北京交通大学模拟电子电路实验报告
电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。
实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。
2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。
(2)进行仿真实验,记录各个参数数据。
(3)分析实验结果,了解电源电路的工作原理和性能。
3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。
结果表明,当开关频率增加时,电路的效果也增强。
(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。
4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。
掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。
通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。
《模拟电子线路实验》实验报告

《模拟电子线路实验》实验报告实验报告一、实验目的通过模拟电子线路实验,掌握电子线路的基本原理和实验技巧,加深对电子线路的理论知识的理解。
二、实验设备实验中使用的设备有:示波器、万用表、信号发生器、电阻、电容、二极管等。
三、实验原理电子线路由电源、电阻、电容、电感、二极管等元件组合而成。
在电子线路中,电源提供电流,电流通过线路中的元件实现信号的处理和传递。
电阻限制电流的流动,电容储存电荷,电感储存磁场,二极管具有导通(正向偏置)和截止(反向偏置)的特性。
四、实验内容本次实验的实验内容主要包括以下几个方面:1.电阻的测量和串并联的实验(1)利用示波器和万用表对不同电阻值的电阻进行测量,并分析测量值和标称值之间的差异;(2)在电路中连接不同的电阻,并观察并分析串联和并联对电阻阻抗的影响。
2.电容的充放电实验(1)利用信号发生器输出方波信号,通过一个电阻将方波信号传到一个电容上进行充放电;(2)通过示波器观察电容充放电波形,分析电容的充放电过程。
3.二极管的直流分压和交流放大实验(1)利用电源和电阻构建一个二极管直流分压电路,通过示波器观察电路输出;(2)通过信号发生器产生正弦波信号,通过二极管放大电路增大信号幅度,并通过示波器观察放大后的信号。
五、实验结果1.电阻的测量和串并联的实验经测量,不同电阻的测量值与标称值相差较小,误差在可接受范围内。
串联电阻的总阻抗等于各个电阻之和,而并联电阻的总阻抗等于各个电阻的倒数之和。
2.电容的充放电实验通过示波器观察到电容的充放电过程,放电过程是指电容器通过一个电阻将储存的电荷逐渐释放,电压逐渐下降的过程;充电过程是指电容器内的电压逐渐增加,直到与输入信号的幅度相等,并保持恒定的过程。
3.二极管的直流分压和交流放大实验通过示波器观察到二极管直流分压电路的输出近似为输入信号的一半。
在交流放大实验中,增加了二极管和电容,使得输入信号的幅度得以增大,实现了信号的放大。
六、实验总结通过本次实验,我深入了解了电子线路的基本原理和实验技巧。
模拟电路实训报告

模拟电路实训报告实验一常用电子仪器的使用一、实验目的1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器、直流稳压电源、交流毫伏表、频率计等的主要技术指标、性能及正确使用方法。
2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法。
二、实验原理在模拟电子电路实验中,经常使用的电子仪器有示波器、函数信号发生器、直流稳压电源、交流毫伏表及频率计等。
它们和万用电表一起,可以完成对模拟电子电路的静态和动态工作情况的测试。
实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1-1所示。
接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。
信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。
图1-1 模拟电子电路中常用电子仪器布局图1、示波器示波器是一种用途很广的电子测量仪器,它既能直接显示电信号的波形,又能对电信号进行各种参数的测量。
现着重指出下列几点:1)、寻找扫描光迹将示波器y轴显示方式置“y1”或“y2”,输入耦合方式置“gnd”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:①适当调节亮度旋钮。
②触发方式开关置“自动”。
③适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。
(若示波器设有“寻迹”按键,可按下“寻迹”按键,判断光迹偏移基线的方向。
)2)、双踪示波器一般有五种显示方式,即“y1”、“y2”、“y1+y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。
“交替”显示一般适宜于输入信号频率较高时使用。
“断续”显示一般适宜于输入信号频率较底时使用。
3)、为了显示稳定的被测信号波形,“触发源选择”开关一般选为“内”触发,使扫描触发信号取自示波器内部的y通道。
4)、触发方式开关通常先置于“自动”调出波形后,若被显示的波形不稳定,可置触发方式开关于“常态”,通过调节“触发电平”旋钮找到合适的触发电压,使被测试的波形稳定地显示在示波器屏幕上。
模拟电子线路实验报告

模拟电子线路实验报告模拟电子线路实验报告引言:模拟电子线路是电子工程领域中的重要基础课程,通过实验可以帮助学生理解电子器件的工作原理和电路的设计方法。
本实验报告将介绍我在模拟电子线路实验中所进行的一系列实验,包括放大器电路、滤波器电路和振荡器电路。
实验一:放大器电路在放大器电路实验中,我们使用了两个常见的放大器电路:共射极放大器和共基极放大器。
共射极放大器具有较高的电压增益和输入阻抗,适用于信号放大应用。
共基极放大器则具有较低的电压增益和输出阻抗,适用于驱动低阻抗负载。
通过实验,我们验证了这两种放大器电路的性能,并观察到了它们在不同频率下的响应特性。
实验二:滤波器电路滤波器电路是电子系统中常见的电路,用于去除或选择特定频率的信号。
在实验中,我们研究了三种常见的滤波器电路:低通滤波器、高通滤波器和带通滤波器。
通过调整电路参数和元件值,我们观察到了这些滤波器在不同频率下的截止特性和幅频响应。
此外,我们还讨论了滤波器的阶数和频率响应对电路性能的影响。
实验三:振荡器电路振荡器电路是一种能够产生稳定振荡信号的电路,常用于时钟发生器、射频发射和接收等应用中。
在实验中,我们设计和搭建了两种常见的振荡器电路:RC 相移振荡器和LC谐振振荡器。
通过调整电路参数和元件值,我们观察到了振荡器的频率稳定性和波形特性。
此外,我们还讨论了振荡器的起振条件和频率稳定性的影响因素。
实验结果与分析:通过实验,我们对放大器、滤波器和振荡器电路的性能进行了验证和分析。
我们观察到了不同电路参数和元件值对电路性能的影响,例如放大器的电压增益、滤波器的截止频率和振荡器的频率稳定性。
我们还学习到了如何根据电路需求选择合适的电路结构和元件数值,以满足特定的电路设计要求。
结论:通过模拟电子线路实验,我们深入了解了放大器、滤波器和振荡器电路的原理和性能。
我们通过实验验证了这些电路的工作特性,并学会了根据设计要求选择合适的电路结构和元件数值。
这些实验为我们今后在电子工程领域的学习和研究奠定了坚实的基础。
北京交通大学 计算机仿真报告三

Beijing Jiaotong University计算机仿真第三次实验报告学院:电气工程三相桥式全控整流电路仿真利用simpowersystems建立三相全控整流桥的仿真模型。
输入三相电压源,线电压380V,50Hz,内阻0.001欧姆。
可用“Universal Bridge”模块。
实验结果与分析:1.带电阻负载的仿真。
1)Alpha=30deg时,Ud、Uvt、Id的波形分别如下所示(从上到下):2)Alpha=90deg时,Ud、Uvt 、Id的波形分别如下所示(从上到下):3)Alpha=120deg时,Ud,Uvt,Id的波形分别如下(从上到下):电阻性负载时,根据理论计算公式:0<alpha<60°时,Ud=514.8cos(alpha);60<alpha<120°时,Ud=514.8[1+cos(600+alpha)]。
由此画出如下理论情况下的移向特性曲线。
由上表可以看出,0~90度时,仿真数据与理论值相差不大,90~120度时的仿真数据与理论值相差较大,原因是计算理论值时,没考虑整流桥的参数影响。
2.带阻感负载的仿真。
(1)正常时1)当alpha=30时,Ud ,Uvt ,Id 的波形分别如下(由上至下):2)当alpha=60时,Ud ,Uvt ,Id 的波形分别如下(由上至下):3) 当alpha=90时,Ud,Uvt,Id的波形分别如下(由上至下):分析:对三相全控整流电路(阻感负载)行分析可知,alpha的取值范围是0~90度。
0<alpha<90度时,Ud=513cos(alpha),则各角度下Ud的理论值为:由上表可以看出,仿真数据与理论值相差不大。
(2)alpha=30度时,从第六个周期开始移去A相上管的触发脉冲的Ud、Uvt、Id的波形:分析:在第六个周期的时候,由于A相上管的触发脉冲丢失,无法导通,进而使C相上管无法关断,输出电压为线电压Ucb,Uvt为线电压AB,由于线电压Ucb在减小,电感L放电,输出电流减小,直到电感上的电压小于Ucb,C相上管关断,输出电压为0。
模拟电子电路 实验一 三极管的放大特性 实验报告

模拟电子电路实验一三极管的放大特性实验报告模拟电子电路实验一三极管的放大特性实验报告实验目的本实验旨在研究三极管放大器的基本原理和放大特性,了解其输出特性曲线和输入特性曲线,并通过实验验证与理论相符。
实验内容1. 搭建三极管放大电路;2. 测量和记录三极管的输入特性和输出特性;3. 理论分析输出特性曲线。
实验仪器和设备1. 双踪示波器;2. 函数发生器;3. 三极管;4. 电阻、电容等元器件。
实验步骤1. 按照电路图搭建三极管放大电路;2. 设置函数发生器,输入信号频率为1kHz,幅度适当;3. 调节电源电压,使其为恒定值;4. 使用双踪示波器测量输入电压和输出电压,并记录数据;5. 根据实测数据绘制输出特性曲线,并进行分析。
实验结果与分析通过实验测量和数据记录,我们得到了三极管的输入特性和输出特性曲线,并与理论预测进行了对比。
实验结果显示,三极管在放大电路中表现出了良好的放大特性,输出特性曲线呈现出非线性的特点。
通过分析输出特性曲线,我们可以得到三极管的放大倍数、截止频率等重要参数。
结论本实验通过搭建三极管放大电路,测量和分析了其放大特性。
实验结果与理论相符,验证了三极管放大器的基本原理。
三极管作为一种常用的电子器件,在实际电路中具有重要的应用价值。
实验总结通过本次实验,我们加深了对三极管放大特性的理解,并掌握了实验测量和分析的方法。
在后续的实验中,我们将进一步研究和应用三极管放大器,探索更多的电子电路原理和技术。
---> 注意:本报告的内容为实验结果和分析的简要总结,详细数据和图表请参见实验记录。
模电的实验报告

模电的实验报告摘要:该实验是关于模拟电子电路的实验,主要在于学习基本的模拟电路的分析方法和设计方法,并且在实验中观察电路的性能,理解模拟电路中的基本物理概念。
实验设备包括模拟电路实验箱、双踪示波器、信号发生器和数字万用表。
实验内容包括放大电路实验、滤波电路实验和振荡电路实验,通过实验观察和数据记录,对模拟电路的工作原理和性能进行分析和解释。
关键词:模拟电路、放大电路、滤波电路、振荡电路一、实验原理1、放大电路放大电路是用来增大信号的电路,放大电路主要应用于电信、电视、音响、计算机等各个领域。
放大器主要有两个核心部件,一个是NPN/PNP晶体管,一个是放大电阻。
通过晶体管的控制,电路可以放大电压或电流,从而达到输出比输入更大的效果。
放大电路的分类:按功率可分为小功率放大电路和大功率放大电路;按频率可分为低频放大电路和高频放大电路;按放大形式可分为直接耗散型放大电路和类A、类B、类C等放大电路。
2、滤波电路滤波电路是指去除电源中的噪声和干扰,使信号输出清晰、稳定、纯净的电路。
根据过滤的信号波形,滤波电路又被分为低通滤波电路、高通滤波电路、带通滤波电路和带阻滤波电路。
在实际应用中,滤波电路经常被用于音频放大电路中,从而滤除低频或高频的杂音,使声音更加清晰、纯净。
3、振荡电路振荡电路是指将电能转换为振动能并不断地跳动的电路,振荡电路实现了将某种能量转化为规律的波形输出。
振荡电路主要应用于电子钟表、无线电通讯、音频放大电路等领域。
振荡电路分类:根据振荡输出波形的不同,振荡电路可分为正弦波振荡电路、方波震荡电路、锯齿波振荡电路等。
二、实验内容本次实验的内容包括放大电路实验、滤波电路实验、振荡电路实验。
本次实验选取的放大电路为共射放大器,实验步骤如下:(1)调整信号发生器,信号频率为1kHz,信号电平0.5Vp-p。
(2)拨动实验箱内开关,选取Ube差动放大电路。
(3)调节不同量级的调节器,测量输入、输出的电平以及21倍增益下的输入阻抗和输出阻抗。
北京交通大学 cmos 模拟集成电路设计实验报告

北京交通大学模拟集成电路设计实验报告学生姓名学号团队成员学院班级电信学院实验感想:经过为期三周的模电实验,让我对模拟电路有了进一步的认识,只有通过自己设计才能真正了解运放原理与应用。
试验开始时什么也不懂,然后边学边做,不断地熟悉了软件的使用,同时团队分工也大大提高了效率。
虽然还有一个版图没有完成,但整体上学到了很多,这次试验受益匪浅。
实验步骤1、进入虚拟机下的Cadence (虚拟机下linux 用户名:jchli 密码:ltabbltabb )Cadence 运行方法:在linux 桌面右键选择新建终端——>在终端输入 cd tsmc0_18rfp4_v15 回车——>输入lmli 回车——>输入icfb& 回车2、在CIW (command Interpreter window )命令框中,点击Tools ——> Library Manager ,出现LM (Library Manager )窗口建立一个新的Library :点击File ——>New ——>Library ,出现New Library 窗口;填入Library 的名称,点击OK出现Load Technology 窗口,添加工艺文件:选择analogLib ,依次选择和添加所需要的器件,并且按照下图连接起来,并根据要求修改它们的参数,再保存,一个完整的电路拓扑图就形成了。
3、由Schematic 产生symbol :打开Schematic ,点击Design ——>Create cellview ——>From cellview ,填写上相应的名称,点击OK ,即可。
还可以将生成的symbol 进行图形上的修改:可用ADD ——>shape 内的各种形状来修饰这个symbol 的外观,最后保存。
4、仿真环境Affirma Analog Circuit design Environment 的调用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《模拟电子技术》课程实验报告集成直流稳压电源的设计语音放大器的设计集成直流稳压电源的设计一、实验目的1、 掌握集成直流稳压电源的设计方法。
2、 焊接电路板,实现设计目标3、 掌握直流稳压电源的主要性能指标及参数的测试方法。
4、 为下一个综合实验——语音放大电路提供电源。
二、技术指标1、 设计一个双路直流稳压电源。
2、 输出电压 Uo = ±12V , 最大输出电流 Iomax = 1A 。
3、 输出纹波电压 ΔUop-p ≤ 5mV , 稳压系数 S U ≤ 5×10-3 。
4、 选作:加输出限流保护电路。
三、实验原理与分析直流稳压电源的基本原理直流稳压电源一般由电源变压器T 、整流滤波电路及稳压电路所组成。
基本框图如下。
各部分作用:1、电源变压器:降低电压,将220V 或380V 的电网电压降低到所需要的幅值。
2、整流电路:利用二极管的单向导电性将电源变压器输出的交流电压变换成脉动的直流电压,经整流电路输出的电压虽然是直流电压,但有很大的交流分量。
直流稳压电源的原理框图和波形变换整流 电路U iU o滤波 电路 稳压 电路电源 变压器 ~3、滤波电路:利用储能元件(电感、电容)将整流电路输出的脉动直流电压中的交流成分滤出,输出比较平滑的直流电压。
负载电流较小的多采用电容滤波电路,负载电流较大的多采用电感滤波电路,对滤波效果要求高的多采用电容、电感和电阻组成的复杂滤波电路。
单向桥式整流滤波电路不同R L C的输出电压波形4、稳压电路:利用自动调整的原理,使输出电压在电网电压波动和负载电流变化时保持稳定,即输出电流电压几乎不变。
常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。
二者的工作原理有所不同。
稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。
它一般适用于负载电流变化较小的场合。
串联型稳压电路是利用电压串联负反馈的原理来调节输出电压的。
集成稳压电源事实上是串联稳压电源的集成化。
实验中为简化电路,我们选择固定输出三端稳压器作为电路的稳压部分。
固定输出三端稳压器是指这类集成稳压器只有三个管脚输出电压固定,这类集成稳压器分成两大类。
一类是78××系列,78标识为正输出电压,××表示电压输出值。
另一类是79××系列,79表示为负输出电压,××表示电压输出值。
三端稳压电路基本应用电路 四、参数计算1、整流电路参数输出电压平均值:222)(09.022)(sin 221U U wt td U U AV ≈==⎰πωππ输出电流平均值:LLAV AV R U R U I 2)(0)(09.0≈=平均整流电流:LLAV AV AV D R U R U I I 2)(0)(0)(45.022≈==最大反向电压:22U U RM =整流二极管的选择(考虑电网10±%波动):⎪⎩⎪⎨⎧>>2221.11.145.0UU R U I RL F2、滤波电路参数二极管导通角θ:滤波电容的选择:2)(02.1,2)5~3(U U TC R AV L ≈= T/2一般选择几十至几千微法的电解电容,耐压值应大于2256.121.1U U 。
3、实际计算过程(1)要使W7812正常工作,必须保证输入与输出之间维持大于2V 的压降,因此W7812输入端直流电压必须保证在14V 以上。
W7812输入端的电流是对变压器副边输出电压U 2(t)整流、滤波后得到的。
假设整流电路内阻为0,负载电流为0,W7812输入端有最大电压U=1.414U ef ,U ef 是U 2(t)的有效值。
由于滤波电容不可能无限大,所以U<1.414 U ef ,根据经验可知U=1.2 U ef ,得U ef =14.4V ,考虑到整流桥经过两个二极管约有1.4V 的压降,得变压器可取15V 。
(2)变压器选择:变压器选择双15V 变压,考虑到电流不需要太大,最大电流为2A ,实际选择变压器输出功率为30W ,可以很好地满足要求。
(3)整流桥:考虑到电路中会出现冲击电流,整流桥的额定电流是工作电流的2~3倍。
选取RS301(100V ,3A )即可,实际购买过程中选择了2W10也符合设计要求。
(4)滤波电路:考虑到对纹波电压要求比较高,所以选择了2200uF 、耐压值为25V 的电解电容。
(5)去耦电容:去耦电容的选择是由W7812和W7912芯片要求的,查手册可知分别为0.1uF 和0.33uF ,用来滤除高频分量,防止产生自激。
(6)为了防止负载产生冲击电流,故在输出端加入220uF 、耐压值为25V 的电解电容。
(7)W7912支路的原件参数与W7812支路相同。
(8)为防止W7812和W7912因过热而烧坏,需加装散热片。
五、整体电路六、参数性能指标及测试1、测量稳压电源输出的稳压值把220V交流电从变压器一端输入,用示波器测量稳压电源的输出值。
我们的测试结果是-11.8V和12.19V,基本符合规格。
2、测量稳压电源的纹波电压纹波电压是指在额定负载条件下,稳压电源输出直流电压中所含的交流分量。
在交流电压为220V,负载电流最大(额定输出电流)的条件下,用示波器测量稳压电源的输出纹波电压。
我们测量出的纹波电压;当输出+12V时为155.2mV ,输出-12时为154.2mV,基本符合规格。
七、仿真报告可以看到输入的正弦信号经过整流、滤波、稳压后最终得到我们所需要的+12V直流电压八、元件清单1、三端变压器(220V~15V 2A) 1个2、2W10整流桥 1个3、电解电容: 2200uF 耐压值25V 2个220uF 耐压值25V 2个4、独石电容:0.33uF 2个0.1uF 2个5、三端稳压器:W7812 1个W7912 1个6、散热片2个7、导线若干九、参考文献1、《模拟电子技术》刘颖、任希、曾涛等.北京: 北京交通大学出版社,清华大学出版社,2008.42、《电子技术基础实验、综合设计实验与课程设计》侯建军、佟毅等. 北京:高等教育出版社,2007.10语音放大器的设计一、实验目的1、通过实验培养学生的市场素质,工艺素质,自主学习的能力,分析问题解决问题的能力以及团队精神。
2、通过实验总结回顾所学的模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。
二、设计任务与要求1、设计任务1)语音放大电路原理框图语音放大电路由“输入电路”、“前置放大器”、“有源带通滤波器”、“功率放大器”、“扬声器”几部分构成。
语音放大电路原理框图2)性能指标a)前置放大器:输入信号:Uid ≤10 mV输入阻抗:Ri ≥100 kΩ。
b)有源带通滤波器:频率范围:300 Hz ~3 kHz增益:Au = 1c)功率放大器:最大不失真输出功率:Pomax≥1W负载阻抗:RL= 8 Ω(4 Ω)电源电压:+ 5 V,+ 12V,- 12Vd)输出功率连续可调直流输出电压≤50 mV静态电源电流≤100 mA2、要求1、前置放大器:增益:Av = Uo / Ui输入阻抗:Ri = Uo2/(Uo1-Uo2) R2、带通滤波器:增益:Av = Uo / Ui通频带:BW = fH - fL3、功率放大器最大不失真输出功率的测量(输入1KHZ正弦波,调到输出最大不失真状态)Pomax = U2omax / 2RL = U2o / RL4、功率放大器直流输出电压和静态电流的测量输入对地短路,测量直流输出电压。
将万用表调至电流档,量程为100mA,并将表笔串接在12V电源与集成功放的电源端,测量静态电流。
三、总电路框图及总原理图1、实验总体电路图麦克→前置放大电路→RC有缘滤波器→功率放大电路→喇叭2、各部分电路1)前置放大电路R5 10kΩ前置放大电路由2个同向放大电路组成,如上图所示。
该电路具有输入阻抗高,电压增益容易调节,输出不包含共模信号等优点。
本电路主要起放大电压幅度的作用。
2)带通滤波电路宽带通滤波器,在满足LPF的通带截止频率高于HPF的条件下,把相同元件压控电压源滤波器的LPF和HPF串联起来可以实现Butterworth通带响应。
用该方法构成的带通滤波器的通带较宽,通带截止频率易于调整,因此多用于测量信号噪声比的音频带通滤波器。
3)功率放大电路功率放大电路主要起放大电流的作用。
其中TDA2030为集成功放器件,具有体积小、输出功率大、失真小等特点。
并具有内部保护电路。
四、 设计思路依照原理框图,输入端可采用麦克风和音频线路输入两种形式,声音通过麦克风(或音频线路)输入前置放大电路,进行一次放大后输入二阶有源带通滤波电路,对通频带(300Hz~3000Hz )以外的信号进行滤波,以消除杂音,最后将经过放大和滤波的信号输入功率放大电路,进行功率放大后将声音通过扬声器输出。
五、 单元电路设计与参数计算1、 前置放大电路前置放大电路采用集成运放LM324构成两级放大电路。
为增强对输入信号的保持性,故两级放大电路均采用同相放大电路组态。
放大电路的增益可以通过改变反相端的输入电阻与反馈电阻的值来调节,即21U U U A A A ⨯=总。
放大器输入漂移和噪声等因素对于总的精度至关重要,放大器本身的共模抑制特性也同等重要。
因此前置放大电路应该是一个高输入阻抗、高共模抑制比、低漂移的小信号放大电路。
输入信号:mV U id 10≤,输入阻抗:Ω≥k R i 100。
实验中,实际设计放大倍数10~1000倍,可通过电位器调节。
通过计算得元件参数如下:R 1=110k Ω,R 2=100k Ω,R 3=1M Ω,R 4=100Ω,R5=10kΩ(滑变),R6=100Ω2、RC二阶有源带通滤波电路在滤波电路设计时采用LM324设计了具有Butterworth特性的二阶有源带通滤波器。
在满足LPF的通带截止频率高于HLP的通带截止频率的条件下,把相同元件压控电压源滤波器的LPF和HPF串联起来,可以实现Butterworth通带响应。
用该方法构成的滤波器的通带较宽,通带截止频率易于调整。
本实验设计带宽2.7kHz(300Hz-3000Hz),理论上能够抑制低于300Hz和高于3000Hz的信号。
实际与前级放大电路使用同一个LM324的其余两个运放。
通过计算得元件参数如下:R7=8.2kΩ,R8=8.2kΩ,R9=20kΩ,R11=3.5kΩ,R12=3.5kΩ,R13=20kΩ,C1=100nF,C2=100nF,C3=10nF,C4=10nF,3、功率放大电路功率放大的主要作用是向负载提供所需的功率,在信号不失真的前提下,要求输出功率尽可能大,转换效率尽可能高。