垂径定理综合练习题

合集下载

专题2.1 圆中垂径定理综合应用(3大类题型)(原卷版)

专题2.1 圆中垂径定理综合应用(3大类题型)(原卷版)

专题2.1 圆中垂径定理综合应用(3大类题型)【题型1 直接运用勾股定理求线段】【题型2 勾股定理与方程综合求线段】【题型3 垂径定理在实际中应用】【题型1 直接运用勾股定理求线段】1.(2023•大连模拟)如图所示,在⊙O中,直径AB=10,弦DE⊥AB于点C,连接DO.若OC:OB=3:5,则DE的长为()A.3B.4C.6D.8 2.(2023•杭州模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()cm.A.8B.5C.3D.2 3.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A.5B.4C.3D.2 4.(2023•金寨县校级模拟)如图,AB是⊙O的直径,弦CD⊥AB于点E,若CD=6,AB=10,则AE的长为()A.1B.2C.3D.4 5.(2023•亳州三模)如图,在⊙O中,直径AB⊥CD于点H.若AB=10,CD =8,则BH的长为()A.5B.4C.3D.2 6.(2023•容县一模)如图,AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为点E,CD=8cm,AB=10cm,则AE=.7.(2023•衡南县三模)在⊙O中,直径AB=4,弦CD⊥AB于P,OP=,则弦CD的长为.8.(2023•东台市校级模拟)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,若OA=5,AB=8,则线段CD的长为=.9.(2023•望城区模拟)如图,AB是⊙O的直径,且AB=10cm,弦CD⊥AB 于点E,CD=8cm,连接OC,则BE=cm.10.(2023•长沙县二模)如图,⊙O的半径为5,弦AB=8,点C是AB的中点,连接OC,则OC的长为.【题型2 勾股定理与方程综合求线段】11.(2023•邯郸模拟)如图,以CD为直径的⊙O中,弦AB⊥CD于M.AB=16,CM=16.则MD的长为()A.4B.6C.8D.10 12.(2022秋•南开区校级期末)如图,在⊙O中,半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC,若AB=8,CD=2,则EC的长度为()A.B.8C.D.13.(2022秋•文登区期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=CD=8,则⊙O的半径为()A.3B.4C.D.5 14.(2022秋•西湖区校级期末)如图,AB是⊙O的直径,弦CD⊥AB交于点E.若BE=10,CD=8,则⊙O的半径为()A.3B.4.2C.5.8D.6 15.(2022秋•泰山区校级期末)一块圆形宣传标志牌简图如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=16dm,DC=4dm,则圆形标志牌的半径为()A.6dm B.5dm C.10dm D.3dm 16.(2022秋•任城区校级期末)如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=2寸,AB=16寸,直径CD的长是()A.28寸B.30寸C.36寸D.34寸17.(2023•汉阳区校级一模)如图,CD为⊙O直径,弦AB⊥CD于点E,CE =1,AB=6,则CD长为()A.10B.9C.8D.5 18.(2023•汇川区三模)在半径为r的圆中,弦BC垂直平分OA,若BC=6,则r的值是()A.B.C.D.19.(2023春•仪征市期末)如图,AB是⊙O的直径,弦CD⊥AB于点E,,BE=1,则OC=.20.(2023•大冶市一模)如图,AB是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是.【题型3 垂径定理在实际中应用】21.(2022秋•海淀区校级月考)如图,一条公路的转弯处是一段圆弧AB,点O 是弧AB的圆心,C为弧AB上一点,OC⊥AB,垂足为D.已知AB=60m,CD=10m,求这段弯路的半径.22.(2022秋•郾城区期中)如图是一根圆形下水管道的横截面,管内有少量的污水,此时的水面宽AB为0.6米,污水的最大深度为0.1米.(1)求此下水管横截面的半径;(2)随着污水量的增加,水位又被抬升0.7米,求此时水面的宽度增加了多少?23.(2022秋•沭阳县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.24.如图,有一拱桥是圆弧形,它的跨度(所对弦长)为60m,拱高18m,当水面涨至其跨度只有30m时,就要采取紧急措施.某次洪水来到时,拱顶离水面只有4m,问是否需要采取紧急措施?25.如图,残缺轮片上弦AB的垂直平分线交弧AB于点C,交弦AB于点D,已知AB=24cm,CD=8cm.(1)找出此残缺轮片所在圆的圆心(写出找到圆心的方法);(2)求此圆的半径.26.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?27.我国古算书《九章算术》中有“圆材埋壁”一题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径(直径)几何?”(注:如图,⊙O表示圆材截面,CE是⊙O的直径,AB表示“锯道”,CD表示“锯深”,1尺=10寸,求圆材的直径长就是求CE的长.)28.如图,半圆拱桥的圆心为O,圆的半径为5m,一只8m宽的船装载一集装箱,箱顶宽6m,离水面AB高3.8m,这条船能过桥洞吗?请说明理由.29.(2022秋•沭阳县校级月考)如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?30.(2022秋•东台市期中)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)。

垂径定理练习题及答案

垂径定理练习题及答案

垂径定理练习题及答案一、选择题1. 在一个圆中,如果一条直径的端点与圆上一点相连,这条线段的中点与圆心的距离是直径的()A. 一半B. 半径B. 直径D. 无法确定2. 垂径定理指出,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是()A. 直径B. 半径C. 线段D. 无法确定3. 圆内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形是()A. 平行四边形B. 矩形C. 菱形D. 无法确定4. 如果圆的半径为r,那么圆的直径是()A. 2rB. rC. r的平方D. 2r的平方二、填空题1. 垂径定理告诉我们,如果一条线段是圆的直径,那么它与圆上任意一点连线所形成的直角三角形的斜边是______。

2. 圆的内接四边形中,如果对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等,等于______。

3. 已知圆的半径为5cm,那么圆的直径是______。

三、解答题1. 已知一个圆的半径为7cm,圆内有一点P,连接点P和圆心O,得到线段OP。

如果OP的长度为4cm,求点P到圆上任意一点的距离。

2. 一个圆的直径为14cm,圆内接四边形ABCD,其中AC为直径。

已知AB=6cm,求BC的长度。

四、证明题1. 证明:如果一个三角形是直角三角形,且斜边是圆的直径,那么这个三角形的外接圆的直径是这个三角形的斜边。

2. 证明:如果一个圆的内接四边形的对角线互相平分,且其中一条对角线是圆的直径,那么这个四边形的对角线长度相等。

答案:一、选择题1. A2. A3. B4. A二、填空题1. 直径的一半2. 圆的直径3. 10cm三、解答题1. 点P到圆上任意一点的距离是3cm(利用勾股定理,OP为直角三角形的一条直角边,半径为斜边,另一直角边为点P到圆上任意一点的距离)。

2. BC的长度是8cm(利用圆内接四边形的性质,对角线互相平分,且AC是直径,所以BD=7cm,再利用勾股定理求BC)。

垂径定理练习题4套

垂径定理练习题4套

1、已知:AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为_______。

2、在⊙O中,P为其内一点,过点P的最长的弦为8cm,最短的弦长为4cm,则OP =____ _。

3、已知圆的半径为5cm,一弦长为8cm,则该弦的中点到弦所对的弧的中点的距离为__ _____。

4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。

5、在半径为5cm的圆内有两条互相平行的弦,一条弦长为8cm,另一条弦长为6cm,则这两条弦之间的距离为_____ _。

6、如图,在⊙O中,OA是半径,弦AB=cm,D是弧AB的中点,OD交AB于点C,若∠OAB=300,则⊙O的半径____cm。

7、在⊙O中,半径OA=10cm,AB是弦,C是AB弦的中点,且OC:AC=3:4,则AB=_____。

8、在弓形ABC中,弦AB=24,高CD=6,则弓形所在圆的半径等于。

9.如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D两点,AB=10cm,CD=6cm,则AC的长为_____。

1、已知:AB 是⊙O 的直径,弦CD ⊥AB 于点P ,CD =10cm ,AP:PB =1:5,则⊙O 的半径为_______。

2、在⊙O 中,P 为其内一点,过点P 的最长的弦为8cm ,最短的弦长为4cm ,则OP =____ _。

3、已知圆的半径为5cm ,一弦长为8cm ,则该弦的中点到弦所对的弧的中点的距离为__ _____。

4、已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_ ____。

5、在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则这两条弦之间的距离为_____ _。

6、如图,在⊙O 中,OA 是半径,弦AB =310cm ,D 是弧AB 的中点,OD 交AB 于点C ,若∠OAB =300,则⊙O 的半径____cm 。

初中垂径定理试题及答案

初中垂径定理试题及答案

初中垂径定理试题及答案一、选择题1. 在圆中,垂直于弦的直径是该弦的()。

A. 垂线B. 垂径C. 弦心距D. 弦长答案:B2. 垂径定理告诉我们,如果一条线段垂直于弦,并且平分弦,那么它也平分弦所对的()。

A. 弧B. 圆心角C. 弦心距D. 弦长答案:A3. 在圆中,如果一条直径垂直于弦,那么这条直径将弦分成的两段长度()。

A. 相等B. 不相等C. 无法确定D. 取决于圆的大小答案:A二、填空题4. 在圆中,如果弦AB的中点为M,且直径CD垂直于弦AB于点M,则弦AB所对的弧ACB的度数为______。

答案:90°5. 垂径定理在圆的几何学中非常重要,它说明了垂直于弦的直径将弦平分,并且平分的弦所对的弧是______。

答案:相等的三、解答题6. 已知圆O的半径为10cm,弦AB垂直于直径CD于点M,求弦AB的长度。

答案:由于直径CD垂直于弦AB,根据垂径定理,弦AB被直径CD平分,因此弦AB的长度为圆的直径,即20cm。

7. 在一个圆中,弦AC的长度为12cm,弦BC的长度为8cm,且AC和BC相交于点O,求圆的半径。

答案:由于AC和BC相交于圆心O,根据垂径定理,OA=OC,OB=OA,因此OA=OC=6cm,OB=OA=6cm。

根据勾股定理,圆的半径r满足r^2 =OA^2 + OB^2 = 6^2 + 6^2 = 72,所以r = √72 = 6√2 cm。

四、证明题8. 证明:在圆中,如果一条直径垂直于弦,那么这条直径将弦平分。

答案:设圆心为O,直径为CD,弦为AB,且CD垂直于AB于点M。

要证明CM=MD。

由于CD是直径,所以∠CMO=∠DMO=90°。

根据垂径定理,CM=MD,因此这条直径将弦平分。

圆垂径定理综合应用六十道经典题(答案解析)

圆垂径定理综合应用六十道经典题(答案解析)
28.在距离某学校的教室A点正东240米的O点处有一货场,经过O点沿北偏西 方向有一条公路OB,假定这条公路上的车辆形成的噪音影响范围在130米以内.
(1)这条公路上的车辆形成的噪音是否会对学校造成影响?
(2)若车辆形成的噪音会对学校造成影响,为消除噪音,计划在公路边修筑一段消音墙,请你计算消音墙的长度.(只考虑声音的直线传播)
37.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC、BC,若∠BAC=30º,CD=6cm.
(1)求∠BCD的度数;
(2)求⊙O的直径.
38.如图,AC为⊙O的直径,CD为⊙O的弦,BE⊥CD于点E, = .
(1)求证:BE的⊙O切线.Fra bibliotek(2)若AD=4,EC=1,求BD的长.
39.如图,A,B,C是⊙O上的点,其中 ,过点B画BD⊥OC于点D.
C.若△BCD是等腰三角形,则△ACD也是等腰三角形
D.若PB=4PA,则CD=PB
3.如图,在 中, , 为互相垂直且相等的两条弦, , ,垂足分别为 , ,若 ,则 的半径是()
A. B. C. D.
4.如图, 的直径为10,弦 , 是 上一个动点,则 的最小值为()
A.2B.3C.4D.5
5.如图是一个圆弧形门拱,拱高 ,跨度 ,那么这个门拱的半径为()
A. B. C. D.
11.平面直角坐标系中,在以(2,1)为圆心,5为半径的圆上的点的坐标是()
A.(4,7)B.(-1,-2)C.(5,4)D.(2,-4)
12.如图,⊙O的半径OA=8,以A为圆心,OA为半径的弧交⊙O于B,C点,则BC=( )
A. B. C. D.
13.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为( )

垂径定理练习题

垂径定理练习题

垂径定理1.下列说法正确的是()A.弧长相等的弧一定是等弧B.所对圆心角相等的弧是等弧C.同弧或等弧所对的圆周角相等D.平分弦的直径必垂直于弦2.下列说法正确的个数有()①相等的弦所对的圆心角相等;②平分弦的直径垂直于这条弦;③直径所对的弧是半圆;④圆是轴对称图形,其对称轴有无数条,对称轴是圆的直径.A.1个B.2个C.3个D.4个3.如图,CD是圆O的直径,AB是弦,CD⊥AB,垂足为M,则下列结论中错误..的是()A.AM=BM B.弧AC=弧BC C.OM=DM D.弧AD=弧BD4.如图,AB是圆O的直径,弦CD⊥AB于点E,OC=15,CD=24,则OE=()A.6 B.62C.9 D.125.如图,圆O的半径为3,圆心O到AB的距离为2,则弦AB的长为()A.2 B.25C.13D.106.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点()13,0A ,直线34y kx k =-+与圆O 交于B 、C 两点,则弦BC 的长的最小值为( )A .22B .24C .10.5D .12.57.如图所示,矩形ABCD 与圆O 相交于M 、N 、F 、E ,若AM=2,DE=1,EF=8,则MN 的长为( )A .2B .4C .6D .88.若圆O 的半径为10 cm ,且两平行弦AC ,BD 的长分别为12 cm ,16 cm ,则两弦间的距离是( )A .2 cmB .14 cmC .2 cm 或14 cmD .6 cm 或8 cm9.如图,A ,B ,C ,D 是⊙O 上的四个点,AD ∥BC,那么弧AB 与弧CD 的数量关系是( )A .弧AB =弧CD B .弧AB >弧CDC .弧AB <弧CD D .无法确定10.如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB 与小圆有公共点,则弦AB 的取值范围是( )A .8≤AB≤10B .8<AB≤10C .4≤AB≤5D .4<AB≤511.如图,⊙O 1的弦AB 是⊙O 2的切线,且AB ∥O 1O 2,如果AB =12cm ,那么阴影部分的面积为( ).A .36πcm 2B .12πcm 2C .8πcm 2D .6πcm 212.在某校校园文化建设活动中,小彬同学为班级设计了一个班徽,这个班徽图案由一对大小相同的较大半圆挖去一对大小相同的较小半圆而得.如图,若它们的直径在同一直线上,较大半圆1O 的弦21AB O O ∥,且与较小半圆2O 相切, AB=4,则班徽图案的面积为( )A .25πB .16πC .8πD .4π13.如图,圆O 的直径AB=10,C 是圆O 上一点,点D 平分弧BC ,2cm DE =,则弦AC= 14.如图,已知AB 是圆O 的弦,点C 在圆O 上,且弧AB=弧BC ,分别连接AO ,CO ,并延长CO ,交弦AB 于点D ,23AB =,CD=3,若点E 在圆O 上,BE ∥OA ,则BE 的长为 .15.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(0,3),点B的坐标为(-2,1),则该圆弧所在圆的圆心坐标是.16.某品牌太阳能热水器的实物图和截面示意图如图所示,支架CD与地面垂直,真空集热管AB与地面水平线夹角∠BAC为30°,直线AB与CD都经过水箱截面的圆心O.已知DC=65,AB=180,则水箱内水面宽度BE为cm.17.圆管涵是公路路基排水中常用的涵洞结构类型,它不仅力学性能好,而且构造简单、施工方便.某水平放置的圆管涵圆柱形排水管道的截面是直径为1.2m的圆,如图所示,若水面宽AB=0.8,求水的最大深度.(精确到0.1)18.“两龙“高速公路是某省高速公路隧道和桥梁最多的路段.如图,是一个单心圆曲隧道的截面,若路面AB宽为8米,净高CD为8米,求此隧道单心圆的半径OA.19.如图,在圆O中,AB、CD为直径,弦DE⊥AB于点F,连接BC.(1)若DE=16,BF=15,求圆O的直径;(2)若∠C=∠D,求弦BC与DE的夹角.20.(1)如图1,AB是圆O的直径、C、D是圆O上的两点,若∠BAC=20°,弧AD=弧CD.求:①∠ADC的度数;②求∠DAC的度数;(2)如图2,圆O的弦AB垂直平分半径OC,若圆O的半径为4,求弦AB的长.。

垂径定理经典练习题

垂径定理经典练习题

圆垂径定理专题练习题1.垂径定理:垂直于弦的直径____这条弦,并且____弦所对的两条弧.2.如图,在半径为5 cm的⊙O中,弦AB=6 cm,OC⊥AB于点C,则OC=( )A.3 cm B.4 cm C.5 cm D.6 cm3.如图,已知⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的长可能是( )A.2.5 B.3.5 C.4.5 D.5.54. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为___.5. 如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于点E.(1)请写出四个不同类型的正确结论;(2)若BE=4,AC=6,求DE的长.6. 一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A.4 B.5 C.6 D.87. 为了测量一铁球的直径,将该铁球放入工件槽内,测得有关数据如图所示(单位:cm),则该铁球的直径为____.8. H5N1亚型高致病性禽流感是一种传染速度很快的传染病,为防止禽流感蔓延,政府规定:离疫点3千米范围内为扑杀区,所有禽类全部扑杀;离疫点3至5千米范围内为免疫区,所有禽类强制免疫;同时,对扑杀区和免疫区内的村庄,道路实行全封闭管理.现有一条笔直的公路AB通过禽流感疫区,如图所示,O为疫点,在扑杀区内的公路CD长为4千米,问这条公路在免疫区内有多少千米?9.如图,直线与两个同心圆交于图示的各点,MN=10,PR=6,则MP=____.10.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8 cm,AG=1 cm,DE=2 cm,则EF=____cm.11. 如图,⊙O的直径AB=16 cm,P是OB的中点,∠APD=30°,求CD的长.12. 如图,⊙O的直径AB垂直于弦CD.垂足P是OB的中点,CD=6 cm,求直径AB的长.13. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图1,当PQ∥AB时,求PQ的长度;(2)如图2,当点P在BC上移动时,求PQ长的最大值.答案:1. 平分 平分2. B3. C4. 45.解:(1)不同类型的正确结论为BE =12BC ,BD ︵=CD ︵, ∠BED =90°,BD =CD ,△BOD 是等腰三角形, △BDE ≌△CDE ,OB 2=OE 2+BE 2等 (2)∵AB 是 ⊙O 的直径,∴OA =OB ,∵OD ⊥BC 于E 点,∴BE =CE ,∴OE 为△ABC 的中位线,∴OE =12AC =12×6=3,在Rt △OBE 中,由勾股定理,得 OB =OE 2+BE 2=32+42=5,∴OD =OB =5, ∴DE =OD -OE =5-3=26. C7. 10 cm8.解:过O 作OE ⊥AB 于E ,连接OC , OA ,易求OE =5,AE =25,则AB =2AE =45,∴AC +DB =AB -CD =45-4=4(5-1)(千米)9. 210. 611.解:连接OD ,过点O 作OM ⊥CD于点M ,则CM =DM.∵直径AB =16 cm , P 为OB 的中点,∴OP =4 cm.在Rt △OPM 中,∵∠APD =30°,∴OM =12OP =2 cm.在Rt △DOM 中, DM =DO 2-OM 2=82-22=215(cm ), ∴CD =2DM =415 cm 12.解:连接OD ,∵P 是OB 的中点,∴OP =12OB =12OD , ∵AB ⊥CD ,∴∠OPD =90°,DP =12CD =12×6=3(cm ), 在Rt △ODP 中,sin ∠ODP =OP OD =12OD OD =12,∴∠ODP =30° ∴OD =DP cos 30°=23(cm ),∴AB =2OD =43(cm )13.解:(1)PQ =6 (2)PQ 长的最大值为332。

垂径定理练习题汇总

垂径定理练习题汇总

一.选择题(共7小题)1.(2014•凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为cm cm C cm或cm D cm或cm 2.(2014•舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()3.(2014•毕节地区)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()4.(2014•三明)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()=5.(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()6.(2014•安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P 是直径MN上一动点,则PA+PB的最小值为()7.(2014•沛县模拟)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是()二.解答题(共7小题)8.(2014•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.9.(2014•盘锦三模)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.10.(2009•长宁区二模)如图,点C在⊙O的弦AB上,CO⊥AO,延长CO交⊙O于D.弦DE⊥AB,交AO于F.(1)求证:OC=OF;(2)求证:AB=DE.11.(2009•浦东新区二模)一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.12.(2008•长宁区二模)如图,在△ABC中,AB=AC,⊙O过点B、C,且交边AB、AC于点E、F,已知∠A=∠ABO,连接OE、OF、OB.(1)求证:四边形AEOF为菱形;(2)若BO平分∠ABC,求证:BE=BC.13.(2007•佛山)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.14.(2007•青浦区二模)如图,一条公路的转弯处是一段圆弧(图中的弧AB),点O是这段弧的圆心,点C是弧AB上的一点,OC⊥AB,垂足为D,如AB=60m,CD=10m,求这段弯路的半径.参考答案与试题解析一.选择题(共7小题)1.(2014•凉山州)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为cm cm C cm或cm D cm或cmAM=AB=OM==3cm==4==2cm2.(2014•舟山)如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则AB的长为()3.(2014•毕节地区)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()AB=12OC=4.(2014•三明)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()==,5.(2014•南宁)在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()OM===60cm6.(2014•安顺)如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点.P 是直径MN上一动点,则PA+PB的最小值为()=BON=∠AON=×=OA=,.7.(2014•沛县模拟)如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴交于B(2,0)、C(8,0)两点,与y轴相切于点D,则点A的坐标是()二.解答题(共7小题)8.(2014•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.AE=BE=AB=××==3cm9.(2014•盘锦三模)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.=∠C=∠=,C=C=,BC=;,CE=BE=BC==10.(2009•长宁区二模)如图,点C在⊙O的弦AB上,CO⊥AO,延长CO交⊙O于D.弦DE⊥AB,交AO于F.(1)求证:OC=OF;(2)求证:AB=DE.11.(2009•浦东新区二模)一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.ABAB=×==0.412.(2008•长宁区二模)如图,在△ABC中,AB=AC,⊙O过点B、C,且交边AB、AC于点E、F,已知∠A=∠ABO,连接OE、OF、OB.(1)求证:四边形AEOF为菱形;(2)若BO平分∠ABC,求证:BE=BC.13.(2007•佛山)如图,⊙O是△ABC的外接圆,且AB=AC=13,BC=24,求⊙O的半径.=,CD=BC=1214.(2007•青浦区二模)如图,一条公路的转弯处是一段圆弧(图中的弧AB),点O是这段弧的圆心,点C是弧AB上的一点,OC⊥AB,垂足为D,如AB=60m,CD=10m,求这段弯路的半径.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理综合练习题1. 如图,在⊙O中,直径AB经过弦CD的中点E,点M在OD上,AM的延长线交⊙O于点G,交过D的直线于F,∠1=∠2,连结BD与CG交于点N.(1)求证:DF是⊙O的切线;(2)若点M是OD的中点,⊙O的半径为3,tan∠BOD=2√2,求BN的长.2. 已知:如图,AO是⊙O的半径,AC为⊙O的弦,点F为AC^的中点,OF交AC于点E,AC=8,EF=2.(1)求AO的长;(2)过点C作CD⊥AO,交AO延长线于点D,求sin∠ACD的值.3. 如图,在圆O中,弦AB=8,点C在圆O上(C与A,B不重合),连接CA、CB,过点O 分别作OD⊥AC,OE⊥BC,垂足分别是点D、E.(1)求线段DE的长;(2)点O到AB的距离为3,求圆O的半径.4. 如图,已知Rt△ABC,∠BAC=90∘,BC=5,AC=2√5,以A为圆心、AB为半径画圆,与边BC交于另一点D.(1)求BD的长;(2)连接AD,求∠DAC的正弦值.5. 如图,已知AB是⊙O的直径,C为圆上一点,D是BC^的中点,CH⊥AB于H,垂足为H,联OD交弦BC于E,交CH于F,联结EH.(1)求证:△BHE∽△BCO.(2)若OC=4,BH=1,求EH的长.6. 如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取BF⌢的中点D,连接AD交BC于点E,过点E作EH⊥AB于H.(1)求证:△HBE∼△ABC;(2)若CF=4,BF=5,求AC和EH的长.7. 如图,AB为⊙O的直径,点C,D在⊙O上,且点C是BD^的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.8. 如图,AB是圆O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交圆O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果OA=3,求AE⋅AB的值.9. 一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,求此时排水管水面的宽CD.10. 尺规作图,将图中的破轮子复原,已知弧上三点A,B,C.(1)画出该轮的圆心;(2)若△ABC是等腰三角形,底边BC=16cm,腰AB=10cm,求圆片的半径R.参考答案与试题解析垂径定理综合练习题一、解答题(本题共计 10 小题,每题 10 分,共计100分)1.【答案】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,BC^=BD^,∴∠BOD=2∠2.∵∠1=∠2,∠BOD+∠ODE=90∘,∴∠ODE+∠1+∠2=90∘,∴∠ODF=90∘,∴DF是⊙O的切线;(2)解:连接AD,∵AB是⊙O直径,∴∠ADB=∠FDO=90∘,∴∠ADB−∠BDO=∠FDO−∠BDO,即∠3=∠1,∴∠3=∠2,∵∠4=∠C,∴△ADM∼△CDN;∵⊙O的半径为3,即AO=DO=BO=3,在Rt△DOE中,tan∠BOD=2√2,cos∠BOD=13,∴OE=DO⋅cos∠BOD=3×13=1,由此可得:BE=2,AE=4,由勾股定理可得:DE=√OD2−OE2=2√2,AD=√DE2+AE2=2√6,BD=√DE2+BE2=2√3,∵AB是⊙O直径,AB⊥CD,∴由垂径定理得:CD=2DE=4√2,∵△ADM∼△CDN,∴DMDN =ADCD,∵点M是DO的中点,DM=12DO=12×3=32,∴DN=DM×CDAD =32×4√22√6=√3,∴BN=BD−DN=2√3−√3=√3.【解答】(1)证明:∵直径AB经过弦CD的中点E,∴AB⊥CD,BC^=BD^,∴∠BOD=2∠2.∵∠1=∠2,∠BOD+∠ODE=90∘,∴∠ODE+∠1+∠2=90∘,∴∠ODF=90∘,∴DF是⊙O的切线;(2)解:连接AD,∵AB是⊙O直径,∴∠ADB=∠FDO=90∘,∴∠ADB−∠BDO=∠FDO−∠BDO,即∠3=∠1,∴∠3=∠2,∵∠4=∠C,∴△ADM∼△CDN;∵⊙O的半径为3,即AO=DO=BO=3,在Rt△DOE中,tan∠BOD=2√2,cos∠BOD=13,∴OE=DO⋅cos∠BOD=3×13=1,由此可得:BE=2,AE=4,由勾股定理可得:DE=√OD2−OE2=2√2,AD=√DE2+AE2=2√6,BD=√DE2+BE2=2√3,∵AB是⊙O直径,AB⊥CD,∴由垂径定理得:CD=2DE=4√2,∵△ADM∼△CDN,∴DMDN =ADCD,∵点M是DO的中点,DM=12DO=12×3=32,∴DN=DM×CDAD =32×4√22√6=√3,∴BN=BD−DN=2√3−√3=√3.2.【答案】解:(1)∵O是圆心,且点F为AC^的中点,∴OF⊥AC,设圆的半径为r,即OA=OF=r,则OE=OF−EF=r−2,由OA2=AE2+OE2得r2=42+(r−2)2,解得:r=5,即AO=5;(2)如图,∵∠OAE=∠CAD,∠AEO=∠ADC=90∘,∴∠AOE=∠ACD,则sin∠ACD=sin∠AOE=AEAO =45.【解答】解:(1)∵O是圆心,且点F为AC^的中点,∴OF⊥AC,∵AC=8,∴AE=4,设圆的半径为r,即OA=OF=r,则OE=OF−EF=r−2,由OA2=AE2+OE2得r2=42+(r−2)2,解得:r=5,即AO=5;(2)如图,∵∠OAE=∠CAD,∠AEO=∠ADC=90∘,∴∠AOE=∠ACD,则sin∠ACD=sin∠AOE=AEAO =45.3.【答案】∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12AB,过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.【解答】∵OD经过圆心O,OD⊥AC,∴AD=DC,同理:CE=EB,∴DE是△ABC的中位线,∴DE=12AB,∵AB=8,∴DE=4.过点O作OH⊥AB,垂足为点H,OH=3,连接OA,∵OH经过圆心O,∴AH=BH=12AB,∵AB=8,∴AH=4,在Rt△AHO中,AH2+OH2=AO2,∴AO=5,即圆O的半径为5.4.【答案】如图连接AD,作AH⊥BD于H.∵Rt△ABC,∠BAC=90∘,BC=5,AC=2√5,∴AB=√BC2−AC2=√5,∵12⋅AB⋅AC=12⋅BC⋅AH,∴AH=√5×2√55=2,∴BH=√AB2−AH2=1,∵AB=AD,AH⊥BD,∴BH=HD=1,∴BD=2.作DM⊥AC于M.∵S△ACB=S△ABD+S△ACD,∴12×√5×2√5=12×2×2+12×2√5×DM,∴DM=3√55,∴sin∠DAC=DMAD =3√55√5=35.【解答】如图连接AD,作AH⊥BD于H.∵Rt△ABC,∠BAC=90∘,BC=5,AC=2√5,∴AB=√BC2−AC2=√5,∵12⋅AB⋅AC=12⋅BC⋅AH,∴AH=√5×2√55=2,∴BH=√AB2−AH2=1,∵AB=AD,AH⊥BD,∴BH=HD=1,∴BD=2.作DM⊥AC于M.∵S△ACB=S△ABD+S△ACD,∴12×√5×2√5=12×2×2+12×2√5×DM,∴DM=3√55,∴sin∠DAC=DMAD =3√55√5=35.5.【答案】证明:∵OD为圆的半径,D是BC^的中点,∴OD⊥BC,BE=CE=12BC,∵CH⊥AB,∴∠CHB=90∘,∴HE=12BC=BE,∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B∴△BHE∽△BCO.∵△BHE∽△BCO,∴BHBC =BEOB,∵OC=4,BH=1,∴OB=4,得12BE =BE4,解得BE=√2,∴EH=BE=√2.【解答】证明:∵OD为圆的半径,D是BC^的中点,∴OD⊥BC,BE=CE=12BC,∵CH⊥AB,∴∠CHB=90∘,∴HE=12BC=BE,∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B∴△BHE∽△BCO.∵△BHE∽△BCO,∴BHBC =BEOB,∵OC=4,BH=1,∴OB=4,得12BE =BE4,解得BE=√2,∴EH=BE=√2.6.【答案】(1)证明∵AC是⊙O的切线,∴CA⊥AB,∵EH⊥AB,∴∠EHB=∠CAB,∵∠EBH=∠CBA,∴△HBE∼△ABC.(2)解:连接AF.∵AB是直径,∴∠AFB=90∘,∵∠C=∠C,∠CAB=∠AFC,∴△CAF∼△CBA,∴CA2=CF⋅CB=36,∴CA=6,AB=√BC2−AC2=3√5,AF=√AB2−BF2=2√5,∵DF⌢=BD⌢,∴∠EAF=∠EAH,∵EF⊥AF,EH⊥AB,∴EF=EH,∵AE=AE,∴Rt△AEF≅Rt△AEH,∴AF=AH=2√5,设EF=EH=x,在Rt△EHB中,(5−x)2=x2+(√5)2,∴x=2,∴EH=2.【解答】(1)证明∵AC是⊙O的切线,∴CA⊥AB,∵EH⊥AB,∴∠EHB=∠CAB,∵∠EBH=∠CBA,∴△HBE∼△ABC.(2)解:连接AF.∵AB是直径,∴∠AFB=90∘,∵∠C=∠C,∠CAB=∠AFC,∴△CAF∼△CBA,∴CA2=CF⋅CB=36,∴CA=6,AB=√BC2−AC2=3√5,AF=√AB2−BF2=2√5,∵DF⌢=BD⌢,∴∠EAF=∠EAH,∵EF⊥AF,EH⊥AB,∴EF=EH,∵AE=AE,∴Rt△AEF≅Rt△AEH,∴AF=AH=2√5,设EF=EH=x,在Rt△EHB中,(5−x)2=x2+(√5)2,∴x=2,∴EH=2.7.【答案】证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是BD^的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC // AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;∵AB为⊙O的直径,∴∠BCA=90∘,∴AC=√AB2−BC2=4,∵∠EAC=∠BAC,∠AEC=∠ACB=90∘,∴△AEC∽△ACB,∴AEAC =ACAB,∴AE=AC2AB =165.【解答】证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是BD^的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC // AE,∵AE⊥EF,∴OC⊥EF,即EF是⊙O的切线;∵AB为⊙O的直径,∴∠BCA=90∘,∴AC=√AB2−BC2=4,∵∠EAC=∠BAC,∠AEC=∠ACB=90∘,∴△AEC∽△ACB,∴AEAC =ACAB,∴AE=AC2AB =165.8.【答案】证明:连接OB.∵CD⊥OA,∴∠ADE=90∘,∴∠DAE+∠AED=90∘,∵OA=OB,∴∠A=∠OBA,∵CE=CB,∴∠CBE=∠CEB=∠AED,∴∠ABO+∠CBE=90∘,∴∠OBC=90∘,∴OB⊥BC.连接OF.∵AD=OD,FD⊥OA,∴FA=FO=AO,∴△AOF是等边三角形,∴∠AOF=60∘,∴∠ABF=12∠AOF=30∘.延长AO交⊙O于H,连接BH.∵AH是直径,∴∠ABH=∠ADE=90∘,∵∠DAE=∠HAB,∴△DAE∽△BAH,∴ADAB =AEAH,∴AE⋅AB=AD⋅AH=32×6=9.【解答】证明:连接OB.∵CD⊥OA,∴∠ADE=90∘,∴∠DAE+∠AED=90∘,∵OA=OB,∴∠A=∠OBA,∵CE=CB,∴∠CBE=∠CEB=∠AED,∴∠ABO+∠CBE=90∘,∴∠OBC=90∘,∴OB⊥BC.连接OF.∵AD=OD,FD⊥OA,∴FA=FO=AO,∴△AOF是等边三角形,∴∠AOF=60∘,∴∠ABF=12∠AOF=30∘.延长AO交⊙O于H,连接BH.∵AH是直径,∴∠ABH=∠ADE=90∘,∵∠DAE=∠HAB,∴△DAE∽△BAH,∴ADAB =AEAH,∴AE⋅AB=AD⋅AH=32×6=9.9.【答案】解:如图,作OE⊥AB于E,交CD于F,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8−0.2=0.6m,∴CF=√OC2−OF2=0.8m,∴CD=1.6m.答:此时排水管水面的宽CD为1.6m. 【解答】解:如图,作OE⊥AB于E,交CD于F,∵AB=1.2m,OE⊥AB,OA=1m,∴OE=0.8m,∵水管水面上升了0.2m,∴OF=0.8−0.2=0.6m,∴CF=√OC2−OF2=0.8m,∴CD=1.6m.答:此时排水管水面的宽CD为1.6m.10.【答案】连接AO,OB,∵BC=16cm,∴BD=8cm,∵AB=10cm,∴AD=6cm,设圆片的半径为R,在Rt△BOD中,OD=(R−cm,∴R2=82+(R−(1)2,cm,解得:R=253∴圆片的半径R为25cm3【解答】(1)。

相关文档
最新文档