高中数学-导数的概念及运算练习
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
高二数学复习典型题型与知识点专题讲解14---导数的概念及其意义+导数的运算(解析版)

高二数学复习典型题型与知识点专题讲解14 导数的概念及其意义+导数的运算一、典例精析拓思维(名师点拨) 知识点1 变化率与导数 知识点2 导数几何意义 知识点3 导数的四则运算 知识点4 复合函数求导 二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 变化率与导数例1.(2021·江苏·高二专题练习)函数()221y f x x ==-在区间[]1,1x +∆上的平均变化率yx∆∆等于( ).A .4B .42x +∆C .()242x +∆D .4x 【答案】B 【详解】因函数()221y f x x ==-,则()f x 在区间[]1,1x +∆上的函数增量y ∆有:()()()()()22112112142y f x f x x x ∆=+∆-+∆---=∆+∆=,于是有42yx x∆=+∆∆, 所以所求平均变化率yx∆∆等于42x +∆.故选:B练习1-1.(2021·江苏·高二专题练习)已知函数()224f x x =-的图象上一点()1,2-及邻近一点()1,2x y +∆-+∆,则yx∆=∆( ) A .4B .4x ∆C .42x +∆D .()242x +∆ 【答案】C 【详解】解:∵()()()()()22112142424y f x f x x x ∆=+∆-=+∆---=∆+∆,∴24yx x∆=∆+∆, 故选:C .名师点评:平均变化率函数()y f x =从1x 到2x 的平均变化率是2121()()f x f x y x x x -∆=∆-. 例2.(2021·全国·高二课时练习)已知函数()f x 在0x 处的导数为0()f x ',则()()000lim x f x m x f x x∆→-∆-∆等于( )A .0()mf x 'B .0()mf x '-C .0(1)f m x -'D .01()f x m' 【答案】B 【详解】因为函数()f x 在0x 处的导数为0()f x ', 所以()()0000im)l (x f x m x f f x x x m ∆→-∆-'=-∆,所以()()()()0000000liml ()imx x f x m x f x f x m x f x m xxf m x m ∆→∆→-∆--∆-=-=-∆-'∆,故选:B.练习2-1.(2021·山西·晋城市第一中学校高二阶段练习)设()f x 为可导函数,且当0x ∆→时,()()1112f f x x--∆→-∆,则曲线()y f x =在点()() 1,1f 处的切线斜率为( )A .2B .1-C .1D .2- 【答案】D 【详解】解:由导数的几何意义,点()() 1,1f 处的切线斜率为(1)f ', 因为0x ∆→时,()()1112f f x x--∆→-∆,所以()()()()11(1)liml 11222imx x f f x f f x xxf ∆→∆→--∆--∆='=-∆∆=,所以在点()() 1,1f 处的切线斜率为2-, 故选:D.名师点评:瞬时变化率函数()y f x =在0x x =处的瞬时变化率0000()()lim lim x x f x x f x yx x ∆→∆→+∆-∆=∆∆. 在实际解题时要注意00()()f x x f x +∆-中两()中的量做差得到的结果才是分母中的x ∆.如在例2()()0000lim()x f x m x f x f x x∆→-∆-'≠∆,在该式中,分子两()中的量作差后得到的()()00x m x x m x -∆-=-∆,所以()()0000lim ()x f xm x f x f x m x∆→-∆-'=-∆,所以在题目中的分母要凑配常数,即:()()()()()000000lim()lim()x x m m f x m x f x f x m x f x f x xxm ∆→∆→---∆--∆-'=∆-=∆.知识点2 导数几何意义例1.(2021·全国·高二单元测试)如图,函数()y f x =的图象在点(2,)P y 处的切线是l ,则(2)(2)f f '+=( )A .-3B .-2C .2D .1 【答案】D 【详解】解:由题图可得函数()y f x =的图象在点P 处的切线与x 轴交于点(4,0),与y 轴交于点(0,4),则切线:4l x y +=,(2)2f ∴=,(2)1f '=-,(2)(2)211f f '+=-=,故选:D.练习1-1.(2021·全国·高二单元测试)已知()y f x =的图象如图所示,则()A f x '与()B f x '的大小关系是( ) A .()()A B f x f x ''> B .()()A B f x f x ''= C .()()A B f x f x ''<D .()A f x '与()B f x '大小不能确定 【答案】A 【详解】根据题意,由图象可得f (x )在x =x A 处切线的斜率大于在x =x B 处切线的斜率, 则有()()A B f x f x ''>; 故选:A名师点评:函数()y f x =在0x x =处的导数0()f x '的几何意义是在曲线()y f x =上点00(,)P x y 处的切线的斜率(0()k f x '=).例2.(2021·陕西汉中·一模(理))已知函数3C :()ln f x x x =+,则曲线在点(1,(1))f 处的切线方程为___________. 【答案】430x y --= 【详解】解:因为21()3f x x x'=+, 所以(1)4k f '==, 又(1)1,f =故切线方程为14(1)y x -=-, 整理为430x y --=, 故答案为:430x y --=练习2-1.(2021·四川成都·一模(文))曲线()3f x x x =-在点(2,6)处的切线方程为_______.【答案】11160x y --= 【详解】因为()3f x x x =-,所以()231f x x '=-,()211f '=所以切线方程为()6112y x -=-,即11160x y --= 故答案为:11160x y --=名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时需另设切点求解.如本例2,求函数3C :()ln f x x x =+,在点(1,(1))f 处的切线方程,此时切点为(1,(1))f ,只需求出斜率(1)k f '=.例3.(2021·河南·南阳中学高三阶段练习(文))曲线()ln 3f x x =+的过点()1,1-的切线方程为________.【答案】20x y -+= 【详解】设切点坐标为()00,ln 3x x +,()1f x x'=,()001f x x '∴=,∴切线方程为()0001ln 3y x x x x --=-, 切线过点()1,1-,()00011ln 31x x x ∴--=--, 化简得:0011ln x x +=,解得:01x =, ∴切线方程为2y x =+,即20x y -+=.故答案为:20x y -+=.练习3-1.(2021·全国·高二课时练习)已知函数()32698f x x x x =-+-+,则过点()0,0可作曲线()y f x =的切线的条数为___________.【答案】2 【详解】∵点()0,0不在函数()y f x =的图象上,∴点()0,0不是切点,设切点为()320000,698P x x x x -+-+(00x ≠),由()32698f x x x x =-+-+,可得()23129'=-+-f x x x ,则切线的斜率()20003129k f x x x '==-+-,∴3220000006983129x x x x x x -+-+-+-=,解得01x =-或02x =,故切线有2条. 故答案为:2名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时无论00(,)P x y 是否在曲线上,都需另设切点求解.如本例3,求曲线()ln 3f x x =+的过点()1,1-的切线方程,此时应设切点00(,)P x y ,在利用导数0()k f x '=,求出切线方程,再利用()1,1-在切线上,求出切点00(,)P x y ,从而求出切线方程.注意和例题2做对比.知识点3 导数的四则运算例1.(2021·江苏·高二专题练习)求下列函数的导数;(1)32235y x x =-+(2)22log xy x =+(3)31sin x y x-=(4)sin sin cos x y x x =+【答案】(1)266y x x '=- (2)12ln 2ln 2x y x '=+(3)()2323sin cos 1sin x x x x y x--'=(4)11sin 2y x'=+(1)解:因为32235y x x =-+,所以266y x x '=-; (2)解:因为22log xy x =+,所以12ln 2ln 2x y x '=+; (3)解:因为31sin x y x -=,所以()()()()()3323221sin sin 13sin cos 1sin sin x x x x x x x x y x x ''-----'== (4) 解:因为sin sin cos xy x x=+,所以()()()()()()()22sin sin cos sin cos sin cos sin cos cos sin sin 11sin 2sin cos sin cos x x x x x x x x x x x x y x x x x x ''+-++--'===+++练习1-1.(2021·全国·高二课时练习)已知函数()f x 的导数为()f x ',而且()()232ln f x x xf x '=++,求()2f '. 【答案】94-【详解】()()1232f x x f x ''=++,()()124322f f ''∴=++,解得:()924f '=-.名师点评:导数的运算法则: (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[](()0)()()f x f xg x f x g x g x g x g x ''⋅-⋅'=≠ 知识点4 复合函数求导例1.(2021·全国·高二课时练习)求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-.【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2xx -⋅(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数, 由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x xy y u x u x '''=⋅=⋅=-⋅.练习1-1.(2021·全国·高二课时练习)求下列函数的导数: (1)7(35)y x =+;(2)57e x y -=;(3)ln(4)y x =-+;(4)213x y -=;(5)sin 26y x π⎛⎫=- ⎪⎝⎭;(6)34(35)y x =-.【答案】(1)621(35)y x '=+(2)57e 5x y -'=(3)14y x '=- (4)212ln 33x y -'=⨯(5)2cos 26y x π⎛⎫'=- ⎪⎝⎭(6)149(35)4x y --'= (1)667(35)(35)21(35)y x x x ''=+⨯+=+;(2)5757e e (57)5x x x y --'⨯'=-=;(3) 11(4)44y x x x ''=⨯-+=-+- (4)1212ln 3(21)2ln 333x x x y --'⨯-=⨯'=;(5)cos 2(2)2cos 2666y x x x πππ⎛⎫⎛⎫''=-⨯-=- ⎪ ⎪⎝⎭⎝⎭(6)314149(33(35)45)(35)4x y x x --'=---'=⨯.名师点评:复合函数(())y f g x =的导数和函数()y f μ=,()g x μ=的导数间的关系为x x y y μμ'''=⋅,即y 对x 的导数等于y 对μ的导数与μ对x 的导数的乘积.二、题型归类练专练一、单选题1.(2021·全国·高二课时练习)函数()2f x x =在1x =附近(即从1到1x +∆之间)的平均变化率是( )A .2x +∆B .2x -∆C .2D .22()x +∆ 【答案】C 【详解】Δy =f (1+Δx )-f (1)=2(1+Δx )-2=2Δx . 所以2 2.y x x x∆∆==∆∆ 故选:C2.(2021·全国·高一课时练习)函数2()1f x x =+,当自变量x 由1变到1.1时,函数()f x 的平均变化率为( ) A .2.1B .1.1C .2D .1 【答案】A 【详解】由题意,函数的平均变化率为:()()221.11 1.112.11.110.1f f --==-. 故选:A.3.(2021·江苏·高二专题练习)函数()12f x x=在2x =处的导数为( ) A .2B .12C .14D .18- 【答案】D 【详解】()()()()000011222222111lim lim lim lim 2428x x x x f x f x f x x x x x ∆→∆→∆→∆→-∆+∆-+∆⨯⎛⎫===-⋅=- ⎪∆∆∆+∆⎝⎭,所以函数()f x 在2x =处的导数为18-.故选:D.4.(2021·江苏·高二专题练习)设函数()f x 在0x x =附近有定义,且有()()()002f x f x x b x x a +-=+∆∆∆,其中a ,b 为常数,则( ) A .()f x a '=B .()f x b '=C .()0f x a '=D .()0f x b '=【答案】C【详解】因为()()()002f x f x x b x x a +-=+∆∆∆,所以()()00f x x f x a b x x+∆-=+∆∆,则()()()0000lim lim x x f x x f x a b x a x∆→∆→+∆-=+∆=∆,即()0f x a '=. 故选:C.5.(2021·全国·高二课时练习)已知曲线y =13x 3上一点P 82,3⎛⎫ ⎪⎝⎭,则该曲线在P 点处切线的斜率为( )A .4B .2C .-4D .8【答案】A【详解】3322200011()133lim lim lim 33()3x x x x x x y y x x x x x x x ∆→∆→∆→+∆-∆'⎡⎤===+⋅∆+∆=⎣⎦∆∆ 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在P 点处切线的斜率为4.故选:A6.(2021·河南·温县第一高级中学高三阶段练习(文))已知函数2()ln 2f x x m x x =-+的图象在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线20x y +=垂直,则m =( ) A .54B .54-C .12D .12- 【答案】C【详解】函数2()ln 2f x x m x x =-+的导数为()22m f x x x'=-+, 可得在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1322f m ⎛⎫=⎪⎭'- ⎝, 又切线与直线20x y +=垂直,所以()13212m -⋅-=-,解得12m =. 故选:C .7.(2021·四川·树德中学高三期中(文))设函数()()ln f x g x x x =++,曲线()y g x =在点1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为( )A .4y x =B .48=-y xC .22y x =+D .21y x =+【答案】A【详解】因为曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,所以(1)3(1)2g g =⎧⎨='⎩, 因为()()ln =++f x g x x x ,则1()()1f x g x x''=++,所以1(1)(1)141f g ''=++=, 且(1)(1)1ln14f g =++=,因此曲线()y f x =在点(1,(1))f 处的切线方程为()441y x -=-,即4y x =,故选:A.8.(2021·江苏·扬州中学高二阶段练习)已知()()220x f x e xf '=-,则()1f '=( )A .243e -B .2423e -C .ln 2e +D .221e - 【答案】B【详解】()()2e 20x f x xf '=-,则()()22e 20x f x f ''=-,()()0220f f ''=-,()203f '=.()242e 3x f x '=-,()2412e 3f '=-.故选:B二、填空题9.(2021·河南·高二期末(文))已知函数()2e sin x f x x m x =⋅-的图象在0x =处的切线与直线310x y ++=垂直,则实数m =___________.【答案】-1【详解】()2sin x f x x e m x =⋅-的定义域为R ,则()22cos x x f x e x e m x '=+⋅-,则函数在0x =处的切线斜率为1(0)2k f m '==-,又直线310x y ++=的斜率213k =-, 由切线和直线垂直,则121k k ,即1(2)()13m -⨯-=-, 解得1m =-.故答案为:1-10.(2021·山东·高三阶段练习)曲线2()ln(2)f x x x =+在点(1,(1))f 处的切线方程为________.【答案】3ln 22y x =+-【详解】()11()2222f x x x x x x ''=⋅+=+, (1)3k f '∴==,又(1)1ln 2f =+,∴切线方程为(1ln 2)3(1)y x -+=-,即3ln 22y x =+-故答案为:3ln 22y x =+-11.(2021·陕西蒲城·高三期中(理))已知函数()sin cos f x x x x =+,则()f π'-=_____.【答案】π【详解】由()sin cos f x x x x =+求导得:()sin cos sin cos f x x x x x x x '=+-=,于是得()cos()f ππππ'-=--=,所以()f ππ'-=.故答案为:π12.(2021·云南师大附中高三阶段练习(理))已知函数cos2()1x f x x =+,则曲线()y f x =在点(0,(0))f 处的切线方程为____________.【答案】+10x y -=【详解】解:由题,得()()()22sin 21cos 21x x x f x x -⋅+-=+',则(0)1f '=-,而(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x -=-,即10x y +-=.故答案为:+10x y -=.三、解答题13.(2021·山西·芮城中学高二阶段练习)已知曲线3S 2y x x =-:(1)求曲线S 在点(2,4)A 处的切线方程;(2)求过点(1,1)B -并与曲线S 相切的直线方程.【答案】(1)10160x y --=(2)20x y --=或5410x y +-=(1)∵32y x x =-,则232y x '=-,∴当2x =时,10y '=,∴点A 处的切线方程为:()4102y x -=-,即10160x y --=.(2)设()3000,2P x x x -为切点,则切线的斜率为()20032f x x '=-,故切线方程为:()()()320000232y x x x x x --=--, 又知切线过点()1,1-,代入上述方程()()()32000012321x x x x ---=--,解得01x =或012x =-, 故所求的切线方程为20x y --=或5410x y +-=.14.(2021·北京市第十五中学南口学校高三期中)已知函数321()33f x x x x =--,求曲线()y f x =在1x =处的切线的方程. 【答案】143y x =-+ 因为321()33f x x x x =--,所以111(1)1333f =--=-,2()23f x x x '=-- 所以(1)1234f '=--=-所以曲线()y f x =在1x =处的切线的方程为()11413y x +=--,即143y x =-+。
高中数学《导数的概念及其运算》练习题

§3.1 导数的概念及运算1.下列求导运算正确的是( )A.⎝⎛⎭⎫x +1x ′=1+1x 2 B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.(2021·安徽江南十校联考)曲线f (x )=1-2ln x x在点P (1,f (1))处的切线l 的方程为( ) A .x +y -2=0 B .2x +y -3=0 C .3x +y +2=0 D .3x +y -4=03.(2020·广元模拟)已知函数f (x )=14x 2+cos x ,则其导函数f ′(x )的图象大致是( )4.设点P 是曲线y =x 3-3x +23上的任意一点,则曲线在点P 处切线的倾斜角α的取值范围为( ) A.⎣⎡⎦⎤0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6 5.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2)6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -xC .f (x )=ln xD .f (x )=tan x7.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)= .8.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = . 9.我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=ln(1+x ),则曲线y =f (x )在点(0,0)处的切线方程为________,用此结论计算ln 2 022-ln 2 021≈________.10.(2021·山东省实验中学四校联考)曲线y =x 2-ln x 上的点到直线x -y -2=0的最短距离是 .11.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值;(2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围.12.设函数f (x )=ax -b x,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.13.(2020·青岛模拟)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x14.已知函数f (x )=x +a 2x,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .15.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 . 16.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求在曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.§3.2 导数与函数的单调性课时精练1.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.下列函数中,在(0,+∞)上单调递增的是( )A .f (x )=sin 2xB .g (x )=x 3-xC .h (x )=x e xD .m (x )=-x +ln x3.(2020·甘肃静宁一中模拟)已知函数f (x )=x 2+a x ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)4.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln 2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a5.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .26.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x7.函数y =2ln x -3x 2的单调递增区间为________.8.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.9.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 10.(2020·济南质检)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是________.11.函数f (x )=(x 2+ax +b )e -x ,若f (x )在点(0,f (0))处的切线方程为6x -y -5=0.(1)求a ,b 的值;(2)求函数f (x )的单调区间.12.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.13.(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .1221e e x x x x >D .1221e e x xx x < 14.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为____________.15.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求实数m 的取值范围.§3.3 导数与函数的极值、最值课时精练1.函数f (x )=(x 2-1)2+2的极值点是( )A .x =1B .x =-1C .x =1或-1或0D .x =02.函数y =x e x 在[0,2]上的最大值是( ) A.1e B.2e 2 C .0 D.12e3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 24.已知函数f (x )=x 3+bx 2+cx 的图象如图所示,则x 21+x 22等于( )A.23B.43C.83D.1635.(多选)函数y =f (x )的导函数f ′(x )的图象如图所示,则以下命题错误的是( )A .-3是函数y =f (x )的极值点B .-1是函数y =f (x )的最小值点C .y =f (x )在区间(-3,1)上单调递增D .y =f (x )在x =0处切线的斜率小于零6.(多选)(2021·烟台模拟)已知函数f (x )=x 2+x -1e x,则下列结论正确的是( ) A .函数f (x )存在两个不同的零点B .函数f (x )既存在极大值又存在极小值C .当-e<k ≤0时,方程f (x )=k 有且只有两个实根D .若x ∈[t ,+∞)时,f (x )max =5e2,则t 的最小值为2 7.函数f (x )=2x -ln x 的最小值为________.8.若函数f (x )=x 3-2cx 2+x 有两个极值点,则实数c 的取值范围为______________.9.已知函数f (x )=sin x -13x ,x ∈[0,π],cos x 0=13,x 0∈[0,π]. ①f (x )的最大值为f (x 0); ②f (x )的最小值为f (x 0);③f (x )在[0,x 0]上是减函数; ④f (x 0)为f (x )的极大值.那么上面命题中真命题的序号是________.10.已知不等式e x -1≥kx +ln x 对于任意的x ∈(0,+∞)恒成立,则k 的最大值为________.11.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数.12.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数g (x )=f (x )-a (x -1),其中a ∈R ,求函数g (x )在区间(0,e]上的最小值(其中e 为自然对数的底数).13.已知函数f (x )=x +2sin x ,x ∈[0,2π],则f (x )的值域为( )A.⎣⎡⎦⎤4π3-3,2π3+3 B.⎣⎡⎦⎤0,4π3-3 C.⎣⎡⎦⎤2π3+3,2π D .[0,2π]14.(2020·邢台模拟)若函数f (x )=12x 2+(a -1)x -a ln x 存在唯一的极值,且此极值不小于1,则实数a 的取值范围为________.15.已知函数f (x )=x ln x +m e x (e 为自然对数的底数)有两个极值点,则实数m 的取值范围是__________.16.(2019·全国Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1)讨论f (x )的单调性;(2)当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.高考专题突破一 高考中的导数综合问题第1课时 利用导数研究恒(能)成立问题1.设函数f (x )=ln x +a x(a 为常数).(1)讨论函数f (x )的单调性; (2)不等式f (x )≥1在x ∈(0,1]上恒成立,求实数a 的取值范围.2.已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值.3.已知函数f (x )=x 2+(a +1)x -ln x ,g (x )=x 2+x +2a +1.(1)若f (x )在(1,+∞)上单调递增,求实数a 的取值范围;(2)当x ∈[1,e]时,f (x )<g (x )恒成立,求实数a 的取值范围.4.已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x . (1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.5.(2020·衡水中学检测)设函数f (x )=1-a 2x 2+ax -ln x (a ∈R ). (1)当a =1时,求函数f (x )的极值;(2)若对任意a ∈(4,5)及任意x 1,x 2∈[1,2],恒有a -12m +ln 2>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.第2课时利用导函数研究函数的零点1.已知函数f(x)=e x(ax+1),曲线y=f(x)在x=1处的切线方程为y=bx-e.(1)求a,b的值;(2)若函数g(x)=f(x)-3e x-m有两个零点,求实数m的取值范围.2.已知f(x)=ax2(a∈R),g(x)=2ln x.(1)讨论函数F(x)=f(x)-g(x)的单调性;(2)若方程f(x)=g(x)在区间[1,e]上有两个不相等的解,求a的取值范围.3.已知函数f(x)=e x+ax-a(a∈R且a≠0).(1)若函数f(x)在x=0处取得极值,求实数a的值,并求此时f(x)在[-2,1]上的最大值;(2)若函数f(x)不存在零点,求实数a的取值范围.4.(2020·潍坊检测)已知函数f(x)=ln x-x2+ax,a∈R.(1)证明:ln x≤x-1;(2)若a≥1,讨论函数f(x)的零点个数.5.已知函数f(x)=e x+1-kx-2k(其中e是自然对数的底数,k∈R).(1)讨论函数f(x)的单调性;(2)当函数f(x)有两个零点x1,x2时,证明x1+x2>-2.第3课时利用导数证明不等式1.(2021·莆田模拟)已知函数f(x)=x e x-1-ax+1,曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2.(1)求a的值及切线l的方程;(2)证明:f(x)≥0.2.(2021·沧州七校联考)设a为实数,函数f(x)=e x-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.3.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;(2)当a=e时,证明:xf(x)-e x+2e x≤0.4.已知函数f (x )=ln x -ax (a ∈R ).(1)讨论函数f (x )在(0,+∞)上的单调性;(2)证明:e x -e 2ln x >0恒成立.5.(2018·全国Ⅰ)已知函数f (x )=1x-x +a ln x . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.。
高中数学高考总复习导数的概念及运算习题及详解

高中数学高考总复习导数的概念及运算习题及详解一、选择题1.(文)2010·瑞安中学)函数y =x 2+1在[1,1+Δx ]上的平均变化率是( ) A .2 B .2x C .2+ΔxD .2+Δx 2[答案] C[解析] Δy Δx =[(1+Δx )2+1]-(12+1)Δx=Δx +2.(理)二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,则函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )图象是过第一、二、三象限的一条直线,故2a >0,b >0,则f (x )=a (x +b 2a )2-b 24a ,顶点(-b 2a ,-b 24a )在第三象限,故选C.2.(2010·江西文,4)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0[答案] B[解析] f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2要善于观察,故选B.[点评] 由f ′(x )=4ax 3+2bx 知,f ′(x )为奇函数, ∴f ′(-1)=-f ′(1)=-2.3.(2010·金华十校)曲线y =x 3上一点B 处的切线l 交x 轴于点A ,△OAB (O 是原点)是以A 为顶点的等腰三角形,则切线l 的倾斜角为( )A .30°B .45°C .60°D .120°[答案] C[解析] 解法一:设B (x 0,x 03),则k OB =tan ∠AOB =x 02,∵AB =AO ,∴∠BAx =2∠BOA ,曲线y =x 3在B 处切线斜率k AB =3x 02=tan ∠BAx =tan2∠BOA =2x 021-x 04,∴x 02=33,∴k AB =3,∴切线l 倾斜角为60°. 解法二:设B (x 0,x 03),由于y ′=3x 2,故曲线l 的方程为y -x 03=3x 02(x -x 0),令y =0得点A ⎝⎛⎭⎫2x 03,0,由|OA |=|AB |得⎝⎛⎭⎫2x 032=⎝⎛⎭⎫x 0-2x 032+(x 03-0)2,当x 0=0时,题目中的三角形不存在,故得x 04=13,故x 02=33,直线l 的斜率k =3x 02=3,故直线l 的倾斜角为60°.4.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(a ),B =f (a +1)-f (a ),C =f ′(a +1),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A[答案] A[解析] 记M (a ,f (a )),N (a +1,f (a +1)),则由于B =f (a +1)-f (a )=f (a +1)-f (a )(a +1)-a ,表示直线MN 的斜率,A =f ′(a )表示函数f (x )=log a x 在点M 处的切线斜率;C =f ′(a +1)表示函数f (x )=log a x 在点N 处的切线斜率.所以,A >B >C .5.设函数f (x )=sin ⎝⎛⎭⎫ωx +π6-1(ω>0)的导函数f ′(x )的最大值为3,则f (x )图象的一条对称轴方程是( )A .x =π9B .x =π6C .x =π3D .x =π2[答案] A[解析] f ′(x )=ωcos ⎝⎛⎭⎫ωx +π6的最大值为3, 即ω=3,∴f (x )=sin ⎝⎛⎭⎫3x +π6-1. 由3x +π6=π2+k π得,x =π9+k π3 (k ∈Z ).故A 正确.6.(文)(2010·深圳市九校)下图是函数y =f (x )的导函数f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =4时,f (x )取极大值 [答案] C[解析] 由图象可知,在区间(4,5)上,f ′(x )>0, ∴f (x )在(4,5)上是增函数,故选C.(理)(2010·厦门三中,2011·吉林省实验中学模拟)如图,函数y =f (x )的图象在点P (5,f (5))处的切线方程是y =-x +8,则f (5)+f ′(5)=( )A.12B .1C .2D .0[答案] C[解析] 由条件知f ′(5)=-1,又在点P 处切线方程为y -f (5)=-(x -5),∴y =-x +5+f (5),即y =-x +8,∴5+f (5)=8,∴f (5)=3,∴f (5)+f ′(5)=2.7.(文)(2010·广东汕头一中)函数f (x )=e 2x 的图象上的点到直线2x -y -4=0的距离的最小值是( )A. 3B. 5C.322D.355[答案] B[解析] 设l 为与直线2x -y -4=0平行的函数f (x )=e 2x 的图象的切线,切点为(x 0,y 0),则k l =f ′(x 0)=2e 2x 0=2,∴x 0=0,y 0=1,∴切点(0,1)到直线2x -y -4=0的距离d =55=5即为所求.(理)(2010·海南五校联考)点P 是曲线x 2-y -2ln x =0上任意一点,则点P 到直线4x +4y +1=0的最小距离是( )A.22(1-ln2) B.22(1+ln2) C.22(12+ln2)D.12(1+ln2)[答案] B[解析] 将直线4x +4y +1=0作平移后得直线l :4x +4y +b =0,直线l 与曲线切于点P (x 0,y 0),由x 2-y -2ln x =0得y ′=2x -1x ,∴直线l 的斜率k =2x 0-1x 0=-1⇒x 0=12或x 0=-1(舍去),∴P (12,14+ln2),所求的最小距离即为点P (12,14+ln2)到直线4x +4y +1=0的距离:d =|2+(1+4ln2)+1|42=22(1+ln2).8.(文)(2010·广东检测)设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1eD .a <-1e[答案] A[解析] 由y ′=(e x +ax )′=e x +a =0得,e x =-a , 即x =ln(-a )>0⇒-a >1⇒a <-1.(理)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极小值,则b 的取值范围是( ) A .(-∞,1) B .(0,1) C .(1,+∞)D .(-1,0)[答案] B[解析] 因为f ′(x )=3x 2-3b .令f ′(x )=0,得x =±b ,易知f (x )在(-∞,-b )和(b ,+∞)上单调增,在(-b ,b )上单调减,因此函数f (x )在区间(0,1)内有极小值即b ∈(0,1),所以b ∈(0,1).[点评] 函数和导数的复合问题能有效实现函数性质与导函数结构之间的相互转化,导函数在分析函数的单调性及单调区间、极值和最值方面有较强的优势;同时导数也可以在解释函数性质的基础上,解决诸如不等式的恒成立问题、实际问题的最优解问题、函数零点的判定问题等等;因此,导数与函数性质的结合始终是高考命题的重点.9.(文)(2010·黑龙江省哈三中)已知y =tan x ,x ∈⎝⎛⎭⎫0,π2,当y ′=2时,x 等于( ) A.π3 B.23π C.π4D.π6[答案] C[解析] y ′=(tan x )′=⎝⎛⎭⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x =2,∴cos 2x =12,∴cos x =±22, ∵x ∈⎝⎛⎭⎫0,π2,∴x =π4. (理)(2010·东北师大附中模拟)定义方程f (x )=f ′(x )的实数根x 0叫做函数f (x )的“新驻点”,若函数g (x )=x ,h (x )=ln(x +1),φ(x )=x 3-1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为( )A .α>β>γB .β>α>γC .γ>α>βD .β>γ>α[答案] C[解析] 由g (x )=g ′(x )得,x =1,∴α=1,由h (x )=h ′(x )得,ln(x +1)=1x +1,故知1<x +1<2,∴0<x <1,即0<β<1,由φ(x )=φ′(x )得,x 3-1=3x 2,∴x 2(x -3)=1, ∴x >3,故γ>3,∴γ>α>β. [点评] 对于ln(x +1)=1x +1,假如0<x +1<1,则ln(x +1)<0,1x +1>1矛盾;假如x +1≥2,则1x +1≤12,即ln(x +1)≤12,∴x +1≤e ,∴x ≤e -1与x ≥1矛盾.10.(文)函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图象大致为( )[答案] A[解析] ∵f (x )=x cos x , ∴f ′(x )=cos x -x sin x ,∴f ′(-x )=f ′(x ),∴f ′(x )为偶函数,排除C ; ∵f ′(0)=1,排除D ;由f ′⎝⎛⎭⎫π2=-π2<0,f ′(2π)=1>0,排除B ,故选A. (理)(2010·胶州三中)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π),其导函数f ′(x )的部分图象如图所示,则函数f (x )的解析式为( )A .f (x )=4sin ⎝⎛⎭⎫12x +π4B .f (x )=2sin ⎝⎛⎭⎫12x +π4C .f (x )=2sin ⎝⎛⎭⎫12x +3π4D .f (x )=4sin ⎝⎛⎭⎫12x +3π4 [答案] A[解析] f ′(x )=Aωcos(ωx +φ),由f ′(x )的图象知,Aω=2,设周期为T ,则T 2=3π2-⎝⎛⎭⎫-π2=2π,∴T =2πω=4π,∴ω=12,∴A =4,∵f ′(x )的图象过点⎝⎛⎭⎫π2,0,∴2cos ⎝⎛⎭⎫12×π2+φ=0,∴π4+φ=π2+k π,k ∈Z ,即φ=π4+k π,k ∈Z ,∵0<φ<π,∴φ=π4.故选A.二、填空题11.(文)若曲线f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为________.[答案] (1,0)[解析] ∵f ′(x )=4x 3-1,由题意4x 3-1=3, ∴x =1.故切点P (1,0).(理)(2010·广东实华梧州联考)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,则x 0的值为________.[答案] 0或-23[解析] 由条件知, 2x 0=-3x 02,∴x 0=0或-23.12.(文)(2010·湖北黄冈模拟)已知函数f (x )的导数为f ′(x ),且满足f (x )=3x 2+2xf ′(2),则f ′(5)=________.[答案] 6[解析] f ′(x )=6x +2f ′(2),令x =2得, f ′(2)=12+2f ′(2),∴f ′(2)=-12,∴f (x )=3x 2-24x ,∴f ′(x )=6x -24,∴f ′(5)=6.(理)(2010·山东省实验中学模拟)若f (x )在R 上可导,f (x )=x 2+2f ′(2)x +3,则⎠⎛03f (x )d x=________.[答案] -18[解析] ∵f (x )=x 2+2f ′(2)x +3,∴f ′(x )=2x +2f ′(2),∴f ′(2)=4+2f ′(2), ∴f ′(2)=-4,∴f (x )=x 2-8x +3, ∴⎠⎛03f (x )d x =⎪⎪⎝⎛⎭⎫13x 3-4x 2+3x 03=-18. [点评] 注意f ′(2)是一个常数.13.曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形的面积为16,则a =________. [答案] ±1[解析] 因为y ′=3x 2,所以曲线在(a ,a 3)处切线斜率为3a 2, 切线方程为:y -a 3=3a 2(x -a )所围成三角形如右图所示的阴影部分.设切线与x 轴交于A 点,则A ⎝⎛⎭⎫23a ,0;x =a 与x 轴交于点B (a,0);设切线与x =a 交于M (a ,a 3),S △ABM =12⎝⎛⎭⎫a -2a 3·a 3=16,得a =±1. 14.(文)已知f (x )=x +ln x ,g (x )=x 3+x 2-x (x >0),h (x )=e x -x ,p (x )=cos2x,0<x <π的导函数f ′(x ),g ′(x ),h ′(x ),p ′(x )的零点依次为x 1,x 2,x 3,x 4,则将x 1,x 2,x 3,x 4按从小到大用“<”连接起来为________.[答案] x 1<x 3<x 2<x 4[解析] 由f ′(x )=1+1x =0得x =-1;由g ′(x )=3x 2+2x -1=0得x =-1或x =13,∵x >0,∴x =13;由h ′(x )=e x -1=0得,x =0;由p ′(x )=-2sin2x =0得,2x =k π,k ∈Z ,∴x =k π2,∵0<x <π,∴x =π2,∴x 1=-1,x 2=13,x 3=0,x 4=π2,故有x 1<x 3<x 2<x 4.(理)设函数f (x )=cos(3x +φ)(0<φ<π),若f (x )+f ′(x )为奇函数,则φ=________. [答案] π6[解析] f ′(x )=-3sin(3x +φ), 由条件知cos(3x +φ)-3sin(3x +φ)=2sin ⎝⎛⎭⎫π6-3x -φ=-2sin ⎝⎛⎭⎫3x +φ-π6为奇函数,且0<φ<π,∴φ=π6. 三、解答题15.(文)(2010·吉林市质检)定义在R 上的函数f (x )=ax 3+bx 2+cx +3同时满足以下条件:①f (x )在(-∞,-1)上是增函数,在(-1,0)上是减函数; ②f (x )的导函数是偶函数;③f (x )在x =0处的切线与第一、三象限的角平分线垂直. 求函数y =f (x )的解析式. [解析] f ′(x )=3ax 2+2bx +c ,∵f (x )在(-∞,-1)上是增函数,在(-1,0)上是减函数, ∴f ′(-1)=3a -2b +c =0① 由f (x )的导函数是偶函数得:b =0②又f (x )在x =0处的切线与第一、三象限的角平分线垂直, ∴f ′(0)=c =-1③由①②③得:a =13,b =0,c =-1,即f (x )=13x 3-x +3.(理)(2010·湖南考试院调研)已知函数f (x )=1-m +ln xx ,m ∈R .(1)求f (x )的极值;(2)若ln x -ax <0在(0,+∞)上恒成立,求a 的取值范围. [解析] (1)由导数运算法则知,f ′(x )=m -ln xx 2.令f ′(x )=0,得x =e m .当x ∈(0,e m )时,f ′(x )>0,f (x )单调递增; 当x ∈(e m ,+∞)时,f ′(x )<0,f (x )单调递减. 故当x =e m 时,f (x )有极大值,且极大值为f (e m )=e -m .(2)欲使ln x -ax <0在(0,+∞)上恒成立,只需ln xx <a 在(0,+∞)上恒成立,等价于只需ln xx在(0,+∞)上的最大值小于a . 设g (x )=ln x x (x >0),由(1)知,g (x )在x =e 处取得极大值1e .所以a >1e,即a 的取值范围为⎝⎛⎭⎫1e ,+∞. 16.(2010·北京市延庆县模考)已知函数f (x )=x 3-(a +b )x 2+abx ,(0<a <b ). (1)若函数f (x )在点(1,0)处的切线的倾斜角为3π4,求a ,b 的值;(2)在(1)的条件下,求f (x )在区间[0,3]上的最值; (3)设f (x )在x =s 与x =t 处取得极值,其中s <t , 求证:0<s <a <t <b .[解析] (1)f ′(x )=3x 2-2(a +b )x +ab ,tan 3π4=-1.由条件得⎩⎪⎨⎪⎧ f (1)=0f ′(1)=-1,即⎩⎪⎨⎪⎧1-(a +b )+ab =03-2(a +b )+ab =-1, 解得a =1,b =2或a =2,b =1, 因为a <b ,所以a =1,b =2.(2)由(1)知f (x )=x 3-3x 2+2x ,f ′(x )=3x 2-6x +2, 令f ′(x )=3x 2-6x +2=0,解得x 1=1-33,x 2=1+33. 在区间[0,3]上,x ,f ′(x ),f (x )的变化情况如下表:(3)证明:f ′(x )=3x 2-2(a +b )x +ab ,依据题意知s ,t 为二次方程f ′(x )=0的两根. ∵f ′(0)=ab >0,f ′(a )=a 2-ab =a (a -b )<0, f ′(b )=b 2-ab =b (b -a )>0,∴f ′(x )=0在区间(0,a )与(a ,b )内分别有一个根. ∵s <t ,∴0<s <a <t <b .17.(文)(2010·北京东城区)已知函数f (x )=ax 2+b ln x 在x =1处有极值12.(1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间. [解析] (1)因为函数f (x )=ax 2+b ln x , 所以f ′(x )=2ax +bx.又函数f (x )在x =1处有极值12,所以⎩⎪⎨⎪⎧ f ′(1)=0f (1)=12,即⎩⎪⎨⎪⎧2a +b =0a =12, 可得a =12,b =-1.(2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞),且f ′(x )=x -1x =(x +1)(x -1)x.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞).(理)(2010·北京东城区)已知函数f (x )=a ln(x +1)+(x +1)2在x =1处有极值. (1)求实数a 的值; (2)求函数f (x )的单调区间;(3)令g (x )=f ′(x ),若曲线g (x )在(1,g (1))处的切线与两坐标轴分别交于A 、B 两点(O 为坐标原点),求△AOB 的面积.[解析] (1)因为f (x )=a ln(x +1)+(x +1)2, 所以f ′(x )=ax +1+2x +2.由f ′(1)=0,可得a2+2+2=0,∴a =-8.经检验a =-8时,函数f (x )在x =1处取得极值, 所以a =-8.(2)f (x )=-8ln(x +1)+(x +1)2, f ′(x )=-8x +1+2x +2=2(x -1)(x +3)x +1.而函数f (x )的定义域为(-1,+∞),当x 变化时,f ′(x ),f (x )的变化情况如下表:由表可知,f (x )的单调减区间为(-1,1)单调增区间为(1,+∞). (3)由于g (x )=f ′(x )=-8x +1+2x +2,所以g ′(x )=8(x +1)2+2, 当x =1时,g ′(1)=4,g (1)=0. 所以切线斜率为4,切点为(1,0),所以切线方程为y =4(x -1),即4x -y -4=0.高考总复习含详解答案 令x =0,得y =-4,令y =0,得x =1.所以△AOB 的面积S =12×|-4|×1=2.。
导数概念练习题

导数概念练习题导数是微积分的一个重要概念,它描述了函数在某一点处的变化率,即函数在该点处的斜率。
导数的概念在许多学科中都有广泛的应用,如物理学、工程学、经济学等。
下面是一些导数概念的练习题,帮助大家更好地理解这个概念。
已知函数f(x) = x^2 + 2x + 1,求f'(x)。
已知函数f(x) = sin(x),求f'(x)。
已知函数f(x) = log(x),求f'(x)。
已知函数f(x) = e^x,求f'(x)。
已知函数f(x) = x^n,求f'(x)。
已知函数f(x) = x/ln(x),求f'(x)。
解:f'(x) = (ln(x)-1)/(ln(x))^2已知函数f(x) = arctan(x),求f'(x)。
已知函数f(x) = e^(arctan(x)),求f'(x)。
解:f'(x) = e^(arctan(x))*(1/(1+x^2))已知函数f(x) = sin(e^x),求f'(x)。
解:f'(x) = cos(e^x)*e^x已知函数f(x) = x^sin(x),求f'(x)。
解:f'(x) = sin(x)x^(sin(x)-1)(cos(x)-1)以上练习题可以帮助大家理解导数的概念,并掌握一些常见的导数计算方法。
导数是数学中一个非常重要的概念,它描述了一个函数在某一点处的变化率。
求导数是数学分析中的一个基本技能,也是解决许多实际问题中必不可少的工具。
下面是一些求导数的练习题,供大家参考。
(1)θ=sinx,y=cosx。
(x)=3xx=0为函数的极值点。
随着素质教育的不断推进,高中数学课程中引入了越来越多的抽象概念,其中导数概念便是之一。
导数概念作为微积分的核心概念之一,对于高中生而言,是一个极具挑战性的知识点。
因此,本文旨在探讨高中学生对导数概念的理解情况,为教师提供有益的教学参考,从而提高学生对导数概念的理解和掌握程度。
2023年新高考数学大一轮复习专题14 导数的概念与运算(原卷版)

专题14 导数的概念与运算【考点预测】知识点一:导数的概念和几何性质1.概念 函数()f x 在0x x =处瞬时变化率是0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0x x y ='.知识点诠释:① 增量x ∆可以是正数,也可以是负,但是不可以等于0.0x ∆→的意义:x ∆与0之间距离要多近有 多近,即|0|x ∆-可以小于给定的任意小的正数;② 当0x ∆→时,y ∆在变化中都趋于0,但它们的比值却趋于一个确定的常数,即存在一个常数与00()()f x x f x y x x+∆-∆=∆∆无限接近; ③ 导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率.如瞬时速度即是位移在这一时 刻的瞬间变化率,即00000()()()limlimx x f x x f x yf x x x∆→∆→+∆-∆'==∆∆. 2.几何意义 函数()y f x =在0x x =处的导数0()f x '的几何意义即为函数()y f x =在点00()P x y ,处的切线的斜率.3.物理意义 函数)(t s s =在点0t 处的导数)(0t s '是物体在0t 时刻的瞬时速度v ,即)(0t s v '=;)(t v v =在点0t 的导数)(0t v '是物体在0t 时刻的瞬时加速度a ,即)(0t v a '=.知识点二:导数的运算 1.求导的基本公式x(1)函数和差求导法则:[()()]()()f x g x f x g x '''±=±; (2)函数积的求导法则:[()()]()()()()f x g x f x g x f x g x '''=+; (3)函数商的求导法则:()0g x ≠,则2()()()()()[]()()f x f xg x f x g x g x g x ''-=. 3.复合函数求导数复合函数[()]y f g x =的导数和函数()y f u =,()u g x =的导数间关系为 x u x y y u '''=: 【方法技巧与总结】 1.在点的切线方程切线方程000()()()y f x f x x x '-=-的计算:函数()y f x =在点00(())A x f x ,处的切线方程为000()()()y f x f x x x '-=-,抓住关键000()()y f x k f x =⎧⎨'=⎩.2.过点的切线方程设切点为00()P x y ,,则斜率0()k f x '=,过切点的切线方程为:000()()y y f x x x '-=-,又因为切线方程过点()A m n ,,所以000()()n y f x m x '-=-然后解出0x 的值.(0x 有几个值,就有几条切线)注意:在做此类题目时要分清题目提供的点在曲线上还是在曲线外.【题型归纳目录】 题型一:导数的定义 题型二:求函数的导数 题型三:导数的几何意义 1.在点P 处切线 2.过点P 的切线 3.公切线4.已知切线求参数问题5.切线的条数问题6.切线平行、垂直、重合问题7.最值问题 【典例例题】题型一:导数的定义例1.(2022·全国·高三专题练习(文))函数()y f x =的图像如图所示,下列不等关系正确的是( )A .0(2)(3)(3)(2)f f f f ''<<<-B .0(2)(3)(2)(3)f f f f ''<<-<C .0(3)(3)(2)(2)f f f f ''<<-<D .0(3)(2)(2)(3)f f f f ''<-<<例2.(2022·河南·南阳中学高三阶段练习(理))设函数()f x 满足000(2)()lim 2x f x x f x x∆→-∆-=∆,则()0f x '=( )A .1-B .1C .2-D .2例3.(2022·新疆昌吉·二模(理))若存在()()00000,,limx f x x y x y f x ∆→+-∆∆,则称()()00000,,limx f x x y xy f x ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对x 的偏导数,记为()00,x f x y ';若存在()()00000,,limy f x y yy f x y ∆→+-∆∆,则称()()00000,,lim y f x y yy f x y ∆→+-∆∆为二元函数(),=z f x y 在点()00,x y 处对y 的偏导数,记为()00,y f x y ',已知二元函数()()23,20,0f x y x xy y x y =-+>>,则下列选项中错误的是( )A .()1,34x f '=-B .()1,310y f '=C .()(),,x y f m n f m n ''+的最小值为13-D .(),f x y 的最小值为427-例4.(2022·贵州黔东南·一模(文))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式,()2524s t t =+--,则当1t =时,该质点的瞬时速度为( ) A .2-米/秒B .3米/秒C .4米/秒D .5米/秒例5.(2022·全国·高三专题练习)已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20例6.(2022·浙江·高三专题练习)已知函数()()2223ln 9f x f x x x '=-+(()f x '是()f x 的导函数),则()1f =( ) A .209-B .119-C .79D .169例7.(2022·浙江·高三专题练习)已知函数()f x 的导函数为()f x ',且满足()()32121f x x x f x '=++-,则()2f '=( ) A .1B .9-C .6-D .4【方法技巧与总结】对所给函数式经过添项、拆项等恒等变形与导数定义结构相同,然后根据导数定义直接写出. 题型二:求函数的导数例8.(2022·天津·耀华中学高二期中)求下列各函数的导数: (1)ln(32)y x =-; (2)e xxy =; (3)()2cos f x x x =+例9.(2022·新疆·莎车县第一中学高二期中(理))求下列函数的导数: (1)22ln cos y x x x =++; (2)3e x y x = (3)()ln 31y x =-例10.(2022·广东·北京师范大学珠海分校附属外国语学校高二期中)求下列函数的导数: (1)5y x =; (2)22sin y x x =+; (3)ln xy x=; (4)()211ln 22x y e x -=+.【方法技巧与总结】对所给函数求导,其方法是利用和、差、积、商及复合函数求导法则,直接转化为基本函数求导问题. 题型三:导数的几何意义1.在点P 处切线例11.(2022·河北·模拟预测)曲线e sin x y x =在0x =处的切线斜率为( ) A .0B .1C .2D .2-例12.(2022·安徽·巢湖市第一中学模拟预测(文))曲线22x ay x +=+在点()1,b 处的切线方程为60kx y -+=,则k 的值为( ) A .1-B .23-C .12D .1例13.(2022·海南·文昌中学高三阶段练习)曲线e 2x y x =-在0x =处的切线的倾斜角为α,则sin 2πα⎛⎫+=⎪⎝⎭( )A .BC .1D .-1例14.(2022·安徽·巢湖市第一中学高三期中(理))已知()()2cos 0cos 2f x x f x π⎛⎫=-+ '⎪⎝⎭,则曲线()y f x =在点33,44f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为( )A B .C .D .-例15.(2022·全国·高三专题练习(文))已知函数()f x 是定义在R 上的奇函数,且32()23(1)f x x ax f x '=-+-,则函数()f x 的图象在点(2,(2))f --处的切线的斜率为( ) A .21-B .27-C .24-D .25-例16.(2022·广西广西·模拟预测(理))曲线31y x =+在点()1,a -处的切线方程为( ) A .33y x =+B .31yxC .31y x =--D .33y x =--例17.(2022·河南省浚县第一中学模拟预测(理))曲线ln(25)y x x =+在2x =-处的切线方程为( ) A .4x -y +8=0 B .4x +y +8=0 C .3x -y +6=0D .3x +y +6=02.过点P 的切线例18.(2022·四川·广安二中二模(文))函数()2e xf x x =过点()0,0的切线方程为( )A .0y =B .e 0x y +=C .0y =或e 0x y +=D .0y =或e 0x y +=例19.(2022·四川省成都市郫都区第一中学高三阶段练习(文))若过点1(,0)2的直线与函数()e x f x x =的图象相切,则所有可能的切点横坐标之和为( ) A .e 1+B .12-C .1D .12例20.(2022·陕西安康·高三期末(文))曲线2ln 3y x x =+过点1,02⎛⎫- ⎪⎝⎭的切线方程是( )A .210x y ++=B .210x y -+=C .2410x y ++=D .2410x y -+=例21.(2022·广东茂名·二模)过坐标原点作曲线ln y x =的切线,则切点的纵坐标为( ) A .eB .1CD .1e例22.(2022·山东潍坊·三模)过点()()1,P m m ∈R 有n 条直线与函数()e xf x x =的图像相切,当n 取最大值时,m 的取值范围为( ) A .25e em -<< B .250e m -<< C .10em -<<D .e m <3.公切线例23.(2022·全国·高三专题练习)若函数()ln f x x =与函数2()(0)g x x x a x =++<有公切线,则实数a 的取值范围是( ) A .1ln ,2e ⎛⎫+∞ ⎪⎝⎭B .()1,-+∞C .()1,+∞D .()2,ln +∞例24.(2022·全国·高三专题练习)已知曲线()1:=e x C f x a +和曲线()()22:ln(),C g x x b a a b =++∈R ,若存在斜率为1的直线与1C ,2C 同时相切,则b 的取值范围是( ) A .9,4⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .(],1-∞D .9,4⎛⎤-∞ ⎥⎝⎦例25.(2022·江苏·南京外国语学校模拟预测)若两曲线y =x 2-1与y =a ln x -1存在公切线,则正实数a 的取值范围为( ) A .(]0,2eB .(]0,eC .[)2,e +∞D .(],2e e例26.(2022·河南·南阳中学高三阶段练习(理))若直线()111y k x =+-与曲线e x y =相切,直线()211y k x =+-与曲线ln y x =相切,则12k k 的值为( ) A .12B .1C .eD .2e例27.(2022·河北省唐县第一中学高三阶段练习)已知函数()ln f x a x =,()e xg x b =,若直线()0y kx k =>与函数()f x ,()g x 的图象都相切,则1a b+的最小值为( )A .2B .2eC .2eD 例28.(2022·重庆市育才中学高三阶段练习)若直线:l y kx b =+(1k >)为曲线()1x f x e -=与曲线()ln g x e x =的公切线,则l 的纵截距b =( )A .0B .1C .eD .e -例29.(2022·全国·高三专题练习)若两曲线ln 1y x =-与2y ax =存在公切线,则正实数a 的取值范围是( ) A .(]0,2eB .31e ,2-⎡⎫+∞⎪⎢⎣⎭C .310,e 2-⎛⎤⎥⎝⎦D .[)2e,+∞例30.(2022·全国·高三专题练习)若仅存在一条直线与函数()ln f x a x =(0a >)和2()g x x =的图象均相切,则实数=a ( )A .eB C .2eD .4.已知切线求参数问题例31.(2022·湖南·模拟预测)已知P 是曲线)2:ln C y x x a x =++上的一动点,曲线C 在P 点处的切线的倾斜角为θ,若32ππθ≤<,则实数a 的取值范围是( )A .)⎡⎣B .)⎡⎣C .(,-∞D .(,-∞例32.(2022·广西·贵港市高级中学三模(理))已知曲线e ln x y ax x =+在点()1,e a 处的切线方程为3y x b =+,则( ) A .e a =,2b =- B .e a =,2b = C .1e a -=,2b =-D .1e a -=,2b =例33.(2022·江苏苏州·模拟预测)已知奇函数()()()()220f x x x ax b a =-+≠在点()(),a f a 处的切线方程为()y f a =,则b =( )A .1-或1B .C .2-或2D .例34.(2022·云南昆明·模拟预测(文))若函数()ln f x x =的图象在4x =处的切线方程为y x b =+,则( )A .3a =,2ln 4b =+B .3a =,2ln 4b =-+C .32a =,1ln 4b =-+ D .32a =,1ln 4b =+ 例35.(2022·河南·方城第一高级中学模拟预测(理))已知直线l 的斜率为2,l 与曲线1C :()1ln y x x =+和圆2C :2260x y x n +-+=均相切,则n =( ) A .-4B .-1C .1D .45.切线的条数问题例36.(2022·全国·高三专题练习)若过点(,)a b 可以作曲线ln y x =的两条切线,则( ) A .ln a b <B .ln b a <C .ln b a <D .ln a b <例37.(2022·河南洛阳·三模(理))若过点()1,P t 可作出曲线3y x =的三条切线,则实数t 的取值范围是( )A .(),1-∞B .()0,∞+C .()0,1D .{}0,1例38.(2022·河南洛阳·三模(文))若过点()1,0P 作曲线3y x =的切线,则这样的切线共有( ) A .0条B .1条C .2条D .3条例39.(2022·河北·高三阶段练习)若过点(1,)P m 可以作三条直线与曲线:e xxC y =相切,则m 的取值范围为( )A .23,e ⎛⎫-∞ ⎪⎝⎭B .10,e ⎛⎫⎪⎝⎭C .(,0)-∞D .213,e e ⎛⎫ ⎪⎝⎭例40.(2022·内蒙古呼和浩特·二模(理))若过点()1,P m -可以作三条直线与曲线C :e x y x =相切,则m 的取值范围是( ) A .23,e ⎛⎫-+∞ ⎪⎝⎭B .1,0e ⎛⎫- ⎪⎝⎭C .211,e e ⎛⎫-- ⎪⎝⎭D .231,ee ⎛⎫-- ⎪⎝⎭例41.(2022·广东深圳·二模)已知0a >,若过点(,)a b 可以作曲线3y x =的三条切线,则( ) A .0b <B .30b a <<C .3b a >D .()30b b a -=6.切线平行、垂直、重合问题例42.(2022·安徽·合肥一中模拟预测(文))对于三次函数()f x ,若曲线()y f x =在点(0,0)处的切线与曲线()y xf x =在点(1,2)处点的切线重合,则(2)f '=( )A .34-B .14-C .4-D .14例43.(2022·山西太原·二模(理))已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 例44.(2022·全国·高三专题练习)已知函数f (x )=x 2+2x 的图象在点A (x 1,f (x 1))与点B (x 2,f (x 2))(x 1<x 2<0)处的切线互相垂直,则x 2-x 1的最小值为( ) A .12 B .1 C .32D .2例45.(2022·全国·高三专题练习)若直线x a =与两曲线e ,ln x y y x ==分别交于,A B 两点,且曲线e x y =在点A 处的切线为m ,曲线ln y x =在点B 处的切线为n ,则下列结论: ①()0,a ∞∃∈+,使得//m n ;②当//m n 时,AB 取得最小值; ③AB 的最小值为2;④AB 最小值小于52. 其中正确的个数是( ) A .1B .2C .3D .4例46.(2022·全国·高三专题练习)已知函数22(0)()1(0)x x a x f x x x ⎧++<⎪=⎨->⎪⎩的图象上存在不同的两点,A B ,使得曲线()y f x =在这两点处的切线重合,则实数a 的取值范围是( )A .1(,)8-∞-B .1(1,)8-C .(1,)+∞D .1(,1)(,)8-∞⋃+∞例47.(2022·全国·高三专题练习(文))若曲线x y e x =+的一条切线l 与直线220210x y +-=垂直,则切线l 的方程为( )A .210x y -+=B .210x y +-=C .210x y --=D .210x y ++=7.最值问题例48.(2022·全国·高三专题练习)若点P 是曲线232ln 2y x x =-上任意一点,则点P 到直线3y x =-的距离的最小值为( ) A.4BCD例49.(2022·山东省淄博第一中学高三开学考试)动直线l 分别与直线21y x =-,曲线23ln 2y x x =-相交于,A B 两点,则AB 的最小值为( )ABC .1 D例50.(2022·江苏·高三专题练习)已知a ,b 为正实数,直线y x a =-与曲线ln()y x b =+相切,则22a b-的取值范围是( ) A .(0,)+∞B .(0,1)C .1(0,)2D .[1,)+∞例51.(2022·全国·高三专题练习)曲线2x y e =上的点到直线240x y --=的最短距离是( ) ABCD .1例52.(2022·河北衡水·高三阶段练习)已知函数2ln ()2xf x x x=-在1x =处的切线为l ,第一象限内的点(,)P a b 在切线l 上,则1111a b +++的最小值为( ) ABCD.34+ 例53.(2022·山东聊城·二模)实数1x ,2x ,1y ,2y 满足:2111ln 0x x y --=,2240x y --=,则()()221212x x y y -+-的最小值为( ) A .0B.C.D .8例54.(2022·河南·许昌高中高三开学考试(理))已知函数21e x y +=的图象与函数()ln 112x y ++=的图象关于某一条直线l 对称,若P ,Q 分别为它们图象上的两个动点,则这两点之间距离的最小值为( )A .22B 24C .)4ln 22+D )4ln 2+例55.(2022·河南·灵宝市第一高级中学模拟预测(文))已知直线y kx b =+是曲线1y =的切线,则222k b b +-的最小值为( )A .12-B .0C .54D .3【方法技巧与总结】函数()y f x =在点0x 处的导数,就是曲线()y f x =在点00(,())P x f x 处的切线的斜率.这里要注意曲线在某点处的切线与曲线经过某点的切线的区别.(1)已知()f x 在点00(,())x f x 处的切线方程为000()()y y f x x x '-=-.(2)若求曲线()y f x =过点(,)a b 的切线方程,应先设切点坐标为00(,())x f x ,由000()()y y f x x x '-=-过点(,)a b ,求得0x 的值,从而求得切线方程.另外,要注意切点既在曲线上又在切线上.【过关测试】 一、单选题1.(2022·河南·高三阶段练习(理))若曲线()ln a xf x x=在点(1,f (1))处的切线方程为1y x =-,则a =( ) A .1B .e2C .2D .e2.(2022·云南曲靖·二模(文))设()'f x 是函数()f x 的导函数,()f x ''是函数()'f x 的导函数,若对任意R ()0,()0x f x f x '''∈><,恒成立,则下列选项正确的是( )A .0(3)(3)(2)(2)f f f f ''<<-<B .0(3)(2)(2)(3)f f f f ''<-<<C .0(3)(2)(3)(2)f f f f ''<<<-D .0(2)(3)(3)(2)f f f f ''<<<-3.(2022·全国·高三专题练习)设()f x 为可导函数,且()()112lim1x f f x x→--=-△△△,则曲线()y f x =在点()()1,1f 处的切线斜率为( )A .2B .-1C .1D .12-4.(2022·河南·模拟预测(文))已知3()ln(2)3xf x x x =++,则曲线()y f x =在点()()3,3f 处的切线方程为( )A .21010ln510x y -+-=B .21010ln510x y ++-=C .1212ln5150x y -+-=D .1212ln5150x y ++-=5.(2022·贵州黔东南·一模(理))一个质点作直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式23(43)=-s t t ,则当1t =时,该质点的瞬时速度为( ) A .5米/秒 B .8米/秒 C .14米/秒D .16米/秒6.(2022·全国·高三专题练习)已知函数()ln f x x x =,()()2g x x ax a =+∈R ,若经过点1,0A 存在一条直线l 与()f x 图象和()g x 图象都相切,则=a ( ) A .0B .1-C .3D .1-或37.(2022·湖南·长郡中学高三阶段练习)m 对任意a ∈R ,()0,b ∈+∞恒成立,则实数m 的取值范围是( )A .1,2⎛⎤-∞ ⎥⎝⎦B .2⎛-∞ ⎝⎦C .(-∞D .(],2-∞8.(2022·辽宁沈阳·二模)若直线11y k x b =+与直线()2212y k x b k k =+≠是曲线ln y x =的两条切线,也是曲线e x y =的两条切线,则1212k k b b ++的值为( ) A .e 1- B .0 C .-1D .11e-二、多选题9.(2022·辽宁丹东·模拟预测)若过点()1,a 可以作出曲线()1e xy x =-的切线l ,且l 最多有n 条,*n ∈N ,则( ) A .0a ≤B .当2n =时,a 值唯一C .当1n =时,4ea <-D .na 的值可以取到﹣410.(2022·浙江·高三专题练习)为满足人们对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示,则下列结论中正确的有( )A .在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强B .在2t 时刻,甲企业的污水治理能力比乙企业强C .在3t 时刻,甲、乙两企业的污水排放都已达标D .甲企业在[]10,t ,[]12,t t ,[]23,t t 这三段时间中,在[]10,t 的污水治理能力最强11.(2022·全国·高三专题练习)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条12.(2022·全国·高三专题练习)过平面内一点P 作曲线ln y x =两条互相垂直的切线1l 、2l ,切点为1P 、2P (1P 、2P 不重合),设直线1l 、2l 分别与y 轴交于点A 、B ,则下列结论正确的是( ) A .1P 、2P 两点的横坐标之积为定值 B .直线12PP 的斜率为定值;C .线段AB 的长度为定值D .三角形ABP 面积的取值范围为(]0,1三、填空题13.(2022·山东·肥城市教学研究中心模拟预测)已知函数()3ln f x x x x =-,则曲线()y f x =在点()()e,e f 处的切线方程为_______.14.(2022·全国·模拟预测(文))若直线l 与曲线2yx 和2249x y +=都相切,则l 的斜率为______. 15.(2022·湖北武汉·模拟预测)已知函数2()(0)e e x x f x f -'=-,则(0)f =__________.16.(2022·全国·赣州市第三中学模拟预测(理))已知()()()222cos 22cos sin f x xf x x x x x '+=++,且0x >,52f π⎛⎫= ⎪⎝⎭,那么()f π=___________. 四、解答题17.(2022·全国·高三专题练习(文))下列函数的导函数 (1)42356y x x x --=+; (2)2sin cos 22xx x y =+;(3)2log y x x =-; (4)cos x y x=.18.(2022·辽宁·沈阳二中二模)用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若fx 是()f x 的导函数,()f x ''是fx 的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''='+⎡⎤⎣⎦.(1)若曲线()ln f x xx =+与()g x =()1,1处的曲率分别为1K ,2K ,比较1K ,2K 大小; (2)求正弦曲线()sin h x x =(x ∈R )曲率的平方2K 的最大值.19.(2022·全国·高三专题练习)设函数()()2ln f x ax x a R =--∈. (1)若()f x 在点()()e,e f 处的切线为e 0x y b -+=,求a ,b 的值; (2)求()f x 的单调区间.20.(2022·浙江·高三专题练习)函数()321f x x x x =+-+, 直线l 是()y f x =在()()0,0f 处的切线.(1)确定()f x 的单调性;(2)求直线l 的方程及直线l 与()y f x =的图象的交点.21.(2022·北京东城·三模)已知函数()e x f x =,曲线()y f x =在点(1(1))f --,处的切线方程为y kx b =+.(1)求k ,b 的值;(2)设函数()1ln 1.kx b x g x x x +<⎧=⎨≥⎩,,,,若()g x t =有两个实数根12,x x (12x x <),将21x x -表示为t 的函数,并求21xx -的最小值.22.(2022·贵州贵阳·模拟预测(理))已知a ∈R ,函数()()ln 1f x x a x =+-,()e xg x =.(1)讨论()f x 的单调性;(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数.。
高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。
2023届全国高考数学复习:专题(导数的运算)重点讲解与练习(附答案)

2023届全国高考数学复习:专题(导数的运算)重点讲解与练习1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有[cf (x )]′=cf ′(x );[f (x )±g (x )]′=f ′(x )±g ′(x );[f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); 3.复合函数的定义及其导数(1)一般地,对于两个函数y =f (u )和u =g (x ),如果通过中间变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f (u )与u =g (x )的复合函数,记作y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ꞏu ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.【方法总结】导数运算的原则和方法基本原则:先化简、再求导; 具体方法:(1)连乘积形式:先展开化为多项式的形式,再求导;(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; (3)对数形式:先化为和、差的形式,再求导; (4)根式形式:先化为分数指数幂的形式,再求导;(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导; (6)复合函数:由外向内,层层求导. 【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ;(2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).[例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e x x +a .若f ′(1)=e4,则a =________.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x (4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( ) A .f (x )=sin x +cos x B .f (x )=ln x -2x C .f (x )=x 3+2x -1 D .f (x )=x e x(5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x 6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94 10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= . 12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-213.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .4 15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2.参考答案【例题选讲】[例1] 求下列函数的导数: (1)y =x 2sin x ; (2)y =cos x e x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2; (4)y =ln(2x -5).解析 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos x e x . (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12sin4x , ∴y ′=-12sin 4x -12x ꞏ4cos 4x =-12sin 4x -2x cos 4x . (4)令u =2x -5,y =ln u .则y ′=(ln u )′u ′=12x -5ꞏ2=22x -5,即y ′=22x -5. [例2] (1) (2020ꞏ全国Ⅲ)设函数f (x )=e xx +a.若f ′(1)=e 4,则a =________. 答案 1 解析 f ′(x )=e x (x +a )-e x (x +a )2=e x (x +a -1)(x +a )2,则f ′(1)=a e (a +1)2=e 4,整理可得a 2-2a +1=0,解得a =1.(2)已知函数f (x )的导函数为f ′(x ),f (x )=2x 2-3xf ′(1)+ln x ,则f (1)= .答案 -74 解析 ∵f (x )=2x 2-3xf ′(1)+ln x ,∴f ′(x )=4x -3f ′(1)+1x x =1代入,得f ′(1)=4-3f ′(1)+1,得f ′(1)=54.∴f (x )=2x 2-154x +ln x ,∴f (1)=2-154=-74.(3)已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2 022(x )等于( )A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x 答案 C 解析 ∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2 022=4×505+2,∴f 2 022(x )=f 2(x )=cos x -sin x .故选C .(4)(多选)给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,π2上是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=x 3+2x -1D .f (x )=x e x答案 AB 解析 对于A :f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,∵x ∈⎝⎛⎭⎫0,π2,∴f ″(x )<0,f (x )在⎝⎛⎭⎫0,π2上是凸函数,故A 正确.对于B :f ′(x )=1x -2,f ″(x )=-1x 2<0,故f (x )在⎝⎛⎭⎫0,π2上是凸函数,故B 正确;对于C :f ′(x )=3x 2+2,f ″(x )=6x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故C 错误;对于D :f ′(x )=(x +1)e x ,f ″(x )=(x +2)e x >0,故f (x )在⎝⎛⎭⎫0,π2上不是凸函数,故D 错误.故选AB . (5)已知f (x )的导函数为f ′(x ),若满足xf ′(x )-f (x )=x 2+x ,且f (1)≥1,则f (x )的解析式可能是( ) A .x 2-x ln x +x B .x 2-x ln x -x C .x 2+x ln x +x D .x 2+2x ln x +x 答案 C 解析 由选项知f (x )的定义域为(0,+∞),由题意得xf ′(x )-f (x )x 2=1+1x ,即⎣⎡⎦⎤f (x )x ′=1+1x ,故f (x )x =x +ln x +c (c 为待定常数),即f (x )=x 2+(ln x +c )x .又f (1)≥1,则c ≥0,故选C .【对点训练】1.下列求导运算正确的是( )A .⎝⎛⎭⎫x +1x ′=1+1x 2B .(log 2x )′=1x ln 2C .(5x )′=5x log 5xD .(x 2cos x )′=-2x sin x 1.答案 B 解析 (log 2x )′=1x ln 2,故B 正确. 2.函数y =x cos x -sin x 的导数为( )A .x sin xB .-x sin xC .x cos xD .-x cos x 2.答案 B 解析 y ′=x ′cos x +x (cos x )′-(sin x )′=cos x -x sin x -cos x =-x sin x . 3.(多选)下列求导运算正确的是( )A .(sin a )′=cos a (a 为常数)B .(sin 2x )′=2cos 2xC .(x )′=12xD .(e x -ln x +2x 2)′=e x -1x +4x3.答案 BCD 解析 ∵a 为常数,∴sin a 为常数,∴(sin a )′=0,故A 错误.由导数公式及运算法则知B ,C ,D 正确,故选BCD .4.已知函数f (x )=sin x cos x +1x 2,则f ′(x )= .4.答案 1cos 2x -2x 3 解析 f ′(x )=(sin x )′ꞏcos x -sin x ꞏ(cos x )′cos 2x+(x -2)′=cos 2x +sin 2x cos 2x +(-2)x -3=1cos 2x -2x 3. 5.已知函数f (x )的导函数为f ′(x ),记f 1(x )=f ′(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x )(n ∈N *),若f (x )=x sin x ,则f 2 019(x )+f 2 021(x )=( )A .-2cos xB .-2sin xC .2cos xD .2sin x5.答案 D 解析 由题意,f (x )=x sin x ,f 1(x )=f ′(x )=sin x +x cos x ,f 2(x )=f ′1(x )=cos x +cos x -x sin x =2cos x -x sin x ,f 3(x )=f ′2(x )=-3sin x -x cos x ,f 4(x )=f ′3(x )=-4cos x +x sin x ,f 5(x )=f ′4(x )=5sin x +x cos x ,…,据此可知f 2 019(x )=-2 019sin x -x cos x ,f 2 021(x )=2 021sin x +x cos x ,所以f 2019(x )+f 2 021(x )=2sin x ,故选D .6.f (x )=x (2 021+ln x ),若f ′(x 0)=2 022,则x 0等于( )A .e 2B .1C .ln 2D .e6.答案 B 解析 f ′(x )=2 021+ln x +x ×1x =2 022+ln x ,又f ′(x 0)=2 022,得2 022+ln x 0=2 022,则ln x 0 =0,解得x 0=1.7.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a = .7.答案 2 解析 f ′(x )=-(ax -1)′(ax -1)2e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1, 则a =2.8.已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a = .8.答案 e 2解析 f ′(x )=12x -3ꞏ(2x -3)′+a e -x +ax ꞏ(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.9.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .949.答案 C 解析 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x 所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.10.已知f (x )=x 2+2xf ′(1),则f ′(0)=________.10.答案 -4 解析 ∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),∴f ′(1)=-2,∴f ′(0)=2f ′(1)=2×(-2)=-4. 11.设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .11.答案 1+e 解析 因为f (ln x )=x +ln x ,所以f (x )=x +e x ,所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e .12.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)ꞏ2x +x 2,则f ′(2)=( )A .12-8ln 21-2ln 2B .21-2ln 2C .41-2ln 2 D .-212.答案 C 解析 因为f ′(x )=f ′(1)ꞏ2x ln 2+2x ,所以f ′(1)=f ′(1)ꞏ2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2ꞏ2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2. 13.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( )A .f (x )=3cos xB .f (x )=x 3+xC .f (x )=x +1x D .f (x )=e x +x13.答案 BC 解析 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x 2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意. 14.f (x )=3e x+1+x 3,其导函数为f ′(x ),则f (2020)+f (-2020)+f ′(2019)-f ′(-2019)的值为( ) A .1 B .2 C .3 D .414.答案 C 解析 f ′(x )=-3e x (e x +1)2+3x 2,f ′(-x )=-3e x (e x +1)2+3x 2,所以f ′(x )为偶函数,f ′(2019)-f ′(-2019) =0,因为f (x )+f (-x )=31+e x+x 3+31+e -x -x 3=31+e x +3e x 1+e x =3,所以f (2020)+f (-2020)+f ′(2019)-f ′(-2019)=3.故选C .15.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 020)=6,则f ′(-2 020)=______.15.答案 8 解析 因为f ′(x )=4ax 3-b sin x +7,所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7.所以f ′(x )+f ′(-x )=14.又f ′(2 020)=6,所以f ′(-2 020)=14-6=8. 16.分别求下列函数的导数:(1)y =e xln x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3;(3)y =x -sin x 2cos x2;(4)y =ln 1+2x .(5)f (x )=x 3+2x -x 2ln x -1x 2. 16.解析 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x ꞏ1x =⎝⎛⎭⎫ln x +1x e x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3. (3)∵y =x -12sin x ,∴y ′=1-12cos x .(4)∵y =ln 1+2x =12ln(1+2x ),∴y ′=12ꞏ11+2x ꞏ(1+2x )′=11+2x.(5)由已知f (x )=x -ln x +2x -1x 2.所以f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学-导数的概念及运算练习1.y =ln 1x 的导函数为( )A .y ′=-1xB .y ′=1xC .y ′=lnxD .y ′=-ln(-x)答案 A解析 y =ln 1x =-lnx ,∴y ′=-1x.2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0答案 D解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+11=6.所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1x -1在点(3,2)处的切线的斜率是( )A .2B .-2 C.12 D .-12答案 D解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2(x -1)2,故曲线在(3,2)处的切线的斜率k =y ′|x =3=-2(3-1)2=-12,故选D.4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2+2t ,那么速度为零的时刻是( )A .0秒B .1秒末C .2秒末D .1秒末和2秒末答案 D解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2-3t +2.令v =0,得t 2-3t +2=0,t 1=1或t 2=2.5.(·郑州质量检测)已知曲线y =x22-3lnx 的一条切线的斜率为2,则切点的横坐标为( )A .3B .2C .1 D.12答案 A解析 设切点坐标为(x 0,y 0),且x 0>0, 由y ′=x -3x ,得k =x 0-3x 0=2,∴x 0=3.6.(·衡水调研卷)设f(x)=xlnx ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .e C.ln22D .ln2答案 B解析 由f(x)=xlnx ,得f ′(x)=lnx +1. 根据题意知lnx 0+1=2,所以lnx 0=1,因此x 0=e.7.(·山西名校联考)若函数f(x)的导函数的图像关于y 轴对称,则f(x)的解析式可能为( ) A .f(x)=3cosx B .f(x)=x 3+x 2C .f(x)=1+sin2xD .f(x)=e x+x答案 C解析 A 项中,f ′(x)=-3sinx ,是奇函数,图像关于原点对称,不关于y 轴对称;B 项中,f ′(x)=3x 2+2x =3(x +13)2-13,其图像关于直线x =-13对称;C 项中,f ′(x)=2cos2x ,是偶函数,图像关于y 轴对称;D项中,f ′(x)=e x+1,由指数函数的图像可知该函数的图像不关于y 轴对称.故选C.8.(·安徽百校论坛联考)已知曲线f(x)=ax2x +1在点(1,f(1))处切线的斜率为1,则实数a 的值为( )A.32 B .-32C .-34D.43答案 D解析 由f ′(x)=2ax (x +1)-ax 2(x +1)2=ax 2+2ax (x +1)2,得f ′(1)=3a 4=1,解得a =43.故选D. 9.(·衡水中学调研卷)已知函数f(x)=12x 2·sinx +xcosx ,则其导函数f ′(x)的图像大致是( )答案 C解析 由f(x)=12x 2sinx +xcosx ,得f ′(x)=xsinx +12x 2cosx +cosx -xsinx =12x 2cosx +cosx.由此可知,f ′(x)是偶函数,其图像关于y 轴对称,排除选项A ,B.又f ′(0)=1,故选C.10.f(x)与g(x)是定义在R 上的两个可导函数,若f(x),g(x)满足f ′(x)=g ′(x),则f(x)与g(x)满足( ) A .f(x)=g(x)B .f(x)=g(x)=0C .f(x)-g(x)为常数函数D .f(x)+g(x)为常数函数答案 C11.(·《高考调研》原创题)设函数f(x)在(0,+∞)内可导,且f(e x )=x +e x,则f ′(2 017)=( ) A .1 B .2 C.12 017D.2 0182 017答案 D解析 令e x=t ,则x =lnt ,所以f(t)=lnt +t ,故f(x)=lnx +x. 求导得f ′(x)=1x +1,故f ′(2 017)=12 017+1=2 0182 017.故选D.12.(·河南息县高中月考)若点P 是曲线y =x 2-lnx 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B. 2 C.22D. 3答案 B解析 当过点P 的直线平行于直线y =x -2且与曲线y =x 2-lnx 相切时,切点P 到直线y =x -2的距离最小.对函数y =x 2-lnx 求导,得y ′=2x -1x .由2x -1x =1,可得切点坐标为(1,1),故点(1,1)到直线y =x -2的距离为2,即为所求的最小值.故选B.13.(·重庆一中期中)已知函数f(x)=e x +ae -x为偶函数,若曲线y =f(x)的一条切线的斜率为32,则切点的横坐标等于( ) A .ln2 B .2ln2 C .2 D. 2答案 A解析 因为f(x)是偶函数,所以f(x)=f(-x),即e x+ae -x=e -x+ae-(-x),解得a =1,所以f(x)=e x +e -x,所以f ′(x)=e x -e -x.设切点的横坐标为x 0,则f ′(x 0)=ex 0-e -x 0=32.设t =ex 0(t>0),则t -1t =32,解得t=2,即ex 0=2,所以x 0=ln2.故选A.14.已知y =13x 3-x -1+1,则其导函数的值域为________.答案 [2,+∞)15.已知函数f(x)=x(x -1)(x -2)(x -3)(x -4)(x -5),则f ′(0)=________. 答案 -120解析 f ′(x)=(x -1)(x -2)(x -3)(x -4)(x -5)+x[(x -1)(x -2)(x -3)(x -4)(x -5)]′,所以f ′(0)=(-1)×(-2)×(-3)×(-4)×(-5)=-120.16.(·重庆巴蜀期中)曲线f(x)=lnx +12x 2+ax 存在与直线3x -y =0平行的切线,则实数a 的取值范围是________.答案 (-∞,1]解析 由题意,得f ′(x)=1x +x +a ,故存在切点P(t ,f(t)),使得1t +t +a =3,所以3-a =1t +t 有解.因为t>0,所以3-a≥2(当且仅当t =1时取等号),即a≤1. 17.设f(x)是定义在R 上的奇函数,且当x≥0时,f(x)=2x 2. (1)求x<0时,f(x)的表达式;(2)令g(x)=lnx ,问是否存在x 0,使得f(x),g(x)在x =x 0处的切线互相平行?若存在,求出x 0的值;若不存在,请说明理由.答案 (1)f(x)=-2x 2(x<0) (2)存在,x 0=12解析 (1)当x<0时,-x>0, f(x)=-f(-x)=-2(-x)2=-2x 2. ∴当x<0时,f(x)的表达式为f(x)=-2x 2.(2)若f(x),g(x)在x 0处的切线互相平行,则f ′(x 0)=g ′(x 0),当x>0时,f ′(x 0)=4x 0=g ′(x 0)=1x 0,解得,x 0=±12.故存在x 0=12满足条件.18.(·河北卓越联盟月考)已知函数f(x)=x 3+x -16. (1)求曲线y =f(x)在点(2,-6)处的切线方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标. 答案 (1)y =13x -32(2)直线l 的方程为y =13x ,切点坐标为(-2,-26) 解析 (1)根据题意,得f ′(x)=3x 2+1.所以曲线y =f(x)在点(2,-6)处的切线的斜率k =f ′(2)=13, 所以要求的切线的方程为y =13x -32.(2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 02+1, 所以直线l 的方程为y =(3x 02+1)(x -x 0)+x 03+x 0-16. 又直线l 过点(0,0),则(3x 02+1)(0-x 0)+x 03+x 0-16=0, 整理得x 03=-8,解得x 0=-2,所以y 0=(-2)3+(-2)-16=-26,l 的斜率k =13, 所以直线l 的方程为y =13x ,切点坐标为(-2,-26).1.曲线y =sinx sinx +cosx -12在点M(π4,0)处的切线的斜率为( )A .-12B.12C .-22D.22答案 B解析 ∵y′=1(sinx +cosx )2·[cosx(sinx +cosx)-sinx ·(cosx -sinx)]=1(sinx +cosx )2,∴y ′|x =π4=12,∴k =y ′|x =π4=12. 2.(2017·山东东营一模)设曲线y =sinx 上任一点(x ,y)处切线的斜率为g(x),则函数y =x 2g(x)的部分图像可能为( )答案 C解析 根据题意得g(x)=cosx ,所以y =x 2g(x)=x 2cosx 为偶函数.又x =0时,y =0.故选C.3.(·山东烟台期末)若点P 是函数y =e x -e -x-3x(-12≤x ≤12)图像上任意一点,且在点P 处切线的倾斜角为α,则α的最小值是( ) A.5π6B.3π4 C.π4 D.π6答案 B解析 由导数的几何意义,k =y ′=e x+e -x-3≥2e x·e -x-3=-1,当且仅当x =0时等号成立.即tan α≥-1,α∈[0,π),又∵tan α<0,所以α的最小值为3π4,故选B.4.(2015·课标全国Ⅰ)已知函数f(x)=ax 3+x +1的图像在点(1,f(1))处的切线过点(2,7),则a =________. 答案 1解析 因为f(x)=ax 3+x +1,所以f ′(x)=3ax 2+1,所以f(x)在点(1,f(1))处的切线斜率为k =3a +1,又f(1)=a +2,所以切线方程为y -(a +2)=(3a +1)(x -1),因为点(2,7)在切线上,所以7-(a +2)=3a +1,解得a =1.5.(·浙江十二校联考)函数f(x)的导函数f ′(x)的图像是如图所示的一条直线l ,l 与x 轴的交点坐标为(1,0),则f(0)与f(3)的大小关系为( ) A .f(0)<f(3) B .f(0)>f(3) C .f(0)=f(3) D .无法确定答案 B解析 由题意知f(x)的图像是以x =1为对称轴,且开口向下的抛物线,所以f(0)=f(2)>f(3).选B. 6.(·江西,文)若曲线y =x a+1(a∈R )在点(1,2)处的切线经过坐标原点,则a =________. 答案 2解析 由题意y ′=αxα-1,在点(1,2)处的切线的斜率为k =α,又切线过坐标原点,所以α=2-01-0=2.7.(·河北邯郸二模)曲线y =log 2x 在点(1,0)处的切线与坐标轴所围成三角形的面积等于________. 答案 12log 2e解析 ∵y′=1xln2,∴k =1ln2.∴切线方程为y =1ln2(x -1).∴三角形面积为S △=12×1×1ln2=12ln2=12log 2e.8.若抛物线y =x 2-x +c 上的一点P 的横坐标是-2,抛物线过点P 的切线恰好过坐标原点,则实数c 的值为________. 答案 4解析 ∵y′=2x -1,∴y ′|x =-2=-5. 又P(-2,6+c),∴6+c-2=-5.∴c=4.9.若曲线y =f(x)在点(x 0,f(x 0))处的切线方程为2x +y -1=0,则( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在答案 B解析 切线方程为y =-2x +1,∴f ′(x 0)=-2<0,故选B.10.若P ,Q 是函数f(x)=x 2-x(-1≤x≤1)图像上任意不同的两点,则直线PQ 的斜率的取值范围是( ) A .(-3,1) B .(-1,1) C .(0,3) D .(-4,2)答案 A解析 f ′(x)=2x -1,当x =-1时,f ′(-1)=-3. 当x =1时,f ′(1)=1,结合图像可知,-3<k PQ <1.11.设函数y =xsinx +cosx 的图像上的点(x 0,y 0)处的切线的斜率为k ,若k =g(x 0),则函数k =g(x 0)的图像大致为( )答案 A解析 y ′=xcosx ,k =g(x 0)=x 0cosx 0,由于它是奇函数,排除B ,C ;当0<x<π4时,k>0,排除D ,答案为A.12.(·人大附中月考)曲线y =lgx 在x =1处的切线的斜率是( ) A.1ln10B .ln10C .lne D.1lne答案 A解析 因为y ′=1x·ln10,所以y ′|x =1=1ln10,即切线的斜率为1ln10.13.下列函数求导运算正确的是________. ①(3x)′=3xlog 3e ;②(log 2x)′=1x·ln2; ③(sin π3)′=cos π3;④(1lnx )′=x.答案 ②14.(·天津文)已知函数f(x)=(2x +1)e x,f ′(x)为f(x)的导函数,则f ′(0)的值为________. 答案 3解析 ∵f′(x)=2e x+(2x +1)e x=(2x +3)·e x,∴f ′(0)=3.15.(·课标全国Ⅲ,理)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x ,则曲线y =f(x)在点(1,-3)处的切线方程是________. 答案 y =-2x -1解析 由题意可得当x>0时,f(x)=lnx -3x ,则f ′(x)=1x -3,f ′(1)=-2,则在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.16.(·课标全国Ⅱ)已知曲线y =x +lnx 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________. 答案 8解析 由y ′=1+1x 可得曲线y =x +lnx 在点(1,1)处的切线斜率为2,故切线方程为y =2x -1,与y =ax2+(a +2)x +1联立得ax 2+ax +2=0,显然a≠0,所以由Δ=a 2-8a =0⇒a =8. 17.y =x·tanx 的导数为y ′=________. 答案 tanx +xcos 2x解析 y ′=(x·tanx)′=x ′tanx +x(tanx)′=tanx +x·(sinx cosx )′=tanx +x·cos 2x +sin 2x cos 2x =tanx +xcos 2x. 18.已知函数f(x)=f ′(π4)cosx +sinx ,所以f(π4)的值为________.答案 1解析 因为f ′(x)=-f ′(π4)sinx +cosx ,所以f ′(π4)=-f ′(π4)sin π4+cos π4,所以f ′(π4)=2-1.故f(π4)=f ′(π4)cos π4+sin π4=1.19.(·山西太原期中)设曲线y =1x在点(1,1)处的切线与曲线y =e x在点P 处的切线垂直,则点P 的坐标为________. 答案 (0,1)解析 由y =1x 得y ′=-1x 2,所以曲线y =1x 在点(1,1)处的切线的斜率k =-1,所以曲线y =e x在点P(x 0,y 0)处的切线的斜率为1.由y =e x,得y ′=e x,所以ex 0=1,解得x 0=0,y 0=1,即点P(0,1). 20.若直线y =12x +b 是曲线y =lnx 的一条切线,则实数b =________.答案 ln2-1解析 ∵切线斜率k =12,y ′=1x ,∴x =2,y =ln2.∴切线方程为y -ln2=12(x -2).即y =12x +ln2-1,∴b =ln2-1.21.已知曲线C :y =3x 4-2x 3-9x 2+4. (1)求曲线C 上横坐标为1的切线方程;(2)第(1)问中的切线与曲线C 是否还有其他公共点. 答案 (1)y =-12x +8(2)还有两个交点(-2,32),(23,0)解析 (1)把x =1代入C 的方程,求得y =-4. ∴切点为(1,-4), 又y ′=12x 3-6x 2-18x ,∴切线斜率为k =12-6-18=-12.∴切线方程为y +4=-12(x -1),即y =-12x +8.(2)由⎩⎪⎨⎪⎧y =3x 4-2x 3-9x 2+4,y =-12x +8,得3x 4-2x 3-9x 2+12x -4=0, 即(x -1)2(x +2)(3x -2)=0. ∴x =1,-2,23.代入y =3x 4-2x 3-9x 2+4, 求得y =-4,32,0,即公共点为(1,-4)(切点),(-2,32),(23,0).∴除切点处,还有两个交点(-2,32),(23,0).。