数学:3.2导数的计算选修1-1

合集下载

3.2导数的计算(27张PPT)

3.2导数的计算(27张PPT)

;
(7) y 3 x; 2
例3 :日常生活中的饮用水通常是经过净化的,随着水纯
净度的提高,所需净化费用不断增加。已知1吨水净化
到纯净度为x%时所需费用(单位:元)为:
c(x)= 5284 (80 x 100). 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率;
(1)90%;
(2)98%.
x
x
f (x) (x2) ' lim y lim 2x x x2 lim (2x x) 2x.
x x0
x0
x
x0
公式三:(x2)' 2x
二、几种常见函数的导数
4) 函数y=f(x)=1/x的导数.
解: y f (x) 1 , x
y f (x x) f (x) 1 1 x x x x (x x)x
y
'
1 x2
探究:
表示y=C图象上每一点处的切线 斜率都为0
表示y=x图象上每一点处的切线 斜率都为1
这又说明什么?
这又说明什么?
画出函数y=1/x的图像。根据图像, 描述它的变化情况。并求出曲线在 点(1,1)处的切线方程。
x+y-2=0
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
y f (x x) f (x) C C 0,
y 0, x
f (x) C lim y 0. x0 x
公式一:C 0 (C为常数)
二、几种常见函数的导数
2) 函数y=f(x)=x的导数. 解: y f (x) x,
y f (x x) f (x) (x x) x x,
(1) c '(90) 5284 52.84 (100 90)2

人教版高中数学选修1-1第三章3.2.2基本初等函数的导数公式及导数的运算法则

人教版高中数学选修1-1第三章3.2.2基本初等函数的导数公式及导数的运算法则

旧知回顾 求函数的导数的方法是:00f(x +Δx)-f(x )Δy =;Δx ΔxΔx →0Δy y =lim .Δx(1)求增量(2)算比值 (3)求极限0)()(0x x x f x f ='='知识要点21)(),2)(),3)(),14)(),y f x c y f x x y f x x y f x x ========'1y =;'2y x =;21'.y x =-'0y =;新课导入由上节课的内容可知函数y=x2的导数为y’=2x,那么,于一般的二次函数y=ax2+bx+c,它的导数又是什么呢?这就需要用到函数的四则运算的求导法则.又如我们知道函数y=1/x 2的导数是=-2/x 3,那么函数y=1/(3x-2)2的导数又是什么呢?y 学习了这节课,就可以解决这些问题了!3.2.2 基本初等函数的导数公式及导数的运算法则教学目标知识与能力(1)掌握基本初等函数的导数公式.(2)会运用导数的运算法则及简单复合函数的复合过程.过程与方法(1)通过丰富的实例,了解求函数的导数的流程图.(2)理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数.情感态度与价值观经历由实际问题中抽象出导数概念,使同学们体会到通过导数也能刻画现实世界中的数量关系的一个有效数学模型.教学重难点重点理解简单复合函数的复合过程.难点函数的积、商的求导法则的推导及复合函数的结构分析.知识要点为了方便,今后我们可以直接使用下面的初等函数的导数公式表:()();x f ,c x f .'01==则若()()();nx x f ,N n x x f .n 'n 12-*=∈=则若()();x cos x f ,x sin x f .'==则若3()();x sin x f ,x cos x f .'-==则若4()();a ln a x f ,a x f .x 'x ==则若5基本初等函数的导数公式()();e x f ,e x f .x 'x ==则若6()();a ln x x f ,x log x f .'a 17==则若()().x x f ,x ln x f .'18==则若例 1假设某国家在20年期间的年通货膨胀率为5﹪,物价p (单位:元)与时间t (单位:年)有函数关系,其中 为t=0时的物价.假定某商品的那么在第10个年头,这种商品的价格上涨的速度的大约是多少(精确到0.01)?()()015%t p t p =+0p 01p=()' 1.05ln1.05.tp t =()()./..ln .p ,'年元所以0800510511010≈=解:根据基本初等函数的导数公式表,有因此,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.如果上式中的某种商品的,那么在第10个年头,这种商品的价格上涨的速度大约是多少?5p当 时,,这时,求P 关于t 的导数可以看成函数f(t)=5与g(t)= 乘积得到导数.下面的“导数运算法则”可以帮助我们解决两个函数加﹑减﹑乘﹑除的求导问题.05p =()5 1.05t p t =⨯ 1.05t若u=u(x),v=v(x)在x 处可导,则根据导数的定义,可以推出可导函数四则运算的求导法则1.和(或差)的导数法则1 两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即 (u v)u v '''±=±1.和(或差)的导数 (u v)u v '''±=±)()()(x v x u x f y ±==证明:[][])()()()(x v x x v x u x x u -∆+±-∆+=vu ∆±∆=x v x u x y ∆∆±∆∆=∆∆x v x u x v x u x y x x x x ∆∆±∆∆=⎪⎭⎫ ⎝⎛∆∆±∆∆=∆∆→∆→∆→∆→∆0000lim lim lim lim )()(''x v x u ±=例 2'23cos x x =+ y 求y= + sin x 的导数.3x 解:由导数的基本公式得:例 3'3'421x x =-- y 解:由导数的基本公式得: 求的导数. 42y =x -x -x +32.积的导数法则2 两个函数的积的导数,等于第一个函数的导数乘第二个函数,加上第一个函数乘第二个函数的导数,即请同学们自己证明()()()()()()f x g x =f x g x +f x g x ⨯⎡⎤⎣⎦′′′知识拓展推论(:=')CCu'u例422求的导数y=2x-3x+5x-4?解:由导数的基本公式得:'4655=-+=-y x x x例 52y =(2x +3)(3x -2)求的导数?'2223(4)(32)(23)3128691889y x x x x x x x x =-++⨯=-++=-+解:由导数的基本公式得:3.商的导数法则3 两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方,即 []0000020'()()()()f(x)[]'|g(x)()x x f x g x fx g x g x ='-=2x y =sinx 的导数.例62'2''2()sin (sin )sin x x x x y x⋅-⋅=解:222sin cos sin x x x xx-=例7 2x +3y =x =3x +3求在点处的导数.2'221(3)(3)2(3)x x x y x ⋅+-+⋅=+解:22263(3)x x x --+=+'329183241|(93)1446x y =--+-∴===-+()()()()()()()()()2f x f x g x f x g x 3.g x 0.g x g x ⎡⎤-=≠⎢⎥⎡⎤⎣⎦⎣⎦′′′导数的运算法则1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′;2. [f(x) .g(x)] ′=f′(x) g(x)± f(x) g(x) ′;如何求函数y=㏑(x+2)的函数呢?我们无法用现有的方法求函数y=㏑(x+2)的导数.下面,我们先分析这个函数的结构特点.若设u=x+2(x>-2),则y=ln u.即y=㏑(x+2)可以看成是由y=ln u和u=x+2(x>-2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数.名词解释一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数.记做y=f(g(x)).复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为 x u x y =y u ′′′.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.()()x u x 13 y =y u =lnu 3x +2=3=u 3x +2⨯⨯ ′′′′′ 问题解答由此可得,y=㏑(3x+2)对x 的导数等于y= ㏑u 对u 的导数与u=3x+2对x 的导数的乘积,即)(x f 例8()2y =2x +3求函数的导数.'''x u x y y u =⋅()()''223u x =⋅+4812.u x ==+解:函数可以看作函数 和 的复合函数.由复合函数求导法则有 ()223y x =+3y u =23u x =+课堂小结1.由常函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.导数的运算法则 ()()()()()()()()()2f x f x g x -f x g x3.=g x 0g x g x ⎡⎤≠⎢⎥⎡⎤⎣⎦⎣⎦′′′1. [f(x) ±g(x)] ′=f′(x) ±g(x) ′2. [f(x) .g(x)] ′=f′(x) g(x)± f(x) g(x) ′3.复合函数的复合过程利用复合函数的求导法则来求导数时,选择中间变量是复合函数求导的关键.高考链接 (2008海南、宁夏文)设 ,若()ln f x x x = ,则 ( )A. B.C. D. 0'()2f x =0x =2e e ln 22ln 2B2ax y =a 062=--y x =a 121-21-(2008全国Ⅱ卷文)设曲线 在点(1, )处的切线与直线 平行,则A .1B .C .D . ( ) A随堂练习()()()()''3'''32323y x x x x =-+=-+解因为23 2.x =-1、 根据基本初等函数的导数公式和导数运算法则,求函数 的导数. 323y x x =-+随堂练习()()()()0.0511;2sin ,.x y ey x πϕπϕ-+==+其中均为常数2、 求下列函数的导数u -0.05x+1=-0.05e =-0.05e .x u x y =y u ⨯′′′()()u=e -0.05x +1⨯′′(1)函数 可以看做函数 和的复合函数.由复合函数的求导法则有 -0.05x+1y =e u y =e u =-0.05x +1()()2y =sin πx +φy =sinu u =πx +φ.函数可以看作函数和的复合函数由复合函数求导法则有().φx πcos πu cos π+=='x 'u 'x u y y ⋅=()()''φx πu sin +⋅=习题答案练习(第18页)''''1.()27,(2)3,(6) 5.12.(1);ln2f x x f fyx=-=-==所以,'(2)2;xy e='4(3)106;y x x=-'(4)3sin 4cos ;y x x =--''1(5)sin;331(6).21x y y x =-=-。

2014年人教A版选修1-1课件 3.2 导数的计算

2014年人教A版选修1-1课件 3.2  导数的计算

问题1. 上一课时我们学习了导函数, 你能求出以 下函数的导函数吗? 其几何意义和物理意义如何? (1) y=c (c为常数); (2) y=cx (c为常数); (3) y=x2; (4) y = 1 . x (2) y=cx, y f ( x x ) f ( x ) y = lim = lim x 0 x x 0 x c( x x ) cx 几何意义: = lim x 0 x 直线 y=cx 的切线是它本身, = lim c = c. x 0 切线的斜率就是此直线的斜率 c. 物理意义: 路程线性增加, 则速度为匀速 c.
解: y=3x, f ( x x ) f ( x ) y = lim x 0 x 3( x x ) 3 x = lim x 0 x = lim 3 = 3.
问题1. 上一课时我们学习了导函数, 你能求出以 下函数的导函数吗? 其几何意义和物理意义如何? (1) y=c (c为常数); (2) y=cx (c为常数); (3) y=x2; (4) y = 1 . x 1, y = (4) x y f ( x x ) f ( x ) y y = lim = lim x 0 x x 0 x 1 1 几何意义: o x = lim x x x 曲线在每一点的切线 x 0 x 的斜率都是负的. 1 = lim x 0 x( x x ) = 12 . x
解: y=2x, f ( x x ) f ( x ) y = lim x 0 x 2( x x ) 2 x = lim x 0 x = lim 2 = 2.
x 0
(2x)=2.
y 4 3 2
y=4x y=3x y=2x
o
1
x
练习: (课本82页 “探究”) 1. 在同一平面直角坐标系中, 画出函数 y=2x, y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数. (1) 从图象上看, 它们的导数分别表示什么? (2) 这三个函数中, 哪一个增大得最快? (3) 函数 y=kx (k≠0) 增 (减) 的快慢与什么有关?

2022-2021年《金版学案》数学·选修1-1(人教A版)习题:3.2导数的计算

2022-2021年《金版学案》数学·选修1-1(人教A版)习题:3.2导数的计算

第三章 导数及其应用 3.2 导数的计算A 级 基础巩固 一、选择题 1.给出下列结论:①(cos x )′=sin x ;②⎝ ⎛⎭⎪⎫sin π6′=cos π6;③若y =1x 2,则y ′=-1x ;④⎝⎛⎭⎪⎫-1x ′=12x x.其中正确的个数是( ) A .0 B .1 C .2 D .3解析:(cos x )′=-sin x ,所以①错误;sin π6=12,而⎝ ⎛⎭⎪⎫12′=0,所以②错误;⎝ ⎛⎭⎪⎫1x 2′=0-(x 2)′x 4=-2x x 4=-2x -3,所以③错误;⎝⎛⎭⎪⎫-1x ′=0-(x 12)′x =12x -12x =12x -32=12x x ,所以④正确. 答案:B2.f (x )=x 3,f ′(x 0)=6,则x 0等于( ) A. 2 B .- 2 C .± 2 D .±1解析:f ′(x )=3x 2,由f ′(x 0)=6,知3x 20=6,所以 x 0=±2. 答案:C3.函数y =x 2x +3的导数是( )A.x 2+6x (x +3)2B.x 2+6x x +3C.-2x (x +3)2D.3x 2+6x (x +3)2解析:y ′=⎝ ⎛⎭⎪⎪⎫x 2x +3′=(x 2)′(x +3)-x 2·(x +3)′(x +3)2= 2x (x +3)-x 2(x +3)2=x 2+6x(x +3)2. 答案:A4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围成的三角形的面积为( )A.94e 2 B .2e 2 C .e 2 D.e 22解析:由于y =e x ,所以 y ′=e x ,所以 y ′|x =2=e 2=k ,所以 切线方程为y -e 2=e 2(x -2),即y =e 2x -e 2.在切线方程中,令x =0,得y =-e 2,令y =0,得x =1,所以 S 三角形=12×|-e 2|×1=e 22.答案:D5.若f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 013(x )=( )A .sin xB .-sin xC .cos xD .-cos x解析:由于f 1(x )=(sin x )′=cos x ,f 2(x )=(cos x )′=-sin x ,f 3(x )=(-sin x )′=-cos x ,f 4(x )=(-cos x )′=sin x ,f 5(x )=(sin x )′=cos x ,所以循环周期为4,因此f2 013(x)=f1(x)=cos x.答案:C二、填空题6.已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x-y =0,则点P的坐标为________.解析:设点P的坐标为(x0,y0),由于f′(x)=4x3-1,所以4x30-1=3,所以x0=1.所以y0=14-1=0,所以即得P(1,0).答案:(1,0)7.已知f(x)=13x3+3xf′(0),则f′(1)=________.解析:由于f′(0)是一常数,所以f′(x)=x2+3f′(0),令x=0,则f′(0)=0,所以f′(1)=12+3f′(0)=1.答案:18.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程是____________________.解析:y′=3x2+6x+6=3[(x+1)2+1],所以当x=-1时,y′取最小值3.此时切点坐标为(-1,-14).所以切线方程为y+14=3(x+1),即3x-y-11=0.答案:3x-y-11=0三、解答题9.求下列函数的导数:(1)y=(2x2+3)(3x-1);(2)y=(x-2)2;(3)y=x-sinx2cosx2.解:(1)法一:y′=(2x2+3)′(3x-1)+(2x2+3)(3x-1)′=4x(3x-1)+3(2x2+3)=18x2-4x+9.法二:由于y=(2x2+3)(3x-1)=6x3-2x2+9x-3,所以y′=(6x3-2x2+9x-3)′=18x2-4x+9.(2)由于y=(x-2)2=x-4x+4,所以y′=x′-(4x)′+4′=1-4×12x-12=1-2x-12.(3)由于y=x-sinx2cosx2=x-12sin x,所以y′=x′-⎝⎛⎭⎪⎫12sin x′=1-12cos x.10.已知曲线f(x)=x3-3x,过点A(0,16)作曲线f(x)的切线,求曲线的切线方程.解:设切点为(x0,y0).则由导数定义得切线的斜率k=f′(x0)=3x20-3,所以切线方程为y=(3x20-3)x+16,又切点(x0,y0)在切线上,所以y0=3(x20-1)x0+16,即x30-3x0=3(x20-1)x0+16,解得x0=-2,所以切线方程为9x-y+16=0.B 级 力量提升1.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π)解析:y ′=-4e x (e x +1)2=-4e xe 2x +2e x+1, 设t =e x∈(0,+∞),则y ′=-4t t 2+2t +1=-4t +1t+2,由于t +1t ≥2,所以 y ′∈[-1,0),α∈⎣⎢⎡⎭⎪⎫3π4,π.答案:D2.点P 是曲线y =e x 上任意一点,则点P 到直线y =x 的最小距离为________. 解析:依据题意设平行于直线y =x 的直线与曲线y =e x 相切于点(x 0,y 0),该切点即为与y =x 距离最近的点,如图,则在点(x 0,y 0)处的切线斜率为1,即=1.由于y ′=(e x)′=e x,所以 e x 0=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1).利用点到直线的距离公式得距离为22.答案:223.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.(1)解:f ′(x )=a +bx2.由于点(2,f (2))在切线7x -4y -12=0上, 所以 f (2)=2×7-124=12.又曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0, 所以 ⎩⎪⎨⎪⎧f ′(2)=74,f (2)=12,⇒⎩⎪⎨⎪⎧a +b 4=74,2a -b 2=12,⇒⎩⎨⎧a =1,b =3.所以 f (x )的解析式为f (x )=x -3x.(2)证明:设⎝ ⎛⎭⎪⎫x 0,x 0-3x 0为曲线y =f (x )上任意一点,则切线斜率k =1+3x 20,切线方程为y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x 20(x -x 0),令x =0,得y =-6x 0.由⎩⎪⎨⎪⎧y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),y =x得⎩⎨⎧x =2x 0,y =2x 0.所以 曲线y =f (x )上任意一点处的切线与直线x =0和直线y =x 所围成的三角形的面积S =12|2x 0||-6x 0|=6,为定值.。

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.2

(人教版)高中数学选修1-1课件:第3章 导数及其应用3.3.2

数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
已知极值求参数
已知 f(x)=x3+ax2+bx+c 在 x=1 与 x=-23时都取 得极值.
(1)求 a,b 的值; (2)若 f(-1)=32,求 f(x)的单调区间和极值.
数学 选修1-1
第三章 导数及其应用
高效测评 知能提升
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中. 在群山之中,各个山峰的顶端虽然不一定是群山之中的最 高处,但它却是其附近的最高点;同样,各个谷底虽然不一定 是群山之中的最低处,但它却是其附近的最低点.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
解析: (1)f′(x)=3x2+2ax+b, 令 f′(x)=0,由题设知 x=1 与 x=-23为 f′(x)=0 的解. ∴11- ×23-=23-=23ab3,. ∴a=-12,b=-2.
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
数学 选修1-1
第三章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
x
(-∞,-1) -1 (-1,1) 1 (1,+∞)
f′(x)

0

0

f(x)
极小值
极大值
由表可以看出:
当 x=-1 时,函数有极小值,且 f(-1)=-22-2=-3; 当 x=1 时,函数有极大值,且 f(1)=22-2=-1.

推荐-高中数学人教A版选修1-1课件3.2 导数的计算(2)

推荐-高中数学人教A版选修1-1课件3.2 导数的计算(2)

(4)若 f(x)=cos x,则 f'(x)=-sin x;
(5)若 f(x)=ax,则 f'(x)=axln a(a>0);
(6)若 f(x)=ex,则 f'(x)=ex;
(7)若
f(x)=logax,则
f'(x)=
1 ������ln������
(������
>
0,
且������≠1);
(8)若 f(x)=ln x,则 f'(x)= 1������.
=
(������ + 1)2
(������ + 1)-(������-1)
2
= (������ + 1)2 = (������ + 1)2.
方法二:∵y=
������-1 ������+1
=
������+1-2 ������+1
=
1

������+2 1,
∴y'=
1-
2 ������+1
′=
-
2 ������+1
������cos������+cos������ ������2
解析:y'=
(cos������)'������-cos������ ������2
=

������sin������������+2 cos������.
答案:C
知识梳理
【做一做 3-2】 下列求导运算正确的是( )
A.
������
3.2 导数的计算
-1-
目标导航
1.能应用导数的定义求函数

高中数学新课标人教A版选修1-1《3.2.2 导数的运算法则》课件

高中数学新课标人教A版选修1-1《3.2.2 导数的运算法则》课件
x 2x (1)y=-sin21-2cos 4;
1+ x 1- x (2)y= + ; 1- x 1+ x (3)y=x· tan x.
1 g′(x) 时,有g(x)′=- 2 . g (x)
(3)对于积与商的导数运算法则,首先要注意在两个函数积与商
f(x) 的导数运算中,不能出现[f(x)· g(x)]′=f′(x)· g′(x)以及 g(x)′
f′(x) = 这样想当然的错误;其次还要特别注意两个函数积 g′(x) 与商的求导公式中符号的异同,积的导数法则中是“+”,商 的导数法则中分子上是“-”.
2.变形化简,减少求导的运算量 应用和、差、积的求导法则和常见函数的导数公式求导数时, 在可能的情况下,应尽量少用甚至不用乘积和商的求导法则, 应在求导之前,先利用代数、三角恒等变形对函数进行化简, 然后再求导,这样可以减少运算量,提高运算速度,避免出错.
题型一 求导法则的直接运用 【例 1】 求下列函数的导数. (1)y=3x-lg x; x+3 (3)y= 2 ; x +3 (2)y=(x2+1)(x+1); (4)y=-sin x+ex.
是什么? 提示 f(x),g(x)都有导数,且 g(x)≠0.
名师点睛 1.运用导数运算法则的注意事项 (1)对于教材中给出的导数的运算法则,不要求根据导数定义进 行推导,只要能熟练运用运算法则求简单函数的导数即可. (2)①对于和差的导数运算法则,可推广到任意有限可导函数的 和或差,即[f1(x)± f2(x)± …± fn(x)]′=f1′(x)± f2′(x)±…±f′ n (x). ②[ af(x)± bg(x)]′=af′(x)± bg′(x); ③当 f(x)=1
题型二 导数求导法则的灵活运用 【例 2】 求下列函数的导数: 2 (1)y=(x+1)(x+2)(x+3);(2)y=xsin x-cos x; x5+ x7+ x9 (3)y= ; x x x (4)y=x-sin cos . 2 2 [ 思路探索 ] 可先对函数解析式进行化简化为基本初等函数的 和、差、积、商,再用基本初等函数的导数公式和四则运算法 则求解.

【数学】3.2《导数的运算》测试(苏教版选修1-1)

【数学】3.2《导数的运算》测试(苏教版选修1-1)

导数的运算测试一、选择题(每小题5分,共50分)1.下列结论正确的是 ( )A.若y=sinx ,则y ’=-cosxB. 若y= cosx ,则y ’=-sinxC. 若y=x 1 ,则y ’=-21xD. 若y=x ,则y ’=x 21 2.已知f(x)=x 3,则f ’(2)= ( )A.0B.3x 2C.8D.123.已知f(x)=x 3的切线的斜率等于1,则其切线方程有 ( )A.1个B.2个C.多于两个D.不能确定4.若对于任意x ,有f ’(x)= 4x 3 ,f(1)= -1,则此函数值为 ( )A. f(x)=x 4B. f(x)=x 4-2C. f(x)=x 4+1D. f(x)=x 4+25.曲线y=3x 上的一点P(0,0)的切线的方程为 ( )A.y=-xB.x=0C.y=0D. 不存在6.y=2x 3+3x +cosx ,则y ’= ( )A. 6x 2+x -2/3-sinxB. 2x 2+31x -2/3-sinxC. 6x 2+31x -2/3+sinxD. 6x 2+31x -2/3-sinx 7.f(x)= sin α-cosx ,则f ’(α)= ( )A. sin αB. cos αC. sin α+ cosx αD. 2sin α8.下列求导数运算正确的是 ( ) A.(x+x 1)’=1+21xB.(log 2x)’=2ln 1xC.(3n )’=3x log 3e )D.(x 2cosx)’=-2xsinx 9. 函数f(x)=x 3-3x 2+1是减函数的区间是 ( )A.[)+∞,2B.(]2,∞-C. (]0,∞-D.[0,2]10.y=sinx(cosx +1)的导数是 ( )A. cos2x -cosxB. cos2x+sinxC. cos2x +cosxD. cos2x -sinx二、填空题(每小题5分,共20分)11.质点运动方程是s=t 2(1+ sint),则当x=2π时,瞬时速度为____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
− 3 − 6×3 + 3 1 当x = 3时, f ′(3) = =− 2 2 (3 + 3) 6
2
− x − 6x + 3 = 2 2 ( x + 3)
2
• [点评] 不加分析,盲目套用求导法则, 会给运算带来不便,甚至导致错误.在求 导之前,对三角恒等式先进行化简,然后 再求导,这样既减少了计算量,也可少出 差错.
2
x 2. y = 的导数 sin x
( x ) ⋅ sin x − x ⋅ (sin x) 解:y = 2 sin x
2 ' 2 ' '
2
2 x sin x − x cos x = 2 sin x
2
x+3 4. 求 y = 2 在点x = 3处的导数 x +3 2 1⋅ ( x + 3) − ( x + 3) ⋅ 2 x ' 解:y = 2 2 ( x + 3)
练习: 练习:求下列函数的导数:
(1)y=x ³-2x+3 y=x³ 2 3 (2)y= -2+ -3 x x (3)y=(2x +3)(3x-2) x x (4)y=x-sin ·cos 2 2
2
(1)y′ =3x²-2 - (2)y′ =4x+9x² + (3) y′ =18x²-8x+9 - + (4) y′=1-1/2cosx -
导数的运算法则:
′ = f ′( x) ± g ′( x) [ f ( x) ± g ( x)]
f ( x) g ( x) ]′ = f ′( x) g ( x) + f ( x) g ′( x) [
f ( x) ′ f ′( x) g ( x) − f ( x) g ′( x) ( g ( x) ≠ 0) g ( x) = 2 [ g ( x)]
已知曲线S 若直线l与 例4.已知曲线 1:y=x2与S2:y=-(x-2)2,若直线 与S1,S2均 已知曲线 若直线 相切,求 的方程 的方程. 相切 求l的方程 解:设l与S1相切于 设 与 相切于P(x1,x12),l与S2相切于 与 相切于Q(x2,-(x2-2)2). 则与S 相切于P点的切线方程为 点的切线方程为y-x 对于S1 , y′ = 2x, 则与 1相切于 点的切线方程为 12 =2x1(x-x1),即y=2x1x-x12.① 即 ① 相切于Q点的切线方程为 点的切线方程为y+ 对于S2 , y′ = −2( x − 2), 与S2相切于 点的切线方程为 (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.② ),即 -4.②
3.2.2
导数的计算
基本初等函数的导数公式:
公 式1.若 f ( x ) = c , 则 f '( x ) = 0; 公 式 2.若 f ( x ) = x n , 则 f '( x ) = nx n −1 ; 公 式 3.若 f ( x ) = sin x , 则 f '( x ) = cos x ; 公 式 4.若 f ( x ) = cos x , 则 f '( x ) = − sin x ; 公 式 5.若 f ( x ) = a x , 则 f '( x ) = a x ln a ( a > 0); 公 式 6.若 f ( x ) = e x , 则 f '( x ) = e x ; 1 公 式 7.若 f ( x ) = log a x , 则 f '( x ) = ( a > 0, 且 a ≠ 1); x ln a 1 公 式 8.若 f ( x ) = ln x , 则 f '( x ) = ; x
2x1 = −2( x2 − 2) x1 = 0 x1 = 2 . ⇒ 或 因为两切线重合, 因为两切线重合 ∴ 2 2 − x1 = x2 − 4 x2 = 2 x2 = 0
若x1=0,x2=2,则l为y=0;若x1=2,x2=0,则l为y=4x-4. 则为 若 则为 所以所求l的方程为 所以所求 的方程为:y=0或y=4x-4. 的方程为 或
• [例1] 求下列函数的导数: (1)y=(x+1)2(x-1); (2)y=x2sinx;
1 2 3 (3)y= x +x2+x3; 2 (4)y=xtanx- . cosx
[点评] 较为复杂的求导运算,一般综合了 和、差、积、商的几种运算,要注意:(1)先 将函数化简;(2)注意公式法则的层次性.
[解析]
2x
∵y=sin +cos 4 4
2x 2 2x 2x
4x
4x
=(sin +cos ) -2sin cos 4 4 4 4 1 2x 1 1-cosx 3 1 =1- sin =1- · = + cosx, 2 2 2 2 4 4
3 1 1 + cosx′=- sinx. ∴y′= 4 4 4
求下列函数的导数: 补充练习:求下列函数的导数 求下列函数的导数
1 2 (1) y = − 2 ; x x x (2) y = ; 2 1− x (3) y = tan x ; (4) y = (2 x 2 − 3) 1 + x 2 ;
1 4 答案: 答案 (1) y′ = − 2 + 3 ; x x
例4:求曲线y=x3+3x-8在x=2 4:求曲线y=x +3x- 求曲线 处的切线的方程. 处的切线的方程.
解 : f ′( x) = ( x + 3 x − 8)′ = 3 x + 3
3 2
∴ f ′(2) = 3 × 2 + 3 = 15
2
又过点(2,6),∴ 切线方程为 : y − 6 = 15( x − 2),即 15 x − y − 24 = 0
x 2x 练习:求函数 y=-sin (1-2sin )的导数. 练习 2 4
y′=- =-1/2cosx. =-
1 4 某运动物体自始点起经过t秒后的距离 满足s= t 例3.某运动物体自始点起经过 秒后的距离 满足 某运动物体自始点起经过 秒后的距离s满足 4 3 2
-4t +16t . (1)此物体什么时刻在始点 此物体什么时刻在始点? 此物体什么时刻在始点 (2)什么时刻它的速度为零 什么时刻它的速度为零? 什么时刻它的速度为零 所以t 解得: 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以 2(t-8)2=0,解得 令 即 所以 解得 t1=0,t2=8.故在 或t=8秒末的时刻运动物体在 故在t=0或 秒末的时刻运动物体在 故在 始点. 始点 (2) Q s′(t ) = t 3 − 12t 2 + 32t , 令s′(t ) = 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 解得 故在t=0,t=4和t=8秒时物体运动的速度为零 和 秒时物体运动的速度为零 秒时物体运动的速度为零. 故在
1 + x2 (2) y′ = ; 2 2 (1 − x )
(4) y′ = 6x3 + x 1+ x
2
1 ′= ( 3) y ; 2 cos xx − 3x + 5x − 4 的导数
3 2
解 : y′ = (2 x − 3 x + 5 x − 4)′
3 2
= 6x − 6x + 5
例2:)求函数h( x) = x sin x的导数. (1 (2)求函数f ( x) = 2 x ln x的导数.
解 : (1)h′( x) = ( x sin x)′ = x′ sin x + x(sin x)′ = sin x + x cos x
(2) f ′( x) = (2 x ln x)′ = (2 x)′ ln x + (2 x)(ln x)′ = 2 ln x + 2
相关文档
最新文档