实验六multisim模拟电路原理图设计

合集下载

模拟电子电路multisim仿真(很全-很好)【范本模板】

模拟电子电路multisim仿真(很全-很好)【范本模板】

仿真1。

1.1 共射极基本放大电路按图7。

1-1搭建共射极基本放大电路,选择电路菜单电路图选项(Circuit/Schematic Option )中的显示/隐藏(Show/Hide)按钮,设置并显示元件的标号与数值等。

1.静态工作点分析选择分析菜单中的直流工作点分析选项(Analysis/DC Operating Point)(当然,也可以使用仪器库中的数字多用表直接测量)分析结果表明晶体管Q1工作在放大状态。

2.动态分析用仪器库的函数发生器为电路提供正弦输入信号Vi(幅值为5mV,频率为10kH),用示波器观察到输入,输出波形。

由波形图可观察到电路的输入,输出电压信号反相位关系。

再一种直接测量电压放大倍数的简便方法是用仪器库中的数字多用表直接测得。

3。

参数扫描分析在图7。

1-1所示的共射极基本放大电路中,偏置电阻R1的阻值大小直接决定了静态电流IC的大小,保持输入信号不变,改变R1的阻值,可以观察到输出电压波形的失真情况。

选择分析菜单中的参数扫描选项(Analysis/Parameter Sweep Analysis),在参数扫描设置对话框中将扫描元件设为R1,参数为电阻,扫描起始值为100K,终值为900K,扫描方式为线性,步长增量为400K,输出节点5,扫描用于暂态分析。

4。

频率响应分析选择分析菜单中的交流频率分析项(Analysis/AC Frequency Analysis)在交流频率分析参数设置对话框中设定:扫描起始频率为1Hz,终止频率为1GHz,扫描形式为十进制,纵向刻度为线性,节点5做输出节点。

由图分析可得:当共射极基本放大电路输入信号电压VI为幅值5mV的变频电压时,电路输出中频电压幅值约为0.5V,中频电压放大倍数约为-100倍,下限频率(X1)为14.22Hz,上限频率(X2)为25.12MHz,放大器的通频带约为25。

12MHz.由理论分析可得,上述共射极基本放大电路的输入电阻由晶体管的输入电阻rbe限定,输出电阻由集电极电阻R3限定。

Multisim模拟电路实验报告

Multisim模拟电路实验报告

Multisim模拟电路实验报告
下面通过用Multisim模拟仿真含有运放的微分和积分电路,并用示波器显示相关波形来观察相关波形。

此外,观察改变R、C电路中R、C、ω的值对微分、积分波形的影响。

微分电路:
R2
用Muitisim连接成的电路图如下:
(R2不变,为200Ω)
当R1=1kΩ,C1=0.01μF,ω=1kHz时:
激励源两端电压的波形(上)和电阻两端的波形(下)图如下:
1、当R1=1kΩ,C1=0.3μF,ω=1kHz时:(改变了C的大小)
激励源两端电压的波形(上)和电阻两端的波形(下)图如下:
2、当R1=1kΩ,C1=0.02μF,ω=50kHz时:(改变了频率ω的大小)激励源两端电压的波形(上)和电阻两端的波形(下)图如下:
积分电路:
用Multisim连成的电路图如下:
当R1=2kΩ,C1=1μF,ω=1kHz时,激励源两端电压(上)和电容两端电压(下)的波形图如下:
当R1=2kΩ,C1=0.1μF,ω=1kHz时(改变了R1的大小)
激励源两端电压(上)和电容两端电压(下)的波形图如下:
当R1=2kΩ,C1=1μF,ω=50kHz时(改变了ω的大小)
激励源两端电压(上)和电容两端电压(下)的波形图如下:。

仿真实验--差分电路仿真实验

仿真实验--差分电路仿真实验

仿真实验三差分电路仿真实验一、实验目的(1)通过Multisim来仿真电路,测试差分放大电路的静态工作点、差模电压放大倍数、输入电阻和输出电阻;(2)加深对差分放大电路原理的理解;(3)通过仿真,体会差分放大电路对温漂的抑制作用;二、实验平台Multisim 10.0三、实验原理差放的外信号输入分差模和共模两种基本输入状态。

当外信号加到两输入端子之间,使两个输入信号V i1、V i2的大小相等、极性相反时,称为差模输入状态。

此时,外输入信号称为差模输入信号,以V id表示,且有:当外信号加到两输入端子与地之间,使V i1、V i2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以V ic表示,且:当输入信号使V i1、V i2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号V ic两部分组成,其中动态时分差模输入和共模输入两种状态。

(1)对差模输入信号的放大作用当差模信号V id输入(共模信号V ic=0)时,差放两输入端信号大小相等、极性相反,即V i1=-V i2=V id/2,因此差动对管电流增量的大小相等、极性相反,导致两输出端对地的电压增量,即差模输出电压V od1、V od2大小相等、极性相反,此时双端输出电压V o=V od1-V od2=2V od1=V od,可见,差放能有效地放大差模输入信号。

要注意的是:差放公共射极的动态电阻R e对差模信号不起(负反馈)作用。

(2)对共模输入信号的抑制作用当共模信号V ic输入(差模信号V id=0)时,差放两输入端信号大小相等、极性相同,即V i1=V i2=V ic,因此差动对管电流增量的大小相等、极性相同,导致两输出端对地的电压增量,即差模输出电压V oc1、V oc2大小相等、极性相同,此时双端输出电压V o=V oc1-V oc2=0,可见,差放对共模输入信号具有很强的抑制能力。

此外,在电路对称的条件下,差放具有很强的抑制零点漂移及抑制噪声与干扰的能力。

Multisim三相电路仿真实验

Multisim三相电路仿真实验

实验六 三相电路仿真实验一、实验目的1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真;2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结;3、 加深对三相四线制供电系统中性线作用的理解。

4、 掌握示波器的连接及仿真使用方法。

5、 进一步提高分析、判断和查找故障的能力。

二、实验仪器1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。

3.仿真分析三相电路的相关内容。

4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。

这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。

2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。

这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。

3、电流、电压的“线量”与“相量”关系测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。

画仿真图时要注意。

负载对称星形联接时,线量与相量的关系为: (1)P L U U 3= (2)P L I I =负载对称三角形联接时,线量与相量的关系为:(1)P L U U = (2)P LI I 3=4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。

中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。

五、实验内容及参考实验步骤(一)、建立三相测试电路如下:图1 三相负载星形联接实验电路图1.接入示波器:测量ABC三相电压波形。

并在下表中绘出图形。

Timebase:_________/DIV 三相电压相位差:φ=__________。

电路分析基础实验六:正弦交流稳态电路的仿真实验报告

电路分析基础实验六:正弦交流稳态电路的仿真实验报告

电路分析基础实验六:正弦交流稳态电路的仿真实验报告实验六:正弦交流稳态电路的仿真一.实验内容及要求1.使用Multisim绘制正弦交流稳态电路原理图。

2.利用Multisim仿真分析正弦交流稳态电路。

二.实验要求1.掌握正弦交流稳态电路的分析方法。

2.掌握Multisim仿真正弦交流稳态电路的方法。

三.实验设备PC机、Multisim软件四.实验步骤1.使用Multisim绘制电路原理图1:在电路工作区中,从元器件库中选择所需元件,设置相应元件参数,从仪器仪表库中选择万用表和电流探针,用导线正确连接,并进行相应标注。

图1电路原理图绘制电路原理图如下图:2.仿真分析电路图1:打开万用表,设置为交流电流,选择菜单栏中的Simulate→Run命令运行仿真,选择Simulate→Stop命令停止仿真,查看并记录万用表显示结果,填入表1。

1)打开万用表12)打开万用表23)打开万用表34)观看并记录各万用表的数据并记录填表表1仿真分析变量结果变量数值I(R1)181.879I(C1)571.362I(L1)599.6113.使用菜单栏中的单频交流分析命令仿真电路图1:选择菜单栏中的Simulate→Analyses→Single frequency AC analysis命令进行仿真,设置Frequencyparameters→Frequency=50Hz,选定需要分析的变量I(R1)、I(C1)、I(L1),运行仿真,查看并记录仿真结果,填入表2。

1)选择菜单栏中的Simulate→Analyses→Single frequency AC analysis命令进行仿真2)设置Frequency parameters→Frequency=50Hz3)选定需要分析的变量I(R1)、I(C1)、I(L1)4)运行仿真,查看并记录仿真结果表2仿真分析变量成效变量数值I(R1)1.I(C1)1.。

实验六基于Multisim8的简易数字频率计仿真

实验六基于Multisim8的简易数字频率计仿真

闸门
门控
B 放大 整形
S2
1000Tx
1Tx
10Tx 100Tx
÷10
÷10
计数锁存译码 显示系统
÷10
四、实验参考电路
(1)控制时序产生电路
图4.8.5 是由秒脉冲发生器(可由晶体振荡器和 多级分频器组成)和可重触发单稳态74LS123 组成
的控制时序产生电路。秒脉冲发生器产生脉冲宽度 为的定时脉冲,74LS123单稳态电路产生锁存和清 零脉冲。(仿真软件Multisim 8的元件库中,没有 74LS123单稳态电路,可用555定时器组成单稳态 电路)。 5V
4. 闸门电路
闸门电路由与门组成,该电路有两个输入端和一 个输出端,输入端的一端,接门控信号,另一端接 整形后的被测方波信号。闸门是否开通,受门控信 号的控制,当门控信号为高电平“1”时,闸门开启; 而门控信号为低电平“0”时,闸门关闭。显然,只 有在闸门开启的时间内,被测信号才能通过闸门进 入计数器,计数器计数时间就是闸门开启时间。可 见,门控信号的宽度一定时,闸门的输出值正比于 被测信号的频率,通过计数显示系统把闸门的输出 结果显示出来,就可以得到被测信号的频率。
5. 电子计数器测量周期
当被测信号频率比较低时,用测量周期的方法来 测量频率比直接测量频率有更高的准确度和分辨率, 且便于测量过程自动化。该测量方法在许多科学技 术领域中都得到普遍使用。图4.8.4是用电子计数器 测量信号周期的原理方框图。
晶振
Tx
时基 分频
1µs
S1 Tc
10µs 1ms 100µs Tx1
①可控制的计数、锁存、译码显示系统; ②石英晶体振荡器及分频系统(可用Multisim 8中
的函数发生器替代);

用multisim绘制电路图


第三讲 用multisim绘制电路图
2.1 元器件的选用和调入
下面以组建一工作点稳定的单级共射放大电路为 例说明元器件的选用和调入方法。
该电路使用元件如下: T1=2SC1815; Rc=5.1KΩ;Rb1=51KΩ; Rb2=15KΩ;Re=2KΩ; RL=3.9KΩ;Ci=10μF; Co=10μF;Ce=47μF; Vcc=12V;ui=10mV,1000Hz。
第三讲 用multisim绘制电路图
保存(Save)页:设 置备份功能。包括: Create aSecu-rity Copy(创建安全备 份)、Auto-backup (自动存盘时间间隔 设定)、Save simulation data with instruments(仿真 数据最大保存量设定) 3项。
第三讲 用multisim绘制电路图
(3)若需对文本的字体、字形和字号进行调整,选 中文本再右键单击,在处置对话框中选择Font。
第三讲 用multisim绘制电路图 (4)选择需要的字体、字形和字号,按确定键。
第三讲 用multisim绘制电路图 (3)文字随之相应改变,然后关闭阐述窗口。
第三讲 用multisim绘制电路图 (4)单击阐述信息条。
(3)输入完成后,单击空白区,文本块消失仅留下输入的文 本。 (4)若需改变文字的颜色,右键单击文本,打开图处置对话 框,单击Pen Color命令,选择喜欢的颜色即可。
(5)若需变更文本字型和字号,则右键单击文本,在处置对 话框中单击Font。
(6)选择需要的字体、字形和字号,按OK键确认。
第三讲 用multisim绘制电路图
第三讲 用multisim绘制电路图
在这Global Prefence,出现 左边Preference对话框,有 路径(Paths)、保存 (Save)、元件(Parts)、 常规(Genereal)四个翻页 菜单,默认状态是元件 (Parts)页。

Multisim电路仿真实验PPT课件


电路
RC充放电仿真实验
电路模型和电路定律
电路
电路模型和电路定律
电路
电路模型和电路定律
Multisim简介
隶属于美国国家仪器公司(National Instruments,简称 NI)的Electronics Workbench公司发布了Multisim软件, 是一种紧密集成、终端对终端的解决方案,工程师利用这 一软件可有效地完成电子工程项目从最初的概念建模到最 终的成品的全过程。
电路
电路模型和电路定律
(1) 万用表的使用 如图所示,在万用表控制面板上可以选择电压值、电流值、
电阻以及分贝值。参数设置窗口,可以设置万用表的一些参数

万用表图标、面板和参数设置
电路 (2) 函数信号发生器
电路模型和电路定律
如图所示,在函数信号发生器中可以选择正弦波、三角波和 矩形波三种波形,频率可在1~999范围内调整。信号的幅值、 占空比、偏移量也可以根据需要进行调节。偏移量指的是交流 信号中直流电平的偏移。
(4) 导线的连接点
在Place菜单下选择Junction命令,可以放置连接点,可 以将连接点直接插入导线中。连接点是小圆点,连接点最 多可以连接来自4个不同方向的导线
(5) 在导线中间插入元器件
我们可以非常方便地实现在导线中间插入元器件。选 中元器件,用鼠标将其拖至导线上,释放鼠标即可。
电路
电路模型和电路定律
电子通信类其它常用的仿真软件: System view---数字通信系统的仿真 Proteus――单片机及ARM仿真 LabVIEW――虚拟仪器原理及仿真
电路
电路模型和电路定律
multisim 10概述
Multisim 被美国NI公司收购以后,其性能得到了 极大的提升。最大的改变就是:Multisim 与 LABVIEB 的完美结合:

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。

其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。

本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。

通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。

一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。

Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。

Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。

2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。

例如,电阻器的阻值、电容器的容值、电源的电压等。

这些参数值将直接影响到电路的仿真结果。

3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。

根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。

4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。

通过分析这些仿真结果,可以评估电路的性能和工作情况。

二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。

以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。

multisim仿真电路

四、实验内容
1.输入和逻辑状态判断电路的测试
1)调节逻辑电平测试器的被测电压(输入直流电压)为低电平(VL<0.8v)用数字万用表测逻辑状态判断电路输出电平。
2)调节逻辑电平测试器的被测电压(输入直流电压)为高电平(VH>3.5v)用数字万用表测逻辑状态判断电路输出电平。
2.音响声调产生电路
1)逻辑电平测试器的被测电压为低电平(VL<0.8v)用示波器观察、记录音响声调产生电路输出波形,用频率计测量振荡频率f.
四、实验内容及步骤
1.场效应管共源放大器的调试
(1)连接电路。按图1连接好电路,场效应管选用N沟道消耗型2N3370,静态工作点的设置方式为自偏压式。直流稳压电源调至12V。
图1
2.测量静态工作点
将输入端短接(图2),并测量此时的 Vg、Vs、VD、 ,填入下表1
静态工作点:
1.006V
39.355nV
1)输入电阻测量:先闭合开关S1(R2=0),输入信号电压Vs,测出对应的输出电压 ,然后断开S1,测出对应的输出电压 ,因为两次测量中和是基本不变的,所以
,测得 =134.137mV, =67.074mV,
仿真结果如下图4:
2)输出电阻测量:在放大器输入端加入一个固定信号电压Vs,分别测量当已知负载RL断开和接上的输出电压 和 。则 ,由于本实验所用的场效应管必须接入很大的负载才能达到放大效果,因此此方法不适合用来测量本实验输出电阻效果不太好,仿真结果如下图5 =66.8mV, =125mV .
38.328
43.36
35
40
45
50
55
60
65
47.847
51.875
55.507
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子线路设计软件课程设计报告
实验内容:实验六multisim模拟电路原理图设计
一、实验目的
1、认识并了解multisim的元器件库;
2、学会使用multisim绘制电路原理图;
3、学会使用multisim里面的各种仪器分析模拟电路;
二、multisim的简单介绍
1、multisim的基本界面
2、元件工具栏
用鼠标左键单击元器件库栏的某一个图标即可打开该元件库。

3、仪器仪表
⏹数字万用表(Multimeter)
⏹函数信号发生器(Function Generator)
⏹瓦特表(Wattmeter)
⏹示波器(Oscilloscope)
⏹四通道示波器(4 channel Oscilloscope)
⏹波特图仪(Bode Plotter)
⏹频率计数器(Frequency counter)
⏹字符信号发生器(Word Generator)
⏹逻辑分析仪(Logic Analyzer)
三、元器件的操作
1. 元器件的选用
选用元器件时,首先在元器件库栏中用鼠标点击包含该元器件的图标,打开该元器件库。

然后从选中的元器件库对话框中(如图电容库对话框),用鼠标点击将该元器件,然后点击“OK”即可,用鼠标拖曳该元器件到电路工作区的适当地方即可。

2. 选中元器件
在连接电路时,要对元器件进行移动、旋转、删除、设置参数等操作。

这就需要先选中该元器件。

要选中某个元器件可使用鼠标的左键单击该元器件。

被选中的元器件的四周出现4个黑色小方块(电路工作区为白底),便于识别。

对选中的元器件可以进行移动、旋转、删除、设置参数等操作。

用鼠标拖曳形成一个矩形区域,可以同时选中在该矩形区域内包围的一组元器件。

要取消某一个元器件的选中状态,只需单击电路工作区的空白部分即可。

3. 元器件的移动
用鼠标的左键点击该元器件(左键不松手),拖曳该元器件即可移动该元器件。

要移动一组元器件,必须先用前述的矩形区域方法选中这些元器件,然后用鼠标左键拖曳其中的任意一个元器件,则所有选中的部分就会一起移动。

元器件被移动后,与其相连接的导线就会自动重新排列。

选中元器件后,也可使用箭头键使之作微小的移动。

4. 元器件的旋转与反转
对元器件进行旋转或反转操作,需要先选中该元器件,然后单击鼠标右键或者选择菜单Edit,选择菜单中的Flip Horizontal(将所选择的元器件左右旋转)、Flip Vertical(将所选择的元器件上下旋转)、90 Clockwise(将所选择的元器件顺时针旋转90度)、90 CounterCW:(将所选择的元器件逆时针旋转90度)等菜单栏中的命令。

也可使用Ctrl键实现旋转操作。

Ctrl 键的定义标在菜单命令的旁边。

5. 元器件的复制、删除
对选中的元器件,进行元器件的复制、移动、删除等操作,可以单击鼠标右键或者使用菜单Edit→Cut(剪切)、Edit→Copy(复制)和Edit→Paste(粘贴)、Edit→Delete(删除)等菜单命令实现元器件的复制、移动、删除等操作。

6. 元器件标签、编号、数值、模型参数的设置
在选中元器件后,双击该元器件,或者选择菜单命令Edit→Properties(元器件特性)会弹出相关的对话框,可供输入数据。

器件特性对话框具有多种选项可供设置,包括Label(标识)、Display(显示)、Value(数值)、Fault(故障设置)、Pins(引脚端)、Variant(变量)等内容。

电容器件特性对话框如图
(1)Label(标识)
Label(标识)选项的对话框用于设置元器件的Label(标识)和RefDes(编号)。

RefDes(编号)由系统自动分配,必要时可以修改,但必须保证编号的唯一性。

注意连接点、接地等元器件没有编号。

在电路图上是否显示标识和编号可由Options菜单中的Global Preferences(设置操作环境)的对话框设置。

(2)Display(显示)
Display(显示)选项用于设置Label、RefDes的显示方式。

该对话框的设置与Options菜单中的Global Preferences(设置操作环境)的对话框的设置有关。

如果遵循电路图选项的设置,则Label、RefDes的显示方式由电路图选项的设置决定。

(3)Value(数值)
点击Value(数值)选项,出现Value(数值)选项对话框。

(4)Fault(故障)
Fault(故障)选项可供人为设置元器件的隐含故障。

例如在三极管的故障设置对话框中,E、B、C为与故障设置有关的引脚号,对话框提供Leakage(漏电)、Short(短路)、Open(开路)、None(无故障)等设置。

如果选择了Open(开路)设置。

图中设置引脚E和引脚B 为Open(开路)状态,尽管该三极管仍连接在电路中,但实际上隐含了开路的故障。

这可以为电路的故障分析提供方便。

四、制作实例
1、全整流电路原理图
2、示波器的波形
4、波形分析
整流电路中的二极管是作为开关运用,具有单向导电性。

当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。

当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。

在电路中电容起到了虑波的作用。

如果没有电容会有以下结果。

5桥式整流电路原理图
6、示波器的波形
7、波形分析
他的工作原理和整流电路的工作原理一样。

不过比较可以看出,桥式整流的效果比全整流的效果好。

几乎成了一条直线。

五.实验心的
1、修改与滤波器连接的线的颜色,对应通道的波形的也变为相应的颜色。

2、在电路连接的时候要把软件的开关关了,否则连接不上。

在电路中可以加入一个灯泡,设置一个合适的功率。

这样若是功率大于设计功率,那么灯泡被烧坏,很直观的看到功率过大这一现象。

相关文档
最新文档