3.2导数的计算

合集下载

3.2导数的计算练习

3.2导数的计算练习
正确的公式和法则,对较为复杂的求导运算,一般综合了和、 差、积、商几种运算,在求导之前应先将函数化简,然后求导 ,以减少运算量.
考点2 求曲线的切线方程
例例2:求曲线y=x3-2x在点(1,-1)处的切线方程.
[解: y′=(x3-2x)′=3x2-2, ∴y′|x=1=3×12-2=1. 即在点(1,-1)处的切线的斜率是1. 由点斜式得切线方程为y+1=x-1即x-y-2=0.
即[f(x)-g(x)]′=0,所以f(x)-g(x)=C(C为常数).
答案:C
二5.若、函填数空f题(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=________.
解析:由f(x)=ax4+bx2+c得f′(x)=4ax3+2bx,又f′(1)=2,所以4a+2b=2 ,即f′(-1)=-4a-2b=-(4a+2b)=-2.
求过点(1,-1)且与曲线y=x3-2x相切的直线方程.
解:设P(x0,y0)为切点,则切线的斜率为f′(x0)=3x-2, 故切线方程为y-y0=(3x-2)(x-x0), 即y-(x-2x0)=(3x-2)(x-x0), 又知切线过点(1,-1),代入上述方程, 得解-得1x0-=(1x-或2x0x=0)=-(312x-,2)(1-x0), 故所求的切线方程为y+1=x-1 或y+1=- 4 (x-1),
10.已知函数f(x)=ax3+bx2+cx过点(1,5),其导函数y=f′(x)的图象如图所示 ,求f(x)的解析式.
解:∵f(x)=ax3+bx2+cx, ∴f′(x)=3ax2+2bx+c.由图象可知f′(1)=0,f′(2)=0. ∴3a+2b+c=0,① 12a+4b+c=0,② 又函数f(x)的图象过点(1,5), ∴f(1)=5,即a+b+c=5③ 由①②③可得a=2,b=-9,c=12. ∴函数y=f(x)的解析式为f(x)=2x3-9x2+12x.

3.2导数的计算(27张PPT)

3.2导数的计算(27张PPT)

;
(7) y 3 x; 2
例3 :日常生活中的饮用水通常是经过净化的,随着水纯
净度的提高,所需净化费用不断增加。已知1吨水净化
到纯净度为x%时所需费用(单位:元)为:
c(x)= 5284 (80 x 100). 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率;
(1)90%;
(2)98%.
x
x
f (x) (x2) ' lim y lim 2x x x2 lim (2x x) 2x.
x x0
x0
x
x0
公式三:(x2)' 2x
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
解: y f (x) 1 , x
y f (x x) f (x) 1 1 x x x x (x x)x
y
'
1 x2
探究:
表示y=C图象上每一点处的切线 斜率都为0
表示y=x图象上每一点处的切线 斜率都为1
这又说明什么?
这又说明什么?
画出函数y=1/x的图像。根据图像, 描述它的变化情况。并求出曲线在 点(1,1)处的切线方程。
x+y-2=0
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
y f (x x) f (x) C C 0,
y 0, x
f (x) C lim y 0. x0 x
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数. 解: y f (x) x,
y f (x x) f (x) (x x) x x,
(1) c '(90) 5284 52.84 (100 90)2

3.2.2基本初等函数的导数公式及导数的运算法则(课件)

3.2.2基本初等函数的导数公式及导数的运算法则(课件)
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数
的运算法则
1.掌握基本初等函数的导数公式. 2.掌握导数的和、差、积、商的求导法则. 3.会运用导数的四则运算法则解决一些函数的求导问题.
1.导数公式表的记忆.(重点)
2.应用四则运算法则求导.(重点)
3.利用导数研究函数性质.(难点)
x xlna
2.导数的四则运算法则 设f(x)、g(x)是可导的. 公式 语言叙述 两个函数的和(或差)的导数,等于 这两个函数的导数的 和(差)
[f(x)±g(x)]′= f′(x)±g′(x)
[f(x)g(x)]′= f′(x)g(x)+f(x)g′(x)
两个函数的积的导数,等于第一个 函数的导数乘上第二个函数,加上 第一个函数乘上第二个函数的导数
答案: 1± 7 3
4.求下列函数的导数: 1 (1)y=2x -x+ x;(2)y=2xtan x.
3
解析: (1) y′=(2x
3
1 1 2 )′-x′+ x ′=6x -1-x2.
(2)y′=(2xtan x)′=(2x)′tan x+2x(tan x)′ =2 ln 2tan x+2
1.基本初等函数的导数公式
(1)若f(x)=c,则f′(x)=0;
nxn-1 ; (2)若f(x)=xn(n∈Q*),则f′(x)=_____
(3)若f(x)=sinx,则f′(x)=_____ cosx ;
(4)若f(x)=cosx,则f′(x)=______; -sinx (5)若f(x)=ax,则f′(x)=_____( axlna a>0); (6)若f(x)=ex,则f′(x)=__ ex; (7)若f(x)=logax,则f′(x)= 1 (a>0且a≠1); (8)若f(x)=lnx,则f′(x)= 1 .

2014年人教A版选修1-1课件 3.2 导数的计算

2014年人教A版选修1-1课件 3.2  导数的计算

问题1. 上一课时我们学习了导函数, 你能求出以 下函数的导函数吗? 其几何意义和物理意义如何? (1) y=c (c为常数); (2) y=cx (c为常数); (3) y=x2; (4) y = 1 . x (2) y=cx, y f ( x x ) f ( x ) y = lim = lim x 0 x x 0 x c( x x ) cx 几何意义: = lim x 0 x 直线 y=cx 的切线是它本身, = lim c = c. x 0 切线的斜率就是此直线的斜率 c. 物理意义: 路程线性增加, 则速度为匀速 c.
解: y=3x, f ( x x ) f ( x ) y = lim x 0 x 3( x x ) 3 x = lim x 0 x = lim 3 = 3.
问题1. 上一课时我们学习了导函数, 你能求出以 下函数的导函数吗? 其几何意义和物理意义如何? (1) y=c (c为常数); (2) y=cx (c为常数); (3) y=x2; (4) y = 1 . x 1, y = (4) x y f ( x x ) f ( x ) y y = lim = lim x 0 x x 0 x 1 1 几何意义: o x = lim x x x 曲线在每一点的切线 x 0 x 的斜率都是负的. 1 = lim x 0 x( x x ) = 12 . x
解: y=2x, f ( x x ) f ( x ) y = lim x 0 x 2( x x ) 2 x = lim x 0 x = lim 2 = 2.
x 0
(2x)=2.
y 4 3 2
y=4x y=3x y=2x
o
1
x
练习: (课本82页 “探究”) 1. 在同一平面直角坐标系中, 画出函数 y=2x, y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数. (1) 从图象上看, 它们的导数分别表示什么? (2) 这三个函数中, 哪一个增大得最快? (3) 函数 y=kx (k≠0) 增 (减) 的快慢与什么有关?

3.2 导数的基本公式及四则运算法则

3.2 导数的基本公式及四则运算法则
x
所以
∆y 1 ∆x ∆x = lim[ log a (1 + ) ] lim ∆x →0 ∆x ∆x − 0 x x
x
1 ∆x ∆x = log a lim (1 + ) ∆x →0 x x 1 1 , = log a e = x x ln a
x

1 . (log a x)′ = x ln a
y′ = 5( x 2 )′ + 3( x −3 )′ − (2 x )′ + 4(cos x)′
= 5 × 2 x + 3 × (−3) x −4 − 2 x ln 2 + 4(− sin x) 9 = 10 x − 4 − 2 x ln 2 − 4 sin x . x
2.乘积函数的导数 2.乘积函数的导数
= 30 x 2 − 2 x − 1 .
例3
设 y = x sin x ln x ,求 y′
解 y′ = ( x)′ sin x ln x + x(sin x)′ ln x + x sin x(ln x)′ 1 = 1 ⋅ sin x ln x + x cos x ln x + x sin x ⋅ x = sin x ln x + x cos x ln x + sin x .
(uvw)′ = u′vw + uv′w + uvw′ .
例2 解
2 设 y = (1 + 2 x)(5 x − 3 x + 1) , 求 y′. y′ = (1 + 2 x)′(5 x 2 − 3 x + 1) + (1 + 2 x)(5 x 2 − 3 x + 1)′ = 2(5 x 2 − 3 x + 1) + (1 + 2 x)(10 x − 3)

高二人教A版高中数学选修1-3 第三章 导数及其应用3.2 导数的计算

高二人教A版高中数学选修1-3 第三章 导数及其应用3.2 导数的计算

=
28 (1 4)2
=-
6 25
.
因此曲线 y= 2x 在点(2, 4 )处的切线方程为 y- 4 =- 6 (x-2),
x2 1
5
5 25
即 6x+25y-32=0.
答案:(1)6x+25y-32=0
(2)已知曲线 y=5 x ,则过点 P(0,5)且与曲线相切的切线方程为
.
解析:(2)因为点 P(0,5)不在曲线 y=5 x 上,
1
f′(x)= x ln a (a>0,且 a≠1)
1
f′(x)= x
2.导数运算法则
和差的导数 积的导数
商的导数
[f(x)±g(x)]′= f′(x)±g′(x) [f(x)·g(x)]′= f′(x)g(x)+f(x)g′(x)
[ f (x) ]′= f (x)g(x) f (x)g(x)
3.2 导数的计算 3.2.1 几个常用函数的导数 3.2.2 基本初等函数的导数公式及导数
的运算法则
课标要求:1.能根据定义求函数y=c,y=x,y=x2,y=1 的导函数.2.理解导数的
x
四则运算法则.3.掌握几种常见函数的导数公式.4.能够应用导数公式及运
算法则进行求导运算.
自主学习 课堂探究
值为( B )
(A)1-cos 1
(B)1+cos 1 (C)cos 1-1
(D)-1-cos 1
5.(商的导数的应用)设函数f(x)= sin x ,f′(x)为函数f(x)的导函数,则
x
f′(π )=
.
答案:- 1
π
课堂探究
题型一 利用导数公式求函数的导数

§3.2 求导数的方法——法则与公式

§3.2  求导数的方法——法则与公式
对y=x 两边取对数,得: lny=lnx y 两端对x求导,得: y x
y x y 即得 (x)=x1 x x
五、指数函数y=ax (a>0,且a1)的导数
两边取对数,得: lny=xlna y ln a y=ylna 两端对x求导,得: y 即得 (ax)=axlna 特别, (ex)=ex
sec2 y 0. (tan y )
1 1 1 1 从而 (arc tan x ) 2 2 2 (tan y ) sec y 1 tan y 1 x
1 类似 (arccotx ) 2 1 x
x a 2 x 2 a arcsin x 例18. 求函数 y 2 2 a 的导数 2 ( x a 2 x 2 ) ( a arcsin x ) 解: y 2 2 a 2 2 ( x ) ( a x ) a 2 2 2 a 1 a x x 2 2 2 a2 x2 2 x )2 1 ( a 2 2 2 2 a x x a 2 2 2 2 2 2 a x 2 a x 2 2 a x
u ) uv uv (v( x ) 0) (3) ( 2 v v 1 ) v 特别, ( 2 v v
推论:
(1) [ f i ( x )] f i( x )
i 1 i 1
n
n
(2) [Cf(x)]=Cf (x)
(3) [ f i ( x )] f1( x ) f 2 ( x ) f n ( x )
二、复合函数的求导法则
如果函数u=(x)在点x处可导, y=f(u) 在对应点u=(x)处也可导,则有复合函数 y=f[(x)]在点x可导,其导数为: dy dy du dx du dx

原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)

原创1:3.2.2 基本初等函数的导数公式及导数的运算法则(一)
第三章 导数及其应用
§3.2 导数的计算
3.2.2 基本初等函数的导数公式及导数 的运算法则(一)
掌握基本初等函数的导数公式,会求简单函数的导数.
1.本课重点是掌握基本初等函数的导数公式及应用. 2.本课的难点是利用基本初等函数的导数公式求简单函数的导 数与导数公式的简单应用.
基本初等函数的导数公式
9
27
此时公切线的斜率为k=2x1=64 .
27
综上所述,曲线C1,C2有两条公切线,其斜率分别为0,2674 ③. …………………………………………………………………12分
1.曲线y=xn在x=2处的导数为12,则n=( ) (A)1 (B)3 (C)2 (D)4 【解析】选B.∵y′=nxn-1,∴n×2n-1=12,可得n=3.所以选B.
(1)若f(x)=c,则f′(x)=0;
(2)若f(x)=xn(n∈Q*),则f′(x)=_n_x_n_-1_;
(3)若f(x)=sinx,则f′(x)=__c_o_sx_;
(4)若f(x)=cosx,则f′(x)=__-_si_n_x_;
(5)若f(x)=ax,则f′(x)=_a_x_ln_a_(a>0);
…………………………………………………………………4分
②当x=2 时,2x=3x2=4
3
3
.此时C1的切线方程为y-
4=
9
4(x-
3
),2
3
而C2的切线方程为y- 8 = (4x- ).2显然两者不是同一条
27 3 3
切线,所以x= 2舍去.………………………………………6分
3
(2)当公切线切点不同时①,在曲线C1,C2上分别任取一点A
1 x;-23 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f ( x) f ( x) g ( x) f ( x) g ( x) [ ] 2 g ( x) g ( x)
其中g ( x) 0
t 1 例3 : (1)求函数s(t ) 的导数. t
2
2 t 1 (t 1) t (t 1)t 解 : (1) s(t ) ( ) t t2 2t 2 t 2 1 t 2 1 2 2 t t
解:(2)y′=(exsin x)′=(ex)′sin x+ex(sin x)′
=exsin x+excos x
=ex(sin x+cos x).
2 2
x+3 x+3′x +3-x+3x +3′ 解:(3)y′=( 2 )′= x +3 x2+32
x2+3-x+3×2x = x2+32
4
-2
(2) y= x
(3) y= x
2 y 2 x 3 x
3
y 4 x
3
x (4) y= 2
y 2 ln 2
x
(5) y=log3x y
1 x ln 3
1、y=5 2、y=xn 3、y=sinx 4、y=cosx 5、y=ax 6、y=ex 7、y=logax 8、y=lnx 9、y=x5+sinx-7x 10、y=6x-cosx+log7x 11、y=ex+lnx+9x7 12、y=4ex-2cosx+7sinx
3.2.1几个常用 函数的导数
一、复习
1.求函数的导数的方法是:
(1)求函数的增量y f ( x x) f ( x);
(2)求函数的增量与自变量的增量的比值 : y f ( x x) f ( x) ; x x
y (3)求极限,得导函数y f ( x) lim . x 0 x
=4x(3x-2)+(2x2+3)· 3 =18x2-8x+9. 解: (2)法二: ∵y=(2x2+3)· (3x-2)=6x3-4x2+9x-6,
∴y′=18x2-8x+9.
例 2: 求下列函数的导数: x- 1 (3)y= ; (4)y=x· tan x. x+ 1 x-1 解:(3)y′=( )′ x+1
公式二:x ' 1
二、几种常见函数的导数
3) 函数y=f(x)=x2的导数.
解 : y f ( x) x2 ,
y f ( x x) f ( x) ( x x)2 x2 2x x x2 ,
y 2 x x x 2 2 x x, x x
x-1′x+1-x-1x+1′ = x+12
x+1-x-1 = 2 x+1
2 = x+12
例 2: 求下列函数的导数: x- 1 (3)y= ; (4)y=x· tan x. x+ 1 xsin x 解:(4)y′=(x· tan x)′=( )′ cos x xsin x′cos x-xsin xcos x′ = cos2x
(5) y (2 x 3) 1 x ; 1 (6) y 4 ; x (7) y x x ;
2
1 x2 (3) y ; 2 2 (1 x ) 1 (4) y ; 2 cos x 6 x3 x (5) y ; 2 1 x 4 (6) y 5 ; x
练习:1 求下列幂函数的导数
(1)y x 1 ( 2) y 2 x 3 (3) y x
3
5
( 4) y x
5
注意:关于a x 和x a 是两个不同
的函数,例如:
(1)(3 ) 3 ln 3
x
x
(2)(x ) 3 x
3
2
练习1、求下列函数的导数。
(1) y= 5
y 0
2
( x ) sin x x (sin x) 解:y 2 sin x
2 ' 2 '
'
2 x sin x x cos x 2 sin x
2
x3 4. 求 y 2 在点x 3处的导数 x 3
1 ( x 3) ( x 3) 2 x 解:y 2 2 ( x 3)
解 : (1)h( x) ( x sin x) x sin x x(sin x) sin x x cos x (2) f ( x) (2 x ln x) (2 x) ln x (2 x)(ln x)
2 ln x 2
法则4 :两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子 的积,再除以分母的平方,即:
1 1 公式三:( ) ' 2 x x
可以直接使用的基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x a , 则f '( x) ax a 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
sin x+xcos xcos x+xsin x = cos2x
2
sin xcos x+x = . cos2x
练习:求下列函数的导数 x+ 3 1 1 2 x (1)y=x(x + + 3); (2)y=e sin x; (3)y= 2 . x x x +3 1 1 1 2 3 解:(1)∵y=x(x + + 3)=x +1+ 2,∴y′=3x2- 23. x x x x
2
( x ) (sin x) 2 x cos x
2
3 2 (2)求函数g ( x) x x 6 x 2的导数. 2
3
3 2 解:g ( x) ( x x 6 x) 2 3 2 3 2 ( x ) ( x ) (6 x ) 3 x 3 x 6 2
3
法则 2: 两个函数的积的导数,等于第一
个函数的导数乘以第二个函数加上第一个 函数乘以第二个函数的导数.即:
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x).
法则3:
[Cf ( x)] Cf ( x).(C为常数)
例2: (1)求函数h( x) x sin x的导数. (2)求函数f ( x) 2 x ln x的导数.
2
2
解 : (2) f ( x) (
x (2)求函数f(x) x 的导数. e x x x
x e x ( e ) ) x x 2 e (e ) x x x x x e x(e ) e xe 1 x x x 2 2x (e ) e e
x 3. y 的导数 sin x
1、 已知函数 y=xlnx (1)求这个函数的导数 (2)求这个函数的图像在点 x 1 处的切线方程
【变式训练】
说明:上面的方 法中把x换成 x0即为求函数 在点x0处的 导 数.
2.函数f(x)在点x0处的导数 f ( x0 ) 就是导函数 f ( x )在x= x0处的函数值,即 f ( x0 ) f ( x) |x x0 .这也是求函数在点x0 处的导数的方法之一。
3.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0))处的切线的斜率.
2 y 2 x x x f ( x) ( x 2 ) ' lim lim lim (2 x x) 2 x. x 0 x x 0 x 0 x
公式三:(x ) ' 2x
2
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数.
解 : y f ( x) x,
y f ( x x) f ( x) ( x x) x x,
y 1, x y f ( x) x ' lim 1. x 0 x
(7) y 3 x; 2
练习:已知函数 f x 的导函数为 f ' x , 且满足 f x 3x 2 xf ' 2 ,
2
则 f ' 5
.
如何用导数解决与切线有关的问题?
设切点
求出切线方程 依据题意,代人条件 代数求解 得到结论
3.函数 y=f(x)在点x0处的导数的几何意义,就是曲线y= f(x)在点P(x0 ,f(x0))处的切线的斜率. 4.求切线方程的步骤: (1)找切点 (2)求出函数在点x0处的变化率 f ( x0 ) ,得到曲线 在点(x0,f(x0))的切线的斜率。
二、几种常见函数的导数
根据导数的定义可以得出一些常见函数的导数公式. 1) 函数y=f(x)=c的导数.
解 : y f ( x) C,
y f ( x x) f ( x) C C 0,
y 0, x y f ( x) C lim 0. x 0 x
(3)根据直线方程的点斜式写出切线方程,即
y f ( x0 ) f ( x0 )( x x0 ).
曲线的切线问题,是高考的常见题型之 主要有以下几类问题: 一、已知切点,求曲线的切线
1、函数 y lg x 在点 1,0 处 的切线方程是 __________
相关文档
最新文档