高中数学导数与积分知识点
高中数学导数与积分知识点

高中数学教案—导数、定积分① C'=0(C 为常数函数)② (x^n)'= nx^(n-1) (n ∈Q*);熟记1/X 的导数 ③ (sinx)' = cosx (cosx)' = - sinx (e^x)' = e^x(a^x)' = (a^x )lna (ln 为自然对数) (Inx)' = 1/x (ln 为自然对数)(logax)' =x^(-1) /lna(a>0且a 不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)导数的四则运算法则(和、差、积、商): ①(u ±v)'=u'±v' ②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v^2 三.要点精讲1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=xx f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x xx f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率x y ∆∆=xx f x x f ∆-∆+)()(00; (3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
(完整版)高中数学导数与函数知识点归纳总结

高中导数与函数知识点总结归纳一、基本概念1.导数的定义:设x 0是函数y =f (x )定义域的一点,如果自变量x 在x 0处有增量∆x ,则函数值y 也引起相应的增量∆y =f (x 0+∆x )-f (x 0);比值率;如果极限lim ∆y f (x 0+∆x )-f (x 0)称为函数y =f (x )在点x 0到x 0+∆x 之间的平均变化=∆x ∆xf (x 0+∆x )-f (x 0)∆y 存在,则称函数y =f (x )在点x 0处可导,并把这个极限叫做=lim ∆x →0∆x ∆x →0∆x y =f (x )在x 0处的导数。
f (x )在点x处的导数记作y 'x =x=f '(x 0)=lim∆x →0f (x 0+∆x )-f (x 0)∆x2导数的几何意义:(求函数在某点处的切线方程)函数y =f (x )在点x 0处的导数的几何意义就是曲线y =f (x )在点(x 0,f (x ))处的切线的斜率,也就是说,曲'线y =f (x )在点P (x 0,f (x ))处的切线的斜率是f (x 0),切线方程为y -y 0=f (x )(x -x 0).'3.基本常见函数的导数:n①C '=0;(C 为常数)②x ()'=nx x x n -1;③(sin x )'=cos x ;④(cos x )'=-sin x ;⑤(e )'=e ;⑥(a )'=a ln a ;⑦(ln x )'=x x 11;⑧(l o g ax )'=logae .xx二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:⎡'⎣f (x )±g (x )⎤⎦=f '(x )±g '(x )法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:⎡'=f '(x )g (x )+f (x )g '(x )f x ⋅g x ⎤()()⎣⎦常数与函数的积的导数等于常数乘以函数的导数:(Cf (x ))'=Cf '(x ).(C为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎡f (x )⎤'f '(x )g (x )-f (x )g '(x )g (x )≠0)。
高中数学中的导数与微积分知识点

高中数学中的导数与微积分知识点一、导数的概念与性质1.1 导数的定义导数是函数在某一点处的瞬时变化率,表示函数在某一点的局部性质。
设函数f(x)在点x=a处的导数为f’(a),则有:f′(a)=limΔx→0f(a+Δx)−f(a)Δx当Δx趋近于0时,上式表示函数f(x)在点x=a处斜率的变化。
1.2 导数的性质(1)导数具有局部性,即在某一点的导数仅与函数在该点附近的性质有关,与函数在其他地方的取值无关。
(2)导数具有连续性,即在连续函数上的导数存在且连续。
(3)导数具有单调性,即单调递增或单调递减函数的导数非零。
(4)导数与函数的极值密切相关,极值点处的导数为0。
二、基本求导公式与导数的应用2.1 基本求导公式(1)幂函数求导:(x n)′=nx n−1(2)指数函数求导:(a x)′=a x lna(3)对数函数求导:(lnx)′=1x(4)三角函数求导:(5)反函数求导:若y=f(x),则x=g(y)的导数为g′(y)=1f′(x)2.2 导数的应用(1)求函数的极值:设函数f(x)在点x=a处导数为0,且在a附近单调性发生改变,则f(a)为函数的极值。
(2)求函数的单调区间:当导数大于0时,函数单调递增;当导数小于0时,函数单调递减。
(3)求曲线的切线方程:设切点为(x0, y0),切线斜率为k ,则切线方程为y −y0=k(x −x0)。
(4)求曲线的弧长:设曲线参数方程为{x =x(t)y =y(t),则曲线弧长为L =∫√1+[y′(t)]2b a dt 。
(5)求曲面的面积:设曲面参数方程为{x =x(s,t)y =y(s,t)z =z(s,t),则曲面面积为S =∫∫√1+[ðz ðs ]2+[ðz ðt ]2d c b a dsdt 。
三、微积分的基本定理与应用3.1 微积分的基本定理微积分的基本定理指出,一个函数在一个区间上的定积分等于该函数在这个区间上的一个原函数的值。
高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
3. 基本初等函数的导数公式。
- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。
- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。
1. 函数的单调性。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。
2. 函数的极值。
- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。
(完整版)高中数学导数知识点归纳总结

§14. 导 数 知识要点1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值xx f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限x x f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =xx f x x f x yx x ∆-∆+=∆∆→∆→∆)()(limlim 0000. 注:①x ∆是增量,我们也称为“改变量”,因为x ∆可正,可负,但不为零.②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ⊇. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系:⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ∆+=0,则0x x →相当于0→∆x .于是)]()()([lim )(lim )(lim 000000x f x f x x f x x f x f x x x x +-+=∆+=→∆→∆→).()(0)()(lim lim )()(lim )]()()([lim 000'0000000000x f x f x f x f xx f x x f x f x x x f x x f x x x x =+⋅=+⋅∆-∆+=+∆⋅∆-∆+=→∆→∆→∆→∆⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为xx x y ∆∆=∆∆||,当x ∆>0时,1=∆∆x y ;当x ∆<0时,1-=∆∆xy ,故x yx ∆∆→∆0lim不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3. 导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-4. 求导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 注:①v u ,必须是可导函数.②若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设x x x f 2sin 2)(+=,xx x g 2cos )(-=,则)(),(x g x f 在0=x 处均不可导,但它们和=+)()(x g x fx x cos sin +在0=x 处均可导.5. 复合函数的求导法则:)()())(('''x u f x f x ϕϕ=或x u x u y y '''⋅= 复合函数的求导法则可推广到多个中间变量的情形.6. 函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导,如果)('x f >0,则)(x f y =为增函数;如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.注:①0)(φx f 是f (x )递增的充分条件,但不是必要条件,如32x y =在),(+∞-∞上并不是都有0)(φx f ,有一个点例外即x =0时f (x ) = 0,同样0)(πx f 是f (x )递减的充分非必要条件.②一般地,如果f (x )在某区间内有限个点处为零,在其余各点均为正(或负),那么f (x )在该区间上仍旧是单调增加(或单调减少)的. 7. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.8. 极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义. 9. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '= 2'11)(arcsin xx -=1')(-=n n nx x (R n ∈) x x sin )(cos '-= 2'11)(arccos xx --=II. x x 1)(ln '=e x x a a log 1)(log '= 11)(arctan 2'+=x x x x e e =')( a a a x x ln )('= 11)cot (2'+-=x x arcIII. 求导的常见方法: ①常用结论:xx 1|)|(ln '=. ②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.③无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.导数知识点总结复习经典例题剖析 考点一:求导公式。
高中数学导数知识点总结

高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。
也就是说,导数描述了函数在某一点处的变化率。
如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。
2. 导数的代数定义设函数y=f(x),在点x0处可导。
如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。
这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。
二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。
不过反之不成立。
2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。
高中数学微积分知识点总结(全)

高中数学微积分知识点总结(全)微积分是高中数学的一个重要分支,主要由导数、微分和积分三部分组成。
以下是微积分的常见知识点总结:导数- 导数的定义:$$ f'(x)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$- 导数的计算公式:$$(cf(x))'=cf'(x)$$ $$(f(x)\pm g(x))'=f'(x)\pmg'(x)$$ $$(f(x)g(x))'=f(x)g'(x)+g(x)f'(x)$$ $$\left(\frac{f(x)}{g(x)}\right )'=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$$- 导数的求解:- 可导函数的求法:$y=f(x)$可导的条件是必须存在极限$$ \lim_{\Delta x\to0}\frac{\Delta y}{\Delta x} $$- 可导函数的求导法则:函数导数等于其导函数,即求导公式。
微分- 微分的定义:$$ \Delta y=f'(x)\Delta x+\alpha(\Delta x)\Deltax=\text{d}x+f'(x)\Delta x $$ 其中$\alpha(\Delta x)$是$\Delta x$的高阶无穷小,$f'(x)\Delta x$称为函数$f(x)$在点$x$的微分。
- 微分的应用:线性近似、误差分析、微分中值定理。
积分- 定积分的定义:$$ \int_{a}^{b}f(x)\text{d}x=\lim_{\max\Delta x_i\to0}\sum_{i=1}^{n}f(\xi_i)\Delta x_i $$- 定积分的性质:线性性、区间可加性、不等式、介值定理、平均值定理。
高考数学中的导数与微积分知识点

高考数学中的导数与微积分知识点高中数学中微积分是相对于初中数学而言的一块难度较大的章节。
微积分作为一门基础而重要的学科,贯穿于数学的各个方面,也是后来物理学、工程学、经济学等学科中必不可少的工具。
微积分研究对象是连续函数和曲线的极限、函数的导数、不定积分及其应用等内容,是从静态的变为动态的、从离散的变为连续的、从局部的变为全局的数学思想方法。
下面我们就从高考数学中的导数与微积分知识点入手,来深入了解微积分这一科目。
一、导数的基本概念导数是微积分的基础,一是为了让函数更加灵敏地反映自变量变化的规律,二是为求出函数在某些点的变化率及曲线的切线斜率提供了数学工具。
导数不仅是微积分的基础概念,而且是数理化、力学、电学和经济学等很多学科的基础。
导数的定义:函数$f(x)$在点$x_0$处可导,当且仅当$f(x)$在点$x_0$处的左、右导数存在,且两个导数相等。
定一函数$f(x)$在$x_0$处的导数为:$$f'(x_0)=\lim_{\Delta x\to 0} \frac{\Delta y}{\Deltax}=\lim_{\Delta x\to 0} \frac{f(x_0+\Delta x)-f(x_0)}{\Delta x}$$其中$\Delta x$是自变量$x$的增量,$\Delta y$是因变量$y$的增量。
而$\Delta x$趋于$0$的过程,也就是点$x_0$周围越来越小的邻域内,自变量$x$的变化量趋近于$0$时,$f(x)$在点$x_0$处的左、右导数相等、存在时,就称该函数在点$x_0$处可导,其导数为左右导数的公共值。
如果左、右导数存在且相等,则称$f(x)$在 $x_0$处导数存在。
二、导数的基本性质为了更好地理解导数的概念,我们可以从以下几个角度入手,了解导数的基本性质:1. 如果函数$f(x)$在点$x_0$处可导,则$f(x)$在点$x_0$处连续。
2. $f(x)$在其定义域内是连续函数,则$f(x)$在该定义域内必然可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教案—导数、定积分一.课标要求:1.导数及其应用(1)导数概念及其几何意义① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵;②通过函数图像直观地理解导数的几何意义。
(2)导数的运算① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3,y=1/x ,y=x 的导数;② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数;③ 会使用导数公式表。
(3)导数在研究函数中的应用① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。
(4)生活中的优化问题举例例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。
(5)定积分与微积分基本定理① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念;② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。
(6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。
具体要求见本《标准》中"数学文化"的要求。
二.命题走向导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。
在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即xy ∆∆=x x f x x f ∆-∆+)()(00。
如果当0→∆x 时,xy∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。
即f (x 0)=0lim →∆x x y∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。
说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。
如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。
(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。
由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0);(2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。
2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0)) 处的切线的斜率。
也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。
相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。
3.常见函数的导出公式.(1)0)(='C (C 为常数) (2)1)(-⋅='n nxn x(3)x x cos )(sin =' (4)x x sin )(cos -=' 4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。
形如y=f [x (ϕ])的函数称为复合函数。
复合函数求导步骤:分解——求导——回代。
法则:y '|X = y '|U ·u '|X5.导数的应用(1)一般地,设函数)(x f y =在某个区间可导,如果'f )(x 0>,则)(x f 为增函数;如果'f 0)(<x ,则)(x f 为减函数;如果在某区间内恒有'f 0)(=x ,则)(x f 为常数; (2)曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;(3)一般地,在区间[a ,b]上连续的函数f )(x 在[a ,b]上必有最大值与最小值。
①求函数ƒ)(x 在(a ,b)内的极值; ②求函数ƒ)(x 在区间端点的值ƒ(a)、ƒ(b); ③将函数ƒ )(x 的各极值与ƒ(a)、ƒ(b)比较,其中最大的是最大值,其中最小的是最小值。
6.定积分 (1)概念设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…n )作和式I n =∑ni f1=(ξi)△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:⎰badx x f )(,即⎰badx x f )(=∑=∞→ni n f 1lim (ξi )△x 。
这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。
基本的积分公式:⎰dx 0=C ;⎰dx x m=111++m x m +C(m ∈Q , m ≠-1);⎰x1dx =ln x +C ;⎰dx e x=xe +C ;⎰dx a x=aa xln +C ;⎰xdx cos =sin x +C ;⎰xdx sin =-cos x +C(表中C 均为常数)。
(2)定积分的性质①⎰⎰=ba badx x f k dx x kf )()((k 为常数);②⎰⎰⎰±=±bab abadx x g dx x f dx x g x f )()()()(;③⎰⎰⎰+=bac abcdx x f dx x f dx x f )()()((其中a <c <b )。
(3)定积分求曲边梯形面积由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )(f (x )≥0)围成的曲边梯的面积⎰=badx x f S )(。
如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0),及直线x =a ,x =b (a<b )围成,那么所求图形的面积S =S 曲边梯形AMNB -S 曲边梯形DMNC =⎰⎰-babadx x f dx x f )()(21。
四.典例解析题型1:导数的概念例1.已知s=221gt ,(1)计算t 从3秒到3.1秒 、3.001秒 、 3.0001秒….各段内平均速度;(2)求t=3秒是瞬时速度。
解析:(1)[]t t ∆=-=∆,1.031.3,1.3,3指时间改变量; .3059.03211.321)3()1.3(22=-=-=∆g g s s s s ∆指时间改变量。
059.313059.0==∆∆=t s v 。
其余各段时间内的平均速度,事先刻在光盘上,待学生回答完第一时间内的平均速度后,即用多媒体出示,让学生思考在各段时间内的平均速度的变化情况。
(2)从(1)可见某段时间内的平均速度t s ∆∆随t ∆变化而变化,t ∆越小,ts∆∆越接近于一个定值,由极限定义可知,这个值就是0→∆t 时,ts∆∆的极限, V=0lim→∆x t s∆∆=0lim →∆x =∆-∆+ts t s )3()3(0lim→∆x t g t g ∆-∆+22321)3(21 =g 21lim →∆x (6+)t ∆=3g=29.4(米/秒)。
例2.求函数y=24x的导数。
解析:2222)()2(44)(4x x x x x x x x x y ∆+∆+∆-=-∆+=∆,22)(24x x x xx x y ∆+∆+⋅-=∆∆,∴00limlim→∆→∆=∆∆x x x y⎥⎦⎤⎢⎣⎡∆+∆+⋅-22)(24x x x x x =-38x 。
点评:掌握切的斜率、 瞬时速度,它门都是一种特殊的极限,为学习导数的定义奠定基础。
题型2:导数的基本运算例3.(1)求)11(32x x x x y ++=的导数; (2)求)11)(1(-+=xx y 的导数;(3)求2cos 2sinxx x y -=的导数; (4)求y=xx sin 2的导数;(5)求y =xx x x x 9532-+-的导数。
解析:(1)2311x x y ++= ,.2332'x x y -=∴ (2)先化简,2121111-+-=-+-⋅=xx xx xx y∴.112121212321'⎪⎭⎫⎝⎛+-=--=--x x x x y(3)先使用三角公式进行化简.x x x x x y sin 212cos 2sin -=-=.cos 211)(sin 21sin 21''''x x x x x y -=-=⎪⎭⎫⎝⎛-=∴(4)y ’=x x x x x 222sin )'(sin *sin )'(-=xxx x x 22sin cos sin 2-; (5) y =233x -x +5-219-x∴y ’=3*(x 23)'-x '+5'-921(x )'=3*2321x -1+0-9*(-21)23-x =1)11(292-+xx 。