高中数学必修1函数概念及性质知识点总结
高中数学新教材必修第一册第三章 函数的概念与性质基础知识

第三章 函数的概念与性质1函数的概念:一般地,设B A ,是非空的实数集,如果对于集合A 中的 x ,按照某种 f ,在集合B 中都有 y 与它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作A x x f y ∈=),(,其中,x 叫做 ,x 的取值范围A 叫做函数的 ,与x 的值相对应的y 值叫做 ,函数值的集合}|)({A x x f ∈叫做函数的 ,值域是集合B 的子集.2函数的三要素: 、 、 . 求函数定义域的原则:(1)若()f x 为整式,则其定义域是 ;(2)若()f x 为分式,则其定义域是 ;(3)若()f x 是二次根式(偶次根式),则其定义域是 ;(4)若()0f x x =,则其定义域是 ;(5)若()()0,1x f x a a a =>≠,则其定义域是 ;(6)若()()log 0,1a f x x a a =>≠,则其定义域是 ;(7)若f (x )=sinx,g (x )=cosx ,则其定义域是 ;(8)若x x f tan )(=,则其定义域是 ;求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数.6函数的单调性:(1)单调递增:设任意 ,当 时,有 .特别的,当函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意 ,当 时,有 特别的,当函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间.8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足: ,都有 ; 使得 ,那么称M 是函数的最大(小)值.10函数的奇偶性:偶函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;偶函数的图象关于 对称;奇函数:一般地,设函数)(x f y =的定义域为I ,如果 ,都有 ,且 ,那么函数叫做 ;奇函数的图象关于 对称;若奇函数)(x f y =的定义域中有零,则其函数图象必过原点,即(0)0f =.11幂函数:一般地,函数 叫做幂函数,其中 是自变量, 是常数. 12幂函数()f x x α=的性质:①所有的幂函数在 都有定义,并且图象都通过点 ; ①如果0α>,则幂函数的图象过原点,并且在区间[)0,+∞上是 ; ①如果0α<,则幂函数的图象在区间()0,+∞上是 ,①幂函数图象不出现于第四象限.。
高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念二、函数知识点8:函数的概念以及区间 1》函数概念设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域.2》区间和无穷大①设a 、b 是两个实数,且a<b ,则:{x|a ≤x ≤b}=[a,b] 叫闭区间; ②{x|a<x<b}=(a,b) 叫开区间;③{x|a ≤x<b}=[,)a b , {x|a<x ≤b}=(,]a b ,都叫半开半闭区间.④符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞.3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.典例分析题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( )A 、x y x f 21)(=→ B 、x y x f 31)(=→ C 、x y x f 32)(=→ D 、x y x f =→)(例2:下列对应关系是否是从A 到B 的函数:①}{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方;③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。
高中数学必修1函数知识点总结

高中数学必修1函数知识总结一、函数的有关概念1 •函数的概念:设A、B是非空的_________ ,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有 _____________ 的数f(x)和它对应,那么就称f: A T B为从集合A到集合B的一个函数•记作:y=f(x) , x € A •函数的三要素为 _________________________________________________________ 找错误:① 其中,x叫做自变量,x的取值范围A叫做函数的定义域;______________________________________②与x的值相对应的y值叫做函数值,所以集合B为值域。
__________________________________ 注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式.专项练习1•求函数的定义域:类型1•⑴ y ——2x 15⑵ y (2x 1)0⑶ y - 4 x2x 3 log2(x 1)总结:能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于 1. (5)如果函数是由一些基本函数通过四则运算结合而成的•那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零⑺实际问题中的函数的定义域还要保证实际问题有意义•(注意:求出不等式组的解集即为函数的定义域。
)类型2抽象函数求定义域:1•已知f (x)的定义域,求复合函数f[g x ]的定义域方法总结_________________________________________ 练习1.已知函数f(x)的定义域为1,5,求f(3x 5)的定义域为_____________________________________ 练习2、设函数f (x)的定义域为[0, 1],则函数f (x2)的定义域为_____________________________________2. __________________________________________________________________________________________ 已知复合函数f[gx]的定义域,求f (x)的定义域方法总结________________________________________________练习1.若函数f(x 1)的定义域为[2 , 3],求函数f (x)的定义域. ________________________________________ 练习2.已知函数f (x2 2x 2)的定义域为0,3,求函数f(x)的定义域. _______________________________________ 3. 已知复合函数f[g(x)]的定义域,求f[h(x)]的定义域方法总结_______________________________________练习1.若函数f(x 1)的定义域为[2, 3],则函数f(2x 1)的定义域是_____________________练习2、已知函数的定义域为0 ,则y=f(3x-5)的定义域为4.已知f(x)的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。
高中数学必修一知识点必看

高中数学必修一知识点必看每一门科目都有自己的学习方法,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲技巧的。
下面是小编给大家整理的一些高中数学必修一知识点的学习资料,希望对大家有所帮助。
高一数学必修1第三章知识点第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。
2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。
即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点.3、函数零点的求法:1(代数法)求方程f(x)0的实数根;○2(几何法)对于不能用求根公式的方程,可以将它与函数yf(x)的图象联系起来,○并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数ykx(k0)仅有一个零点。
k(k0)没有零点。
x③一次函数ykxb(k0)仅有一个零点。
②反比例函数y④二次函数yax2bxc(a0).(1)△>0,方程ax2bxc0(a0)有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.(2)△=0,方程ax2bxc0(a0)有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程ax2bxc0(a0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数ya(a0,且a1)没有零点。
⑥对数函数ylogax(a0,且a1)仅有一个零点1.⑦幂函数yx,当n0时,仅有一个零点0,当n0时,没有零点。
5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把fx转化成,这另fx0,再把复杂的函数拆分成两个我们常见的函数y1,y2(基本初等函数)个函数图像的交点个数就是函数fx零点的个数。
6、选择题判断区间a,b上是否含有零点,只需满足fafb0。
高中数学必修一函数性质详解及知识点总结及题型详解

经典高中数学最全必修一函数性质详解及知识点总结及题型详解分析一、函数的概念与表示1、映射:1对映射定义的理解;2判断一个对应是映射的方法;一对多不是映射,多对一是映射集合A,B 是平面直角坐标系上的两个点集,给定从A →B 的映射f:x,y →x 2+y 2,xy,求象5,2的原象.3.已知集合A 到集合B ={0,1,2,3}的映射f:x →11-x ,则集合A 中的元素最多有几个写出元素最多时的集合A.2、函数;构成函数概念的三要素 ①定义域②对应法则③值域函 数 解 析 式 的 七 种 求 法 待定系数法:在已知函数解析式的构造时,可用待定系数法; 例1 设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法;但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域;例2 已知221)1(xx x x f +=+ )0(>x ,求 ()f x 的解析式三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式;与配凑法一样,要注意所换元的定义域的变化; 例3 已知x x x f 2)1(+=+,求)1(+x f四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法; 例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式;例5 设,)1(2)()(x xf x f x f =-满足求)(x f例6 设)(x f 为偶函数,)(x g 为奇函数,又,11)()(-=+x x g x f 试求)()(x g x f 和的解析式六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式;例7 已知:1)0(=f ,对于任意实数x 、y,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式;例8 设)(x f 是+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f1、求函数定义域的主要依据:1分式的分母不为零;2偶次方根的被开方数不小于零,零取零次方没有意义;32 2 (21)x x 已知f -的定义域是[-1,3],求f()的定义域1求函数值域的方法①直接法:从自变量x 的范围出发,推出y=fx 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式; ③判别式法:运用方程思想,依据二次方程有根,求出y 的取值范围;适合分母为二次且x ∈R 的分式;④分离常数:适合分子分母皆为一次式x 有范围限制时要画图; ⑤单调性法:利用函数的单调性求值域; ⑥图象法:二次函数必画草图求其值域; ⑦利用对号函数四.1.定义:2.性质:①y=fx 是偶函数⇔y=fx 的图象关于y 轴对称, y=fx 是奇函数⇔y=fx 的图象关于原点对称,②若函数fx 的定义域关于原点对称,则f0=0③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇两函数的定义域D 1 ,D 2,D 1∩D 2要关于原点对称31、函数单调性的定义:2 设()[]x g f y =是定义在M 上的函数,若fx 与gx 的单调性相反,则()[]x g f y =在M 上是减函数;若fx 与gx 的单调性相同,则()[]x g f y =在M 上是增函数;时,1)(>x f ,⑴求证:)(x f 在R 上是增函数; ⑵若4)3(=f ,解不等式2)5(2<-+a a f 3函数)26(log 21.0x x y -+=的单调增区间是________4高考真题已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)7一:函数单调性的证明1.取值 2,作差 3,定号 4,结论 二:函数单调性的判定,求单调区间x a x y += 0>a xax y -= 0>a 三:函数单调性的应用1.比较大小 例:如果函数c bx x x f ++=2)(对任意实数t 都有)2()2(-=+t f t f ,那么 A 、)4()1()2(f f f << B 、)4()2()1(f f f <<C 、)1()4()2(f f f << C 、)1()2()4(f f f <<2.解不等式例:定义在-1,1上的函数()f x 是减函数,且满足:(1)()f a f a -<,求实数a 的取值范围; 例:设是定义在上的增函数,,且,求满足不等式的x 的取值范围.3.取值范围例: 函数 在上是减函数,则 的取值范围是_______.例:若(31)41()log 1a a x a x f x x x -+≤⎧=⎨>⎩是R 上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3C.11[,)73D.1[,1)74. 二次函数最值例:探究函数12)(2+-=ax x x f 在区间[]1,0的最大值和最小值;例:探究函数12)(2+-=x x x f 在区间[]1,+a a 的最大值和最小值;5.抽象函数单调性判断例:已知函数)(x f 的定义域是),0(+∞,当1>x 时,0)(>x f ,且)()()(y f x f xy f +=⑴求)1(f ,⑵证明)(x f 在定义域上是增函数⑶如果1)31(-=f ,求满足不等式)21()(--x f x f ≥2的x 的取值范围例:已知函数fx 对于任意x ,y ∈R ,总有fx +fy =fx +y ,且当x >0时,fx <0,f 1=-错误!.1求证:fx 在R 上是减函数; 2求fx 在-3,3上的最大值和最小值.例:已知定义在区间0,+∞上的函数fx 满足f 错误!=fx 1-fx 2,且当x >1时,fx <0. 1求f 1的值;2判断fx 的单调性;3若f 3=-1,解不等式f |x |<-2.六.函数的周期性:1.定义若⇔≠=+)0)(()(T x f T x f )(x f 是周期函数,T 是它的一个周期;说明:nT 也是)(x f 的周期推广若)()(b x f a x f +=+,则)(x f 是周期函数,a b -是它的一个周期对照记忆()()f x a f x a +=-说明:()()f a x f a x +=-说明:2.若)()(x f a x f -=+;)(1)(x f a x f =+;)(1)(x f a x f -=+;则)(x f 周期是2a1 已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D22 定义在R 上的偶函数()f x ,满足(2)(2)f x f x +=-,在区间-2,0上单调递减,设( 1.5),(2),(5)a f b f c f =-==,则,,a b c 的大小顺序为_____________3 已知f x 是定义在实数集上的函数,且,32)1(,)(1)(1)2(+=-+=+f x f x f x f 若则f 2005= .4 已知)(x f 是-∞+∞,上的奇函数,)()2(x f x f -=+,当0≤≤x 1时,fx=x,则f=________ 例11 设)(x f 是定义在R 上的奇函数,且对任意实数x 恒满足)()2(x f x f -=+,当]2,0[∈x 时22)(x x x f -=⑴求证:)(x f 是周期函数;⑵当]4,2[∈x 时,求)(x f 的解析式;⑶计算:1、已知函数54)(2+-=mx x x f 在区间),2[+∞-上是增函数,则)1(f 的范围是A 25)1(≥fB 25)1(=fC 25)1(≤fD 25)1(>f2、方程0122=++mx mx 有一根大于1,另一根小于1,则实根m 的取值范围是_______八.指数式与对数式 1.幂的有关概念1零指数幂)0(10≠=a a 2负整数指数幂()10,n na a n N a-*=≠∈ 3正分数指数幂()0,,,1m n m na a a m n N n *=>∈>; 5负分数指数幂()110,,,1m nm nmnaa m n N n a a-*==>∈>60的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理数指数幂的性质3.根式根式的性质:当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a n n4.对数1对数的概念:如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a2对数的性质:①零与负数没有对数 ②01log =a ③1log =a a3对数的运算性质 logMN=logM+logN对数换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 对数的降幂公式:)10,0(log log ≠>>=a a N N mnN a n a m 且 1 213323121)()1.0()4()41(----⨯b a ab 2 1.0lg 10lg 5lg 2lg 125lg 8lg ⋅--+x 名称 指数函数 对数函数 一般形式 Y=a x a>0且a ≠1 y=log a x a>0 , a ≠1 定义域 -∞,+ ∞ 0,+ ∞ 值域 0,+ ∞ -∞,+ ∞ 过定点 0,1 1,0 图象 指数函数y=a x 与对数函数y=log a x a>0 , a ≠1图象关于y=x 对称数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系对数式比较大小同理记住下列特殊值为底数的函数图象:3、研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制4、指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的(1)1、平移变换:左+ 右- ,上+ 下- 即①函数图象及变化规则掌握几类基本的初等函数图像是学好本内容的前题1、基本函数1一次函数、2二次函数、3反比例函数、4指数函数、5对数函数、6三角函数;2、图象的变换1平移变换左加右减①函数y=fx+2的图象是把函数y=fx的图像沿x轴向左平移2个单位得到的;反之向右移2个单位②函数y=fx-3的图象是把函数y=fx的图像沿y轴向下平移3个单位得到的;反之向上移3个单位2对称变换①函数y=fx 与函数y=f-x 的图象关于直线x=0对称; 函数y=fx 与函数y=-fx 的图象关于直线y=0对称;函数y=fx 与函数y=-f-x 的图象关于坐标原点对称;②如果函数y=fx 对于一切x ∈R 都有fx+a=fx-a,那么y=fx 的图象关于直线x=a对称;③y=f-1x 与y=fx 关于直线y=x 对称 ⑤y=fx →y=f|x|3、伸缩变换y=afxa>0的图象,可将y=fx 的图象上的每一点的纵坐标伸长a>1或缩短0<a<1到原来的a 倍;y=faxa>0的图象,可将y=fx 的图象上的每一点的横坐标缩短a>1或伸长0<a<1到原来的a 倍;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0f x f x x x ->- 单调递增1212()()0f x f x x x -<- 单调递减2.函数的奇偶性也可以通过下面方法证明:()()0f x f x +-= 奇函数 ()()0f x f x --= 偶函数3.函数的凸凹性:1212()()()22x x f x f x f ++<凹函数图象“下凹”,如:指数函数 1212()()()22x x f x f x f ++>凸函数图象“上凸”,如:对数函数。
高中数学必修一-第三章-3.1 函数的概念及其表示

第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
高中数学必修一知识点总结完整版

高中数学必修一知识点总结完整版高中数学必修一是整个高中数学学习的基础,涵盖了集合、函数的概念与性质、基本初等函数等重要内容。
以下是对这些知识点的详细总结。
一、集合1、集合的概念集合是由某些确定的对象所组成的整体。
这些对象称为集合的元素。
2、集合的表示方法(1)列举法:将集合中的元素一一列举出来,用花括号括起来。
(2)描述法:用确定的条件表示某些对象是否属于这个集合。
3、集合间的关系(1)子集:如果集合 A 中的所有元素都属于集合 B,那么称 A 是B 的子集,记作 A⊆B。
(2)真子集:如果 A 是 B 的子集,且 B 中至少有一个元素不属于A,那么称 A 是 B 的真子集,记作 A⊂B。
(3)集合相等:如果 A⊆B 且 B⊆A,则 A = B。
4、集合的运算(1)交集:由属于集合 A 且属于集合 B 的所有元素组成的集合,记作A∩B。
(2)并集:由属于集合 A 或属于集合 B 的所有元素组成的集合,记作 A∪B。
(3)补集:设 U 是一个全集,A 是 U 的子集,由 U 中不属于 A 的所有元素组成的集合称为 A 在 U 中的补集,记作∁UA。
二、函数的概念1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数,记作 y =f(x),x∈A。
2、函数的三要素(1)定义域:函数中自变量 x 的取值范围。
(2)值域:函数值的集合。
(3)对应关系:函数的表达式或法则。
3、函数的表示方法(1)解析法:用数学表达式表示两个变量之间的对应关系。
(2)图象法:用图象表示函数关系。
(3)列表法:列出表格来表示两个变量之间的对应关系。
三、函数的基本性质1、单调性(1)增函数:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间 D 上的任意两个自变量的值 x1,x2,当 x1 < x2 时,都有 f(x1) < f(x2),那么就说函数 f(x)在区间 D 上是增函数。
高中数学必修一知识点归纳

高中数学必修一知识点归纳一、函数的概念与性质1. 函数的定义- 函数:从一个数集A(定义域)到另一个数集B(值域)的映射。
- 函数的表示:f(x) = y,其中x∈A,y∈B。
2. 函数的性质- 单调性:函数值随自变量增加而增加或减少。
- 奇偶性:f(-x) = f(x)(偶函数),f(-x) = -f(x)(奇函数)。
- 周期性:存在最小正数T,使得f(x+T) = f(x)。
- 有界性:函数的值在某个范围内。
3. 函数的图像- 坐标轴:x轴和y轴。
- 函数图像:表示函数关系的图形。
二、基本初等函数1. 幂函数- 定义:f(x) = x^n,n为实数。
- 性质:正整数幂、负整数幂、分数幂。
2. 指数函数- 定义:f(x) = a^x,a>0且a≠1。
- 性质:增长速度、指数律。
3. 对数函数- 定义:f(x) = log_a(x),a>0且a≠1。
- 性质:对数律、换底公式。
4. 三角函数- 正弦、余弦、正切函数:sin(x), cos(x), tan(x)。
- 性质:周期性、奇偶性、最值。
三、函数的运算1. 函数的四则运算- 加法、减法、乘法、除法。
2. 复合函数- 定义:f(g(x))。
- 性质:复合函数的值域。
3. 反函数- 定义:f(x)的反函数为g(x),满足f(g(x)) = x。
- 求法:通过解方程。
四、方程与不等式1. 一元一次方程- 解法:移项、合并同类项、系数化为1。
2. 一元二次方程- 解法:因式分解、配方法、公式法、图像法。
3. 不等式- 解法:移项、合并同类项、系数化为1。
- 性质:不等式的基本性质。
五、数列的概念与表示1. 数列的定义- 数列:按照一定顺序排列的一列数。
2. 等差数列- 定义:相邻两项之差为常数的数列。
- 通项公式:an = a1 + (n-1)d。
3. 等比数列- 定义:相邻两项之比为常数的数列。
- 通项公式:an = a1 * q^(n-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修1函数概念及性质(知识点总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
)2.构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
记作“f:A→B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
6.常用的函数表示法及各自的优点:○1函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2解析法:必须注明函数的定义域;○3图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。
例如: y=2sinX y=2cos(X2+1)7.函数单调性(1).增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。
区间D称为y=f(x)的单调增区间(睇清楚课本单调区间的概念)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:○1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) .(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)_(C)复合函数的单调性其规律如下:注意:1、函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集. 2、还记得我们在选修里学习简单易行的导数法判定单调性吗?8.函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。
○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数.注意啊:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)有时判定f(-x)=±f(x)比较困难,可考虑根据是否有f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定.9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2).求函数的解析式的主要方法有:待定系数法、换元法、消参法等,如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);11.解答数学应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学的抽象、概括,将实际问题归纳为相应的数学问题;二是要合理选取参变数,设定变元后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型;最终求解数学模型使实际问题获解.函数的性质与函数图象的特点。