可以实现高 精度、高复杂度的制造,同时具有快速制造和个性化定制的优势。
在实际应用中,金属3D打印工艺被广泛应用于航空航天、汽车制造、医疗等 领域。例如,在航空航天领域,金属3D打印技术可以制造出高性能的零部件和发 动机,从而提高航空器的性能和安全性;在汽车制造领域,金属3D打印技术可以 用于制造轻量化零部件和复杂结构件,从而提高汽车的性能和燃油效率;在医疗 领域,金属3D打印技术可以用于制造个性化的人体植入物和医疗器械,从而提高 医疗效果和患者的生活质量。
一、金属3D打印材料的基本概念、 特点和应用
金属3D打印是一种快速成型的制造技术,它通过层层叠加的方式将金属材料 逐层打印成具有特定形状和结构的物体。这种技术具有制造复杂、灵活性强、生 产周期短等优点,被广泛应用于航空航天、汽车制造、医疗等领域。
二、国内外金属3D打印材料的现 状
目前,国内外在金属3D打印材料领域的研究已经取得了一定的成果。钛合金、 铝合金、不锈钢等金属材料已经被广泛应用于金属3D打印。在市场前景方面,随 着金属3D打印技术的不断发展和成本的逐渐降低,其应用领域将进一步扩大,市 场规模也将持续增长。

3D打印技术的现状与未来发展

3D打印技术的现状与未来发展

3D打印技术的现状与未来发展随着科技的不断进步,3D打印技术越来越受到人们的关注。

3D打印技术可以更加快捷和灵活地生产各种产品,并且在未来的发展中也有着广阔的应用前景。

本文将讨论3D打印技术的现状和未来发展趋势。

一、3D打印技术的现状1、技术原理3D打印技术是一种智能制造技术,是通过计算机将数字化模型转化为具体实物,其工作原理就是通过逐层生长制造构件。

一个3D打印器由液体材料、固体材料、纤维材料和粉末材料等多种材料组成。

3D打印技术的核心是制造构件,构件形态可以通过计算机仿真实现。

在打印构件时,3D打印器将材料按照层次一次一次地堆叠起来,逐层生长打印成型。

因此,有了数字化模型,3D打印技术可以快速、精确地制造出具有各种形状和构型的物品。

2、应用领域3D打印技术已经被广泛应用在医疗、航空、汽车、建筑等领域。

例如,在医疗领域,3D打印技术可以帮助医生更加精确地进行手术,为残疾人提供定制化协助器具,甚至可以为患者生产仿制品。

在航空领域,3D打印技术可以更加快速和精确地生产轻量化部件,减少航空器的重量和增加能效。

在汽车领域,3D打印技术可以通过打印汽车部件,为汽车的制造和改装提供诸多便利。

在建筑领域,3D打印技术可以快速地生产建筑元件,提高建筑施工效率。

二、3D打印技术的未来发展趋势1、应用规模更加广泛随着3D打印技术的发展,其在医疗、教育、文化艺术、消费品、制造业等领域的应用将会越来越广泛。

未来,3D打印技术不仅可以用于生产各种形状、构型的物品,还可以通过多材料多学科交叉融合,打印出对环境、能源以及全球化等方面有纵深研究和贡献的高端产品。

3D打印的规模会越来越大,将会改变传统的生产制造方式,进一步提高生产效率和企业的经济效益。

2、材料与工艺的不断更新目前,3D打印材料主要以ABS、PLA、Nylon、PETG、TPU等塑料为主,而金属材料主要以钛合金、不锈钢、铝合金、镍合金等。

未来,传感器、光电、电黑色材料等新材料的研制将进一步提升3D打印的质量和精度。

3D打印技术的现状与未来发展趋势

3D打印技术的现状与未来发展趋势

3D打印技术的现状与未来发展趋势3D打印技术是一种由计算机控制的逐层堆积物质来创建实体物品的先进制造技术。

这种技术的应用范围十分广泛,从医学、研究、生产、设计到个人娱乐和自助维修等领域均有所涉足。

如今,3D打印技术在不断地发展与突破,本文主要分析其现状与未来发展趋势。

一、3D打印技术发展的现状现在的3D打印技术已经进入了一个全新的时代。

传统的3D打印方法主要有以下几种:1.热塑性制造(FDM)。

FDM是最常见的3D打印技术。

通过热塑性材料的熔融和逐层堆叠,形成三维产品。

FDM 3D打印过程简单,价格低廉,适合家庭、教育、个人创意实现等领域。

2.激光固化(SLA)。

激光固化是在一个坐标轴上利用光线照射重合的区域,使树脂附着并实现固化。

物体制成可以在树脂中自由形成。

能够制造复杂的、内部细节丰富的产品,但制造速度慢,成本高。

3.粉末复合(SLS)。

SLS技术需要使用粉末材料制成原形模型,然后利用激光扫描,经过热熔不断附着形成实体。

SLS技术因为用材相对较广,制作出来的成品非常灵活,可以做到精细的物件。

除此之外,3D打印还可以应用到较高的可视化水平和高精度的材料开发。

一些模具、高复杂度的建筑和大琴等都离不开3D打印技术。

比如医疗方面,在手术之前,在3D打印技术的帮助下,医生可以先打印一个复刻体进行测试,以提高手术的效率,减小手术的风险。

在航空、军工、能源等行业,3D打印技术可以减少零件的制作成本和时间,并可以制造出更耐用的部件。

总之,3D打印技术的发展方向聚焦于更高的速度、更广泛的材料选择、更精确的产品完善,以及人体器官、机械设备和安全用品、自然生物等多个领域的应用。

二、未来3D打印技术发展的趋势1.材料多样性对于3D打印技术而言,最深层次的变化,目前在材料多样性领域里。

几乎每种材料都可以制造出某些产品,包括金属、橡胶和聚合物等。

因此,了解材料特性对于选择最优材料也是非常重要的。

对于3D 打印材料和纳米技术的革新,他们研究各种材料,为每种材料树立各自的应用需求,以满足每个作品的更多定制化。

3d打印的现状及应用前景

3d打印的现状及应用前景

3d打印的现状及应用前景3D打印技术是一种以数字模型为基础,通过逐层堆积材料的方式制造物体的新兴技术。

它凭借其快速、低成本、高自由度等优势,进一步改变了传统制造业的格局,被广泛应用于多个领域。

本文将对3D打印的现状和应用前景进行探讨。

一、3D打印的现状1. 技术成熟度:随着3D打印技术的持续发展和工业的普及,3D打印设备、材料和软件等方面都取得了长足的进步。

目前,3D打印技术在快速原型制作、个性化产品定制等领域已经比较成熟,并逐渐向大批量生产和高精度应用拓展。

2. 应用广泛化:3D打印技术不仅适用于传统的制造行业,如航空航天、汽车、医疗器械等,还可以应用于建筑、文化创意、消费品等领域。

例如,3D打印技术可以用于制造复杂的几何结构和薄壁结构,提高产品的性能和效率。

3. 成本下降:随着3D打印技术的发展,打印设备和材料的成本逐渐下降,使得小企业和个人也能够使用3D打印技术。

这降低了产品开发和制造的门槛,促进了创新和创业的活力。

4. 打印材料的多样性:3D打印技术可以使用多种材料,如塑料、金属、陶瓷、复合材料等。

随着材料研发的不断进步,打印出的产品在强度、耐磨性、导热性等方面的性能也得到了提升。

5. 法律和标准的建立:随着3D打印技术的广泛应用,相关的法律和标准也在逐步建立。

这些法律和标准将规范3D打印的行为和产出,保护知识产权,维护市场秩序。

二、3D打印的应用前景1. 制造业变革:3D打印技术可以实现个性化、定制化生产,有效降低产品开发和制造的成本和周期。

它将促使传统制造业转型升级,提高产品的差异化竞争能力。

2. 医疗领域:3D打印技术可应用于医疗器械、人体组织器官等领域。

它可以制造高度定制化的假肢、义肢和矫形器材,帮助残障人士恢复功能。

同时,利用3D打印技术还可以生产复杂的人体器官模型,为手术前的诊断和手术操作提供支持。

3. 文化创意产业:3D打印技术可以帮助艺术家和设计师创造出更加独特、复杂的艺术品和设计作品。

3D打印技术的发展现状和未来应用展望分析

3D打印技术的发展现状和未来应用展望分析

3D打印技术的发展现状和未来应用展望分析随着科技的不断进步,3D打印技术作为一项革新性的技术日渐受到关注。

通过3D打印技术,我们可以将数字模型转化为实体产品,实现快速、定制化和灵活的制造。

本文将探讨3D打印技术的发展现状和未来的应用展望。

一、3D打印技术的发展现状3D打印技术的发展经历了几个阶段。

最早的阶段,3D打印技术主要用于原型制作,帮助设计师在产品开发过程中进行模型验证。

随着技术的发展和成本的降低,3D打印技术逐渐广泛应用于制造业。

目前,3D打印技术已经在航空航天、医疗、汽车、消费品等领域发挥了重要作用。

在航空航天领域,3D打印技术可以用于制造轻量化零部件和复杂结构件,提高飞行器的性能和燃油效率。

例如,波音公司采用3D打印技术制造了一款复杂的燃油喷嘴,大幅减少了组件的数量和重量。

在医疗领域,3D打印技术为医生们提供了更多个性化的解决方案。

通过扫描患者的身体部位,医生可以利用3D打印技术制造定制化的义肢、假体和牙齿,提高患者的生活质量。

在汽车制造领域,3D打印技术可以快速制造复杂形状的零部件,并减少零部件的数量。

自行车制造商Canyon采用3D打印技术制造了一款复杂的车架,大幅提高了制造效率和产品质量。

二、3D打印技术的未来应用展望尽管3D打印技术已经取得了显著的成就,但其应用仍然面临着一些挑战。

首先,成本仍然是限制3D打印技术应用的主要因素。

虽然3D打印机的价格在不断下降,但其消耗品和材料的成本仍然很高。

其次,3D打印技术的速度较慢,无法满足大规模生产的需求。

然而,随着技术的不断进步,这些挑战将逐渐被克服。

首先,随着技术的成熟和竞争的加剧,3D打印机的价格将进一步降低,从而更多企业能够承担起这项技术。

其次,随着材料科学的进步,打印材料的成本也会逐渐降低,更多的材料也会被开发出来。

此外,研究机构和企业正在寻找新的3D打印技术和材料,以提高打印速度。

未来,3D打印技术将在各个领域得到更广阔的应用。

3D打印技术发展现状与未来趋势分析

3D打印技术发展现状与未来趋势分析

3D打印技术发展现状与未来趋势分析随着科技的不断进步,3D打印技术作为一项前沿技术,正逐渐受到越来越多的关注。

本文将就3D打印技术的发展现状以及未来的趋势进行探讨。

一、3D打印技术的发展现状3D打印技术最早于20世纪80年代诞生,但直到近年来才开始迅速发展。

目前,3D打印技术已经在各个领域得到广泛应用,包括制造业、医疗领域、建筑业等。

在制造业中,3D打印技术可以实现快速原型制作、定制化生产等功能,大大提高了制造效率。

在医疗领域,3D打印技术可以应用于人体器官的打印、仿真手术模型的制作等方面,为医疗技术带来了巨大的变革。

目前,3D打印技术的应用还存在一些挑战和限制。

首先,材料选择仍然较为有限,目前主要使用的是塑料、金属等材料,还没有实现在生物材料等其他领域的广泛应用。

其次,制造成本较高,限制了其在大规模生产中的应用。

此外,3D打印技术的速度和分辨率也还有待提高。

二、3D打印技术的未来趋势尽管3D打印技术目前还存在一些限制,但是它在未来的发展前景仍然十分广阔。

以下将探讨3D打印技术的未来趋势。

1. 材料多样化和可持续发展随着新材料的不断开发和成熟,未来3D打印技术将可以使用更多种类的材料进行打印,包括生物材料、陶瓷材料等。

这将极大拓展了3D打印技术的应用领域,并且推动医疗、航空、汽车等行业的进一步发展。

同时,人们对环境保护的重视也将推动3D打印技术向可持续方向发展,例如使用可再生材料进行3D打印,减少对环境的影响。

2. 提高速度和分辨率目前,3D打印技术的速度和分辨率还有待提高。

未来,随着技术的进步,3D打印设备将能够更快速地完成打印任务,并且能够更精细地打印出细小的结构。

这将使得3D打印技术在更多领域有更广泛的应用,例如微电子器件制造、微创外科手术等。

3. 集成多种技术未来的3D打印技术将会与其他技术进行集成,形成更强大的创新力量。

例如,与人工智能、大数据、虚拟现实等技术的结合,将进一步提高3D打印技术在设计、制造过程中的智能化水平,为用户提供更好的体验和更高效的解决方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D打印材料的发展及其制备现状摘要:3D打印,又称快速成型制造技术,被誉为“第三次工业革命”的核心技术,其中材料是3D打印物质基础,也是当前制约3D打印快速发展的瓶颈,本文章综述了3D打印中材料的发展现状,重点介绍了现在用于3D打印的几类主要材料及在3D打印中对所用材料的要求,并指出了当前3D打印材料发展现状及制备所面临的主要问题,最后总结了3D打印材料方面未来的一些发展趋势和方向。

关键词:3D打印;快速成型制造技术;3D打印材料;制备方法前言3D打印是指运用计算机软件设计出立体的加工样式然后通过特定的成型设备用液化、粉末化、丝化的固体材料逐层打印出产品, 与传统的减材制造不同.3D打印技术属于增材制造[1], 其无需原胚和磨具,就能直接根据计算机图形数据,通过增加材料的方法生产形状的物体,简化产品的制造程序,缩短产品的研发周期,提高效率并降低成本. 可见,3D打印是一种依托信息技术、精密机械和材料科学等多学科交叉的高新技术。

3D打印技术包括“快速原型制造技术”和“金属构件直接制造技术”2大类。

目前公众所了解的3D打印成果和案例大多属于“快速原型制造技术”范畴。

其实快速原型制造的范畴比较广,除了3D打印还有“熔融沉积造型”、“选择性激光烧结”、“立体印刷”、“叠层实体造型”“光固化”等多种方式[2]。

与传统制造技术相比,3D打印技术适合于新产品开发、快速单件及小批量零件制造、复杂开关零件的制造、模具的设计与制造等,也适合于难加工材料的制造、外形设计检查、装配检验和快速反求工程等。

当前3D打印己应用于产品原型、模具制造、艺术创意产品、珠宝制作等领域。

但材料问题是3D打印的物质基础,从根本上决定了3D打印产品的精度,制作时间及使用性能等,当前国内生产的3D打印材料基本不能满足要求,很大一部分都是采用国外进口,由于在3D打印中对材料的要求很高,也是制约3D打印发展的瓶颈,这里简要介绍当前3D制造材料要求,发展现状,制备过程及所存在问题,最后介绍了3D打印未来发展趋势。

1 3D打印材料及要求3D打印材料是3D打印技术发展的重要物质基础在某种程度上材料的发展决定着3D打印能否有更广泛的应用.目前3D打印材料主要包括工程塑料、光敏树脂、橡胶类材料、金属材料和陶瓷材料等。

除此之外,彩色石膏材料、人造骨粉、细胞生物原料以及砂糖等食品材料也在3D打印领域得到了应用[3].3D打印所用的这些原材料都是专门针对3D打印设备和工艺而研发的,与普通的塑料、石膏、树脂等有所区别,其形态一般有粉末状、丝状、层片状、液体状等。

通常不同的打印工艺其选择的材料和成型方法也有所不同,各成型工艺所用材料和优缺点对比表如表1所示[4]。

根据打印设备的类型及操作条件的不同,3D打印对材料的一般要求为:所使用的粉末状3D打印材料的粒径为1-100um不等;而为了使粉末保持良好的流动性,一般要求粉末要具有高球形度;同时具有氧及其他杂质含量低、粒度均匀可控、致密性好、结合强度高等特点。

表1 各成型工艺所用材料和优缺点对比表2.当前3D打印材料发展现状及所面临的主要问题目前,3D打印技术要进一步扩展其产业应用空间,仍面临着多方面的瓶颈和挑战:一是成本方面,现有3D打印机造价仍普遍较为昂贵,给其进一步普及应用带来了困难。

二是受打印材料方面的影响,目前3D打印的成型材料多采用化学聚合物,选择的局限性较大,成型品的物理特性较差,而且安全方面也存在一定隐患。

三是精度、速度和效率方面,目前3D打印成品的精度还不尽人意,打印效率还远不适应大规模生产的需求,而且受打印机工作原理的限制,打印精度与速度之间存在严重冲突。

四是产业环境方面,3D打印技术的普及将使产品更容易被复制和扩散,制造业面对的盗版风险大增,现有知识产权保护机制难以适应产业未来发展的需求[5]。

3D打印对原材料的要求比较苛刻,满足激光工艺的适用性要求所选的材料需要以粉末或丝棒状形态提供。

材料融化后在软件程序驱动下,自动按设计工艺完成各切片的凝固,使材料重新结合起来,完成成型。

由于整个过程涉及材料的快速融化和凝固等物态变化,对适用的材料性能要求极高,从而材料成本居高不下。

有专家指出,3D打印的核心是它对传统制造模式的颠覆,因此,从某种意义上说,3D打印最关键的不是机械制造,而是材料研发[2]。

2.1快速原型制造及材料现状快速原型制造即通常所说的快速成型,目前3D打印快速成型用特种粉体材料大多是设备工艺厂商针对各自设备特点定制的[6],优点是与专属设备的适用性好,研制难度相对小,缺点是材料的产业通用性差,产品成型过程的精度还有待提高,产品成型后的强度较低,可见,制品表面精度受粉末原材料特性的制约明显,工艺对材料依赖性不容忽视。

2.2高性能金属构件直接制造技术及所用材料现状起步于20世纪90年代初,工艺难度比较大,高性能金属构件直接制造所用材料主要是钛及钛合金粉末材料和镍基或钴基的高温合金类粉末材料。

工艺过程主要采用高功率的能量束如激光或电子束作为热源,使粉末材料进行选区熔化,冷却结晶后形成严格按设计制造的堆积层,堆积层连续成型,形成最终产品。

到目前为止,工业上的小型金属构件直接制造相对容易,体积较大的金属构件的直接制造难度非常大,对材料和工艺控制的要求很高。

这将是增材制造产业推动相关工业发展的重点方向,也将是一项关键技术。

其最大的难度在于材料和成型工艺。

以钛合金为例,激光熔化后的材料凝固会造成钛合金体积收缩,造成巨大的材料热应力,内应力对小型构件影响不大,但随着零件尺寸的增加,成型变得非常困难,即使能够成型也会由于大的内应力严重影响材料强度。

第二个难题是材料冷却结晶过程复杂,材料结晶过程很难定量控制,一旦出现晶体粗大、枝晶等必将造成材料成型后的力学性能不佳等问题,最终结果就是关键构件没办法获得实际应用。

2.3 3D打印材料粉末制备方法简介及现状目前,合金粉末的制备方法主要有水雾化、气雾化和真空雾化等,其中真空雾化制备的粉末具有氧含量低、球形度高、成分均匀等特点,应用效果最佳。

其中,高性能金属构件直接制造所用材料主要是钛及钛合金粉末材料和镍基或钴基的高温合金类粉末材料。

目前钛及钛合金粉末制备方法主要有等离子旋转电极、单棍快淬、雾化法等1,其中旋转电极法因其动平衡问题,主要制备20目左右的粗粉[7];单棍快淬法制备的粉末多为不规则形状、杂质含量高,而气体雾化法制备的粉末具有球形度较好、粒度可控、冷却速度较快、细粉收得率高等优点,但雾化合金粉末易也出现一些缺陷,例如夹杂物、热诱导孔洞、原始粉末颗粒边界物。

对于3D打印技术来说,粉体材料中夹杂物和热诱导孔洞都会对成型部件产生影响。

国外钛及钛合金粉末的研究由来已久,技术相对成熟,而国内在雾化设备及粉末制备工艺方面,主要为移植和仿研,高性能制粉设备仍以进口为主,氢、氧等也高于国外同类产品水平[8]。

目前高端的合金粉末和制造设备还主要依靠进口。

而国外常将原材料与设备捆绑销售,赚取大量的利润。

国内尚未针对3D打印技术用粉末开展相应的研究[9]。

如粉末成分、夹杂、物理性能对3D打印相关技术的影响及适应性。

因此针对低氧含量、细粒径粉末的使用要求,尚需开展钛及钛合金粉末成分设计、细粒径粉末气雾化制粉技术、粉末特性对制品性能的影响等研究工作。

国内受制粉技术所限,目前细粒径粉末制备困难,粉末收得率低、氧及其他杂质含量高等,在使用过程中易出现粉末熔化状态不均匀,导致制品中氧化物夹杂含量高、致密性差、强度低、结构不均匀等问题,国内合金粉末存在的主要问题集中在产品质量和批次稳定性等方面,包括:①粉末成分的稳定性(夹杂数量、成分均匀性);②粉末物理性能的稳定性(粒度分布、粉末形貌、流动性、松装比等);③成品率问题(窄粒度段粉末成品率低)等。

3 3D打印产业及材料方面未来发展难点及趋势3.1 3D打印要解决的问题在3D打印快速成型方面,研发和生产通用性更强的材料是技术提升的关键。

解决好材料的性能和成本问题,将会更好地推动我国的快速成型技术的发展。

与此同时,国内也逐渐的加强了3D打印材料制备装置及材料研发方面的资金投入,为了打破国外垄断的局面及价格问题,要更加注重3D打印材料生产工艺的研究,针对低氧含量、细粒径均匀粉末的使用要求,尚需开展钛及钛合金粉末成分设计、细粒径粉末气雾化制粉技术、不同粉末特性对制品性能的影响等方面的研究。

另一方面,对制备3D打印材料生产装备的研发,也是亟需要解决的一大难题。

3.2 3D打印材料及技术方面未来发展的方向趋势根据3D打印的现有加工流程,比较常用的制造方法:是通过特定的成型设备用液化、粉末化、丝化的固体材料逐层打印出产品,基于这种特殊的打印制造方式,我们可以从不同材料具有不同的特性和功能入手,例如:陶瓷材料可以承受高温及耐腐蚀,镍钛诺形状记忆合金具有超弹性和延展性,钛合金具有高硬度及比较好的综合性能等。

那么,在3D打印制造过程中,在打印的不同的区域和不同层之间可以采取不同的材料进行打印,这样打印出来的整个产品的不同部分就可以同时适应耐磨、耐腐蚀、耐高温等不同的工作环境和工作要求,使材料和打印后的物体的综合性能发挥到最大。

但同时这一制造过程也同时必需要解决掉不同材料之间因热应力系数不同,膨胀系数不同等原因造成的结合性能上缺陷上问题。

另一方面,提升3D打印的速度、效率和精度,开拓并行打印、连续打印、大件打印、多材料打印的工艺方法,提高成品的表面质量、力学和物理性能,以实现直接面向产品的制造;开发更为多样的3D打印材料,如智能材料、功能梯度材料、纳米材料、非均质材料及复合材料等,特别是金属材料直接成型技术有可能成为今后研究与应用的又一个热点;3D 打印机的体积小型化、桌面化,成本更低廉,操作更简便,更加适应分布化生产、设计与制造一体化的需求以及家庭日常应用的需求;软件集成化,实现CAD/CAPP/RP的一体化,使设计软件和生产控制软件能够无缝对接,实现设计者直接物联控制的远程在线制造;拓展3D 打印技术在生物医学、建筑、车辆、服装等更多行业领域的创造性应用和发展。

参考文献[1]王忠宏李扬张曼茵.中国3D打印产业的现状及发展思路[J].经济纵横201328190-13[2] 王雪莹,3D打印技术与产业的发展及前景.中国高新技术企业.2012,26:233[3]孙聚杰,3D打印材料及研究热点.数字化技术.2013,12:12-20[4]杜宇雷,孙菲菲,原光等,3D打印材料的发展现状.徐州工程学院学报.2014,29,1[5] The 3Dprinted world[J].Economist,2011-2-10.[6] 古丽萍.蓄势待发的3D 打印机及其发展[J].数码印刷,2 0 1 1 ,(10) .36-39.[7] 袁建鹏,3D打印用特种粉体材料产业发展现状[J].新产业材料. 2013.12.011[8] 黄树,肖跃加,莫健华等.快速成形技术的展望J.中国机械工程,2000,11(1/2),195-200.[9] 刘厚才,莫健华,刘海涛.三维打印快速成形技术及其应用J.机械科学与术,2008,27(9);1184-1186.。

相关文档
最新文档