模拟电子电路仿真和实测实验方案的设计实验报告111-副本
电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
《模拟电子线路实验》实验报告

《模拟电子线路实验》实验报告实验报告一、实验目的通过模拟电子线路实验,掌握电子线路的基本原理和实验技巧,加深对电子线路的理论知识的理解。
二、实验设备实验中使用的设备有:示波器、万用表、信号发生器、电阻、电容、二极管等。
三、实验原理电子线路由电源、电阻、电容、电感、二极管等元件组合而成。
在电子线路中,电源提供电流,电流通过线路中的元件实现信号的处理和传递。
电阻限制电流的流动,电容储存电荷,电感储存磁场,二极管具有导通(正向偏置)和截止(反向偏置)的特性。
四、实验内容本次实验的实验内容主要包括以下几个方面:1.电阻的测量和串并联的实验(1)利用示波器和万用表对不同电阻值的电阻进行测量,并分析测量值和标称值之间的差异;(2)在电路中连接不同的电阻,并观察并分析串联和并联对电阻阻抗的影响。
2.电容的充放电实验(1)利用信号发生器输出方波信号,通过一个电阻将方波信号传到一个电容上进行充放电;(2)通过示波器观察电容充放电波形,分析电容的充放电过程。
3.二极管的直流分压和交流放大实验(1)利用电源和电阻构建一个二极管直流分压电路,通过示波器观察电路输出;(2)通过信号发生器产生正弦波信号,通过二极管放大电路增大信号幅度,并通过示波器观察放大后的信号。
五、实验结果1.电阻的测量和串并联的实验经测量,不同电阻的测量值与标称值相差较小,误差在可接受范围内。
串联电阻的总阻抗等于各个电阻之和,而并联电阻的总阻抗等于各个电阻的倒数之和。
2.电容的充放电实验通过示波器观察到电容的充放电过程,放电过程是指电容器通过一个电阻将储存的电荷逐渐释放,电压逐渐下降的过程;充电过程是指电容器内的电压逐渐增加,直到与输入信号的幅度相等,并保持恒定的过程。
3.二极管的直流分压和交流放大实验通过示波器观察到二极管直流分压电路的输出近似为输入信号的一半。
在交流放大实验中,增加了二极管和电容,使得输入信号的幅度得以增大,实现了信号的放大。
六、实验总结通过本次实验,我深入了解了电子线路的基本原理和实验技巧。
电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。
二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。
2.使用电路仿真软件进行简单电路的仿真设计。
3.基于仿真结果,根据实验内容进行电路设计和分析。
四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。
2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。
3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。
4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。
5.运行仿真,观察电路的响应曲线和频率特性。
6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。
7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。
8.根据实验要求,记录仿真结果并撰写实验报告。
五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。
根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。
通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。
根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。
我们还可以通过改变电路参数来观察电路的变化。
例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。
而增大电阻值则可以增加滤波器的阻带特性。
通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。
六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。
通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。
通过本次实验,我还发现了电路设计和分析的一些问题和挑战。
模拟电子线路实验报告

模拟电子线路实验报告模拟电子线路实验报告引言:模拟电子线路是电子工程领域中的重要基础课程,通过实验可以帮助学生理解电子器件的工作原理和电路的设计方法。
本实验报告将介绍我在模拟电子线路实验中所进行的一系列实验,包括放大器电路、滤波器电路和振荡器电路。
实验一:放大器电路在放大器电路实验中,我们使用了两个常见的放大器电路:共射极放大器和共基极放大器。
共射极放大器具有较高的电压增益和输入阻抗,适用于信号放大应用。
共基极放大器则具有较低的电压增益和输出阻抗,适用于驱动低阻抗负载。
通过实验,我们验证了这两种放大器电路的性能,并观察到了它们在不同频率下的响应特性。
实验二:滤波器电路滤波器电路是电子系统中常见的电路,用于去除或选择特定频率的信号。
在实验中,我们研究了三种常见的滤波器电路:低通滤波器、高通滤波器和带通滤波器。
通过调整电路参数和元件值,我们观察到了这些滤波器在不同频率下的截止特性和幅频响应。
此外,我们还讨论了滤波器的阶数和频率响应对电路性能的影响。
实验三:振荡器电路振荡器电路是一种能够产生稳定振荡信号的电路,常用于时钟发生器、射频发射和接收等应用中。
在实验中,我们设计和搭建了两种常见的振荡器电路:RC 相移振荡器和LC谐振振荡器。
通过调整电路参数和元件值,我们观察到了振荡器的频率稳定性和波形特性。
此外,我们还讨论了振荡器的起振条件和频率稳定性的影响因素。
实验结果与分析:通过实验,我们对放大器、滤波器和振荡器电路的性能进行了验证和分析。
我们观察到了不同电路参数和元件值对电路性能的影响,例如放大器的电压增益、滤波器的截止频率和振荡器的频率稳定性。
我们还学习到了如何根据电路需求选择合适的电路结构和元件数值,以满足特定的电路设计要求。
结论:通过模拟电子线路实验,我们深入了解了放大器、滤波器和振荡器电路的原理和性能。
我们通过实验验证了这些电路的工作特性,并学会了根据设计要求选择合适的电路结构和元件数值。
这些实验为我们今后在电子工程领域的学习和研究奠定了坚实的基础。
模拟电子技术仿真与实验报告

4
(1)打开信号发生器的电源,输入信号频率为 1KHz、幅度为 20mV 的正弦信号,输出端 开路时,用示波器分别测出 Vi,Vo’的大小,然后根据式(2.1-5)算出电压放大倍数。 (2)放大器输入端接入 2kΩ的负载电阻 R6,保持输入电压 Vi 不变,测出此时的输出电 压 Vo,并算出此时的电压放大倍数,分析负载对放大电路电压放大倍数的影响。 (3)用示波器双踪观察 Vo 和 Vi 的波形,比较它们之间的相位关系。 3、输入电阻和输出电阻的测量 (1)用示波器分别测出电阻两端的电压 V 和 V,利用式(2.1-6)便可算出放大电路的 输入电阻 Ri 的大小。 (2)根据测得的负载开路时输出电压 Vo’和接上负载时的输出电压 Vo,利用式(2.1-7) 便可算出放大电路的输出电阻 Ro。记录实验数据。
三、实验内容
计算机仿真部分: 根据电路画出实验仿真电路图。其中得到的波特图绘制仪的命令为 “SimulateInstrumentBode Plotter”。
(2)调节 J1 将开关打到下面,测试电路的开环基本特性。
10
将信号发生器输出调为 1kHz、10mVp(峰值)正弦波,然后接入放大器的输入端到网络的波 特图如下图。
当按照上述要求搭好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点具
体的调节步骤如下:
现象
出现截止失真 出现饱和失真 两种失真都出现
无失真
动作
减小 R
增大 R
减小输入信号 加大输入信号
根据示波器上观察到的现象,做出不同的调整动作,反复进行。当加大输入信号,两种失
真都出现,减小输入信号,两种失真同时消失,可以认为此时的静态工作点正好处于交流
电极电流 ICQ 和管压降 VCEQ。其中 VCEQ 可直接用万用表直流电压档测 C-E 极间的电压既得, 而 ICQ 的测量则有直接法和间接法两种: 直接法:将万用表电流档串入集电极电路直接测量。此法精度高,但要断开集电极回路,
模拟电子技术仿真实习报告

模拟电子技术仿真实习报告一、实习目的通过本次模拟电子技术仿真实习,我旨在掌握模拟电子技术的基本原理,提高自己在电子电路设计和仿真方面的能力。
同时,通过实习,我期望能够将所学的理论知识与实际操作相结合,培养自己的动手能力和团队协作精神。
二、实习内容本次实习主要分为以下几个部分:1. 熟悉Multisim仿真软件的使用方法,了解其基本功能和操作界面。
2. 学习并掌握模拟电子技术中常用元器件的特性和使用方法,包括二极管、晶体管、电阻、电容等。
3. 设计并仿真简单的模拟电子电路,如共射放大电路、集成运算放大器、RC正弦波振荡器等。
4. 通过仿真实验,了解并分析电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。
5. 学习电路的调试方法,掌握调整静态工作点、测量频率特性等技能。
三、实习过程在实习过程中,我按照指导书的要求,逐步完成了各个阶段的任务。
首先,我花了一定的时间学习了Multisim仿真软件的使用方法,通过自学和请教同学,基本掌握了软件的基本功能和操作界面。
接着,我学习了模拟电子技术中常用元器件的特性和使用方法。
我通过查阅资料和实验操作,了解了二极管、晶体管、电阻、电容等元器件的工作原理和特性,并学会了如何选择和使用这些元器件。
然后,我开始设计并仿真简单的模拟电子电路。
我根据教材和指导书的要求,设计了共射放大电路、集成运算放大器、RC正弦波振荡器等电路,并通过Multisim软件进行了仿真。
在仿真过程中,我学会了如何调整电路的参数,分析电路的性能指标,如电压放大倍数、输入电阻、输出电阻等。
最后,我学习了电路的调试方法。
我通过实验操作,掌握了调整静态工作点、测量频率特性等技能,并能够独立完成电路的调试工作。
四、实习收获通过本次实习,我对模拟电子技术有了更深入的了解,掌握了常用元器件的特性和使用方法,学会了电路设计和仿真的一般方法。
同时,我在动手能力和团队协作方面也有了较大的提高。
总之,本次实习使我受益匪浅,我对模拟电子技术有了更全面的认识,提高了自己的实际操作能力。
电气仿真实训实习报告3篇

电气仿真实训实习报告3篇电气仿真实训实习报告篇1一、采用标准 JBIT5325二、主要技术参数:1、精度等级1.5、2.02、测量管径DN25∽3000mm3、工作压力小于等于40Mpa4、工作温度-40∽250℃最高温度可达450℃5、环境温度-40∽85℃6、流体条件被测介质必须充满整个管道并充分发展的条流状态,且单相连续流动非临界流的流体。
插入内藏式双文丘利插入内藏式双文丘利也是基于差压原理的一种流量测量装置。
该装置是由一个与管道尺寸一样的短节及与插入在内的双文丘利组成。
主要应用于大管道、矩形管道风量的测量,由于其具有以下特点:灵敏度高,性能稳定体积小,压力损失少安装方便,便于维护因此可广泛用于新老电站锅炉的建造和改造、工业锅炉以及其它大口径底风速的空气流量测量。
阀式孔板节流装置,分高级、简易两种,其共同特点如下:1、应用最普遍的孔板流量计结构易于复制、简单、牢固、性能稳定,使用期限长,价格低廉;2、检测元件与差压显示仪表可分开不同生产,便于专业化形成规模经济生产,它们的结合非常灵活方便;3、应用范围极为广泛,至今尚未有任何一类流量计可以与之相比,全部单相流体,包括液、气皆可测量,部分混相留,如气固、气液、液固等亦可应用,一般生产过程的管径,工作状态(压力温度)皆有产品;4、检测件,特别是标准型的为全世界通用,并得到国际化组织和根据计量组织的认可,标准型节流装置无须标定即可投入使用。
采用的主要标准有: GB/T2624----93 流量测量节流装置用孔板、喷嘴和文丘里 SY/T6143----1996 管测量充满圆管的流体流量 JJG640------94 差压式流量计 JJG193------96 阀式孔板节流装置七、实习感悟生产实习是攀枝花学院为培养高素质工程技术人才安排的一个重要实践性教学环节,是将学校教学与生产实际相结合,理论与实践相联系的重要途径。
其目的是使我们通过实习在专业知识和人才素质两方面得到锻炼和培养,从而为毕业后走向工作岗位尽快成为业务骨干打下良好基础。
模拟电路仿真实验报告

腹有诗书气自华一、实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。
(2)用仿真手段对电路性能作较深入的研究。
二、实验内容1.晶体管放大器共射极放大器(1)新建一个电路图(图1-1),步骤如下:①按图拖放元器件,信号发生器和示波器,并用导线连接好。
②依照电路图修改各个电阻与电容的参数。
③设置信号发生器的参数为Frequency 1kHz,Amplitude 10mV,选择正弦波。
④修改晶体管参数,放大倍数为40,。
(2)电路调试,主要调节晶体管的静态工作点。
若集电极与发射极的电压差不在电压源的一半上下,就调节电位器,直到合适为止。
(3)仿真腹有诗书气自华(↑图1)(↓图2)腹有诗书气自华2.集成运算放大器差动放大器差动放大器的两个输入端都有信号输入,电路如图1-2所示。
信号发生器1设置成1kHz、10mV的正弦波,作为u i1;信号发生器2设置成1kHz、20mV的正弦波,作为u i2。
满足运算法则为:u0=(1+R f/R1)*(R2/R2+R3)*u i2-(R f/R1)*u i1仿真图如图3图1-2腹有诗书气自华图33.波形变换电路检波电路原理为先让调幅波经过二极管,得到依调幅波包络变化的脉动电流,再经过一个低通滤波器,滤去高频部分,就得到反映调幅波包络的调制信号。
电路图如图1-4,仿真结果如图4.腹有诗书气自华图1-4 调幅波检波电路图4 调幅波检波电路仿真结果腹有诗书气自华三、结果分析参数不同所得的波形不同,太大或太小都会失真。
四、仿真中遇到的问题仿真中,Channel A的波看起来一直是一条直线,检查连线没有错误,更改参数也没有变化,微调Scale也看不出差别,此时继续调Scale,调到一定程度会看到波形。
五、使用Multisim的体会我觉得Multisim这个软件主要有以下优点:1) 基本器件库较全,如电源、电阻、三极管等等不仅有,而且有很多的种类。
2) 比较符合现实,我发现很多电路元件是可以自己制定其运行情况的(如可以把三极管设置成漏电等)这样在实际中更具有实用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程专题实验报告
(1)
课程名称:模拟电子技术基础
小组成员:涛,敏
学号:0,0
学院:信息工程学院
班级:电子12-1班
指导教师:房建东
成绩:
2014年5月25日
工业大学信息工程学院课程专题设计任务书(1)课程名称:模拟电子技术专业班级:电子12-1
指导教师(签名):
学生/学号:涛 0敏0
实验观察R B 、R C 等参数变化对晶体管共射放大电路放大倍数的影响 一、实验目的
1. 学会放大器静态工作点的调式方法和测量方法。
2.掌握放大器电压放大倍数的测试方法及R B 、R C 等参数对放大倍数的影响。
3. 熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理
图1为电阻分压式工作点稳定单管放大器实验电路图。
偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。
三、实验设备
1、 信号发生器
2、 双踪示波器 SS —7802
3、 交流毫伏表 V76
4、 模拟电路实验箱 TPE —A4
5、 万用表 VC9205
四、实验容
1.测量静态工作点
实验电路如图1所示,它的静态工作点估算方法为:
U B ≈
2
11B B CC
B R R U R +⨯
I E =E
BE
B R U U -≈Ic U CE
= U CC -I C (R C +R E )
图1 晶体管放大电路实验电路图
实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
根据实验结果可用:I
C ≈I
E
=
E
E
R
U
或I
C
=
C
C
CC
R
U
U
U
BE
=U
B
-U
E
U
CE
=U
C
-U
E
计算出放大器的静态工作点。
五.晶体管共射放大电路Multisim仿真
在Multisim中构建单管共射放大电路如图1(a)所示,电路中晶体管采用FMMT5179
(1)测量静态工作点
可在仿真电路中接入虚拟数字万用表,分别设置为直流电流表或直流电压
表,以便测量I
BQ 、I
CQ
和U
CEQ
,如图所示。
(a) 仿真电路
图1 晶体管共射放大电路
电路仿真后,可测得A I BQ μ19.35=,mA I CQ 007.1=,V U CEQ 979.5=。
图中的单管共射放大电路仿真后,可从虚拟示波器观察到u I 和u O 的波形如图1(b)所示。
图中蓝颜色的是 u I 的波形,红颜色的是u O 的波形。
由图可见,u O 的波形没有明显的非线性失真,而且u O 与u I 的波形相位相反。
(b) u I 、u O 波形
图1 晶体管共射放大电路
(3)R B 、R C 等参数变化对晶体管共射放大电路放u A •
的影响
1)、将图1(a)中的虚拟数字万用表分别设置为交流电压表或交流电流表。
由虚拟仪表测得,当mV U i 9.4=,R C =5.1k 时,改变R p1 的大小,测量o U ,CEQ U 。
考虑到放大在不失真情况下才有意义。
调节R p1 ,观察输出波形变化,读出产生失真时的临界阻值。
经测知道R p1 可调节围30~142.8K Ω,•
•
•
=
i
o u U U A
仿真数据
R p1(K ) R L (K ) o U (m V)
Uc (V )
Av
30 ∞ 133.5 7.0 38.36 50 ∞ 126.9 8.09 36.46 70 ∞ 120 8.86 34.48 90 ∞ 112.8 9.44 32.41 120
∞
101.7
10
29.22
2)拟仪表测得,当mV U i 48.3=,R b1 =81k 时,改变R p 的大小,测量o U ,CEQ U
考虑到放大在不失真情况下才有意义,故先测产生失真情况下的临界值。
调节R p1 ,观察输出波形变化,读出产生失真时的临界阻值。
经测知道R p 可调节围0~18K Ω,•
••
=
i
o u U U A
仿真数据
可将以上仿真结果与估算结果进行比较。
六、实验结论
在单管晶体管放大电路中, R
B 增大时,放大倍数Av减小;R
C
增
大时,放大倍数增大。
专题实验设计二
运放为核心器件组成的电压跟随器晶体管为核心构成的电压跟随器
动态性能的实验比较
一、实验目的
1、运放为核心器件组成的电压跟随器与晶体管为核心构成的电压跟随器动态
性能的试验比较
2、掌握常用电子仪器的操作及使用
二、实验原理与要求
电压跟随器,即就是输出电压与输入电压相同,电压放大倍数接近于1。
电压跟随器的显著特点是,输入阻抗高,而输出阻抗低,因而从信号源索取的电流小而且带负载能力强。
在电路中,电压跟随器一般做缓冲级及隔离级。
1、运放为核心器件组成的电压跟随器
如图2—1所示电路引入了电压串联负反馈,将输出电压全部反馈到反相输入端,又由于“虚短”“虚断”的概念Uo=UN=Up,故输出电压与输入电压的关系为Uo=Ui 理想运放的开环差模增益为无穷大,因而电压跟随器具有比射极输出器好得多的跟随特性。
2、晶体管为核心构成的电压跟随器
如电路图2—2所示的共集放大电路
3、电压放大倍数的测量
用交流毫伏表直接测量,它适用于低频正弦电压。
此时有:Au=Uo/Ui
其中 Ui、Uo分别为输入和输出电压的峰峰值。
4、输入电阻和输出电阻的测量
输入电阻:
Ri=Ui’/(Ui-Ui’)R
输出电阻:
Ro=(Uoc/Uol-1)Rl
三、实验仪器与设备
1、Multisim10.0仿真软件;
2、模拟电子技术实验平台/实验箱、模拟电子技术实验板;
3、20MHz双踪示波器;
4、数字万用表、交流毫伏表;
5、晶体管9013、9014,运放NE5532、741,1/4W电阻、电容等。
四、实验容及步骤
1、运放为核心器件组成的电压跟随器
(1)放大倍数Au的测量
A 加入交流信号fi=1k Hz(由示波器测定),峰峰值Ui=2V,接到图2—1电路
图2-1
a、行仿真图可以得到输入电压Ui如图2-11所示,输入电压Uo和输出
电压Ui如图所示:
b、以运放器为核心器件的电压跟随器电路仿真后,可从虚拟示波器观
察到Ui和Uo的波形如图2-13所示:
图2-13
B 调节Ui的值并用示波器观察输出端Uo的峰峰值大小,将数据填入表1
表1
Ui/mv 1 2 3
Uo/v 1 2 3
Au 1 1 1
(2)Ri及Ro的测量
在理想状态下,Ri趋近于∞,Ro趋近于0。
输入电阻:
Ri=Ui’/(Ui-Ui’)10k=2/(2-2)=∞
输出电阻:
Ro=(2/2-1)5.1k=0
2、晶体管为核心构成的电压跟随器
1)放大倍数Au的测量
A加入交流信号fi=1k Hz(由示波器测定),峰峰值Ui=2V,接到电路的AB 端如图2-2所示:
图2-2
a、行仿真图可以得到输入电压Ui如图2-21所示,输入电压Uo如图2-22所示:
图2-21
图2-22
B ,在fi=1k Hz峰峰值Ui=2V空载条件下,用双踪示波器观察输入信号Ui输
出信号Uo的波形,同时记录输出电压Uo的峰峰值填进表2,计算电压放大倍数Au的大小。
C , 改变Ui的大小分别重复步骤(B)的操作
表2
(2)输入电阻Ri的测量
A , 在被测放大电路与信号源间串联已知电阻R=5.1K
B,分别测R两端对地电位值Vs,Vi'来计算Ri=RVi'/(VS-Vi')测量数据记录在表3
表3
(3)输出电阻Ro的测量
输入端加一固定电压,先不加入电阻R
L 测出输出电压U
oc
接入负载电阻R
L
再测
接入负载后的电压U
OL
记录在表4
由公式Ro=R
L (U
oc
-- U
OL
)/ U
OL
计算R
O
表4
五、结论
运放为核心器件组成的电压跟随器比晶体管为核心构成的电压跟随器动态性能更稳定。