高中数学导数知识点归纳

合集下载

高三导数公式总结知识点

高三导数公式总结知识点

高三导数公式总结知识点一、导数定义与符号表示导数是函数在某一点处的切线斜率,表示为f'(x),也可表示为dy/dx或df(x)/dx。

二、导数的基本性质1. 可导性:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。

2. 导数的唯一性:函数f(x)在点x=a处的导数唯一。

3. 常数导数:若f(x)为常数,则f'(x)=0。

4. 乘法常数:若k为常数,则(kf(x))'=kf'(x)。

5. 和差函数:若f(x)和g(x)在点x=a处可导,则(f(x)±g(x))'=f'(x)±g'(x)。

6. 乘法函数:若f(x)和g(x)在点x=a处可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

7. 商函数:若f(x)和g(x)在点x=a处可导且g'(a)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/g^2(x)。

三、常用导数公式1. 常数函数:(k)'=0,其中k为常数。

2. 幂函数:(x^n)'=nx^(n-1),其中n为整数。

3. 指数函数:(a^x)'=a^x*ln(a),其中a为正实数且a≠1。

4. 对数函数:(log_a(x))'=1/(xln(a)),其中a为正实数且a≠1。

5. 三角函数:- (sin(x))'=cos(x)- (cos(x))'=-sin(x)- (tan(x))'=sec^2(x)- (cot(x))'=-csc^2(x)- (sec(x))'=sec(x)tan(x)- (csc(x))'=-csc(x)cot(x)6. 反三角函数:- (arcsin(x))'=1/√(1-x^2),其中-1≤x≤1。

高中数学导数知识点

高中数学导数知识点

高中数学导数知识点导数是高中数学中一个重要的知识点,它是微积分的基础,也是很多高阶数学知识的基石。

在此,我将为大家介绍导数的相关知识。

一、导数的定义导数是描述函数变化率的一种工具,它定义为函数$f(x)$在$x_0$处的导数为:$$f'(x_0)=\lim\limits_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$其中,$x_0$是函数$f(x)$的定义域上的一个点。

导数可以用来衡量函数在某一点的变化率,即函数在该点的切线斜率。

二、导数的计算导数可以使用各种不同的方法计算,包括直接使用导数的定义、使用基本导数公式、使用公式进行化简等。

下面是导数的一些基本公式:$1.$ 条件导数:若函数在$x_0$处可导,则:$$f'(x_0^+)=\lim\limits_{x\to x_0^+}\frac{f(x)-f(x_0)}{x-x_0}$$$$f'(x_0^-)=\lim\limits_{x\to x_0^-}\frac{f(x)-f(x_0)}{x-x_0}$$$2.$ 可导与连续性:若$f(x)$在$x_0$处可导,则$f(x)$在$x_0$处连续;反之,若$f(x)$在$x_0$处不连续,则$f(x)$在$x_0$处不可导。

$3.$ 基本导数公式:如果$f(x)$和$g(x)$是可导函数,$n$是任意实数,则有:$$(cf(x))'=cf'(x)$$$$(f(x)+g(x))'=f'(x)+g'(x)$$$$(f(x)g(x))'=f(x)g'(x)+f'(x)g(x)$$$$(\frac{f(x)}{g(x)})'=\frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$$$$(f(g(x)))'=\frac{df(u)}{du}|_{u=g(x)}g'(x)$$$$(f(x)^n)'=nf(x)^{n-1}f'(x)$$$4.$ 特殊函数的导数:(1)幂函数:$(x^n)'=nx^{n-1}$(2)指数函数:$(a^x)'=a^x\ln a$(3)对数函数:$(\log_a x)'=\frac{1}{x\ln a}$(4)三角函数:$\sin x$的导数为$\cos x$$\cos x$的导数为$-\sin x$$\tan x$的导数为$\sec^2 x$$\cot x$的导数为$-\csc^2 x$(5)反三角函数:$\arcsin x$的导数为$\frac{1}{\sqrt{1-x^2}}$$\arccos x$的导数为$-\frac{1}{\sqrt{1-x^2}}$$\arctan x$的导数为$\frac{1}{1+x^2}$$\mathrm{arccot}x$的导数为$-\frac{1}{1+x^2}$三、导数的应用导数在数学和实际生活中有很广泛的应用。

导数知识点总结大全高中

导数知识点总结大全高中

导数知识点总结大全高中一、导数的基本概念1. 函数的变化率函数在定义域内的某一点上的变化率就是导数。

函数在某一点的导数描述了函数在这一点附近的变化趋势,是函数曲线的切线斜率。

当函数在某一点的导数为正时,表示函数在这一点附近是增加的;当函数在某一点的导数为负时,表示函数在这一点附近是减小的;当函数在某一点的导数为零时,表示函数在这一点附近有极值。

2. 导数的几何意义函数在某一点的导数是该函数曲线在这一点的切线斜率,即切线的倾斜程度。

当导数为正时,表示切线斜率为正,曲线是逐渐上升的;当导数为负时,表示切线斜率为负,曲线是逐渐下降的;当导数为零时,表示切线水平,曲线在该点可能有极值。

3. 导函数如果函数f(x)在x处可导,则在这一点导函数f'(x)给出了函数在这一点的变化率。

导函数是原函数f(x)关于自变量x的导数函数,通常使用f'(x)来表示。

4. 导数的符号函数f(x)在某一点的导数为正时,表示函数在这一点附近是增加的;函数f(x)在某一点的导数为负时,表示函数在这一点附近是减小的;函数f(x)在某一点的导数为零时,表示函数在这一点附近有极值。

二、导数的定义1. 函数可导如果函数f(x)在某一点x处的导数存在,那么称函数f(x)在这一点可导。

函数在某一点可导的条件是函数在这一点存在切线。

2. 函数导数的极限定义函数f(x)在x处的导数被定义为:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,lim表示极限,h→0表示当h趋近于0时的极限,f(x+h) - f(x)表示函数在x+h处和x处的高度差,h为x的增量。

3. 导数的等价形式导数的等价形式有有限增量与自变量增量之比求极限、差商公式等形式。

三、导数的性质1. 可导函数的和、差的导数如果函数f(x)和g(x)在x处可导,则它们的和f(x)+g(x)和差f(x)-g(x)在x处也可导,且导数为f'(x)+g'(x)和f'(x)-g'(x)。

高中常用导数公式大全

高中常用导数公式大全

高中常用导数公式大全导数是微积分中的重要概念,它描述了函数在某一点处的变化率。

在高中数学学习中,导数公式是必须掌握的知识点。

本文将为大家总结高中常用的导数公式大全,希望能够帮助大家更好地理解和掌握这一部分知识。

1. 常数函数的导数。

对于常数函数 f(x) = C,其中 C 为常数,其导数为 f'(x) = 0。

这是因为常数函数的图像是一条水平直线,斜率恒为零,即变化率为零。

2. 幂函数的导数。

幂函数 f(x) = x^n 的导数为 f'(x) = nx^(n-1)。

例如,f(x) = x^2 的导数为 f'(x) = 2x。

3. 指数函数的导数。

指数函数 f(x) = a^x(其中 a 为常数且 a>0, a≠1)的导数为 f'(x) = a^x ln(a)。

这是指数函数导数的特殊性质。

4. 对数函数的导数。

对数函数 f(x) = log_a(x)(其中 a 为常数且 a>0, a≠1)的导数为 f'(x) = 1 / (xln(a))。

对数函数的导数也是其特殊的性质。

5. 三角函数的导数。

常见的三角函数包括正弦函数 sin(x)、余弦函数 cos(x)、正切函数 tan(x) 等,它们的导数分别为 cos(x)、-sin(x)、sec^2(x)。

这些导数公式是高中数学中需要牢记的知识点。

6. 反三角函数的导数。

反三角函数包括反正弦函数 arcsin(x)、反余弦函数 arccos(x)、反正切函数arctan(x) 等,它们的导数分别为 1 / √(1-x^2)、-1 / √(1-x^2)、1 / (1+x^2)。

这些导数公式也是高中数学中的重要内容。

7. 基本导数法则。

在求导数时,我们需要掌握基本的导数法则,包括常数倍法则、和差法则、乘积法则、商数法则等。

这些法则是求导数过程中的基础,也是高中数学中的重点内容。

8. 链式法则。

对于复合函数,我们需要使用链式法则来求导数。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结一、导数的定义1. 导数的几何意义在直角坐标系中,函数的导数表示了函数曲线在某一点的切线的斜率。

也就是说,导数描述了函数在某一点处的变化率。

如果函数在某一点的导数为正,那么函数在这一点的曲线是朝上凸的;如果函数在某一点的导数为负,那么函数在这一点的曲线是朝下凸的;如果函数在某一点的导数为零,那么函数在这一点的曲线可能是一个最大值、最小值或者拐点。

2. 导数的代数定义设函数y=f(x),在点x0处可导。

如果当自变量x的增量为Δx时,函数值的增量Δy与自变量的增量Δx的比值在Δx趋于0时的极限存在,那么就称函数y=f(x)在点x0处可导。

这个极限就是函数在点x0处的导数,通常用f'(x0)或者df(x0)/dx来表示。

二、导数的性质1. 可导性与连续性在区间上连续的函数必定在该区间上有定义且连续的导数。

不过反之不成立。

2. 导数的四则运算法则设函数y=f(x)和y=g(x)都在x处可导,则:(1)常数函数的导数\[ (k)' = 0 \](2)乘积的导数\[ (u \cdot v)' = u' \cdot v + u \cdot v' \](3)商的导数\[ \left( \frac{u}{v} \right)' = \frac{u' \cdot v - u \cdot v'}{v^2} \](4)复合函数的导数\[ (f(g(x)))' = f'(g(x)) \cdot g'(x) \]3. 链式法则设函数y=f(u)和u=g(x)都在某点可导,则复合函数y=f(g(x))在该点可导,且有\[ y' = f'(g(x)) \cdot g'(x) \]4. 高阶导数如果函数f的导数也可导,则函数f有二阶导数,记作f'';同理,f(n)表示函数f的n阶导数。

高中导数知识点总结大全

高中导数知识点总结大全

高中导数知识点总结大全追逐高考,我们向往成功,我们希望激发潜能,我们就需要在心中铸造一座高高矗立的、坚固无比的灯塔,它的名字叫信念。

那么接下来给大家分享一些关于高中导数知识点总结大全,希望对大家有所帮助。

高中导数知识点总结1、导数的定义:在点处的导数记作.2.导数的几何物理意义:曲线在点处切线的斜率①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。

V=s/(t)表示即时速度。

a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;⑤;⑥;⑦;⑧。

4.导数的四则运算法则:5.导数的应用:(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:①求导数;②求方程的根;③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;(3)求可导函数值与最小值的步骤:ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。

学好导数至关重要,一起来学习高二数学导数的定义知识点归纳吧!导数是微积分中的重要基础概念。

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx 的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。

一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。

导数的本质是通过极限的概念对函数进行局部的线性逼近。

例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

(完整版)高中数学导数知识点归纳总结

(完整版)高中数学导数知识点归纳总结

高中导数知识点归纳一、基本概念1. 导数的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ∆,则函数值y 也引起相应的增量)()(00x f x x f y -∆+=∆;比值x x f x x f x y ∆-∆+=∆∆)()(00称为函数)(x f y =在点0x 到x x ∆+0之间的平均变化率;如果极限xx f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数。

()f x 在点0x 处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim )(00000 2 导数的几何意义:(求函数在某点处的切线方程)函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-3.基本常见函数的导数:①0;C '=(C 为常数) ②()1;n n x nx-'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '= ⑥()ln x x a a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=. 二、导数的运算1.导数的四则运算:法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即: ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦常数与函数的积的导数等于常数乘以函数的导数: ).())((''x Cf x Cf =(C 为常数)法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦。

高中数学导数知识点总结

高中数学导数知识点总结

高中数学导数知识点总结高中数学导数是微积分的重要内容,也是数学建模、物理学、经济学等学科的基础知识。

导数是函数在某一点上的局部变化率的极限,是研究函数性质和求解最优化问题的重要工具。

本文将对高中数学导数的相关知识点进行总结,以帮助学生更好地理解和掌握导数的概念和运算规则。

一、导数的定义和性质1. 导数的定义:设函数y=f(x),如果函数在点x处的极限存在,那么称该极限为函数在点x处的导数,记作f'(x)或dy/dx。

2. 导数的几何意义:导数表示函数在某一点上的切线斜率,即函数图像在该点上的瞬时变化率。

3. 导数存在的条件:函数在某一点上导数存在的充分条件是它在该点连续。

连续函数在任意一点上导数必存在,但导数存在并不意味着函数连续。

4. 导数的性质:(1) 加法法则:(f+g)'(x) = f'(x) + g'(x)(2) 数乘法则:(cf)'(x) = cf'(x),其中c为常数(3) 乘法法则:(fg)'(x) = f'(x)g(x) + f(x)g'(x)(4) 商法则:(f/g)'(x) = [f'(x)g(x) - f(x)g'(x)]/g^2(x),其中g(x)≠0(5) 复合函数的导数:(f(g(x))' = f'(g(x))g'(x)(6) 常用函数的导数公式:如常函数、幂函数、指数函数、对数函数等二、导数的计算方法1. 基本初等函数的导数计算方法:包括常函数、幂函数、指数函数、对数函数等的导数计算方法,可以通过直接计算或使用求导公式求解。

2. 特殊函数的导数计算方法:包括三角函数、反三角函数、指数函数与对数函数的复合函数等的导数计算方法。

3. 隐函数求导法:对给定方程两边同时求导,将隐函数的导数表示为已知量和未知量的关系,再进行求解。

4. 参数方程求导法:将参数方程表示的函数化为自变量的函数,然后进行求导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数及其应用一.导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆例一:若2012)1(/=f ,则x f x f x ∆-∆+→∆)1()1(lim= ,xf x f x ∆--∆+→∆)1()1(lim 0= ,x x f f x ∆∆+-→∆4)1()1(lim0= , xf x f x ∆-∆+→∆)1()21(lim 0= 。

二.导数的计算1)基本初等函数的导数公式:2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln xf x a a '=6 若()xf x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1.[f(x)±g(x)]′=f ′(x)±g ′(x);2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•一、知识自测:1、几个常用函数的导数:(1)f(x)=C ,则f ’(x)=_______ (2)f(x)=x ,则f ’(x)=_______ (3)f(x)=2x ,则f ’(x)=_______ (4)f(x)=x1,则f’(x)=_______ (5)f(x)=x ,则f ’(x)=_______2、基本初等函数的导数公式:(1)f(x)=C (C 为常数),则f ’(x)=_______ (2)f(x)=)(Q a x a∈,则f ’(x)=_______(3)f(x)=sinx ,则f ’(x)=_______ (4)f(x)=cosx ,则f ’(x)=_______ (5)f(x)=x a ,则f ’(x)=_______ (6)f(x)=xe ,则f ’(x)=_______ (7)f(x)=x a log ,则f ’(x)=_______ (8)f(x)=x ln ,则f ’(x)=_______ 3、导数的运算法则:已知)(),(x g x f 的导数存在,则:(1)_______________])()([='±x g x f (2)__________________])()([='⋅x g x f (3)='])()([x g x f ____________________二、典型例题xy x y xy xy y x y cos )6(log )5(ln )4(1)3(5)2()1(125======、求下列函数的导数例 555)4(5)3(1)2()1(1e y y xy x y x ====、求下列函数的导数:例3、根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+ (2)y =;(3)sin ln y x x x =⋅⋅;(4)4xx y =; (5)1ln 1ln xy x-=+.(6)2(251)xy x x e =-+⋅; (7)sin cos cos sin x x xy x x x-=+解:(1)'3'3'''2(23)()(2)(3)32y x x x x x =-+=-+=-,'232y x =-。

(2)'''y =-===222(1(1(1)x+=-2(1(1)xx x+=-'y=(3)'''(sin ln)[(ln)sin]y x x x x x x=⋅⋅=⋅⋅''(ln)sin(ln)(sin)x x x x x x=⋅⋅+⋅⋅1(1ln)sin(ln)cosx x x x x xx=⋅+⋅⋅+⋅⋅sin ln sin ln cosx x x x x x=+⋅+⋅⋅'sin ln sin ln cosy x x x x x x=+⋅+⋅⋅(4)''''224(4)144ln41ln4()4(4)(4)4x x x xx x x xx x x x xy⋅-⋅⋅-⋅-====,'1ln44xxy-=。

(5)''''2211ln212()(1)2()21ln1ln1ln(1ln)(1ln)x xyx x x x x x-==-+==⋅=+++++'22(1ln)yx x=+(6)'2'2'(251)(251)()x xy x x e x x e=-+⋅+-+⋅22(45)(251)(24)x x xx e x x e x x e=-⋅+-+⋅=--⋅,'2(24)xy x x e=--⋅。

(7)''sin cos()cos sinx x xyx x x-=+''2(sin cos)(cos sin)(sin cos)(cos sin)(cos sin)x x x x x x x x x x x xx x x-⋅+--⋅+=+2(cos cos sin)(cos sin)(sin cos)(sin sin s)(cos sin)x x x x x x x x x x x x xco xx x x-+⋅+--⋅-++=+2sin(cos sin)(sin cos)s(cos sin)x x x x x x x x xco xx x x⋅+--⋅=+22(cos sin )x x x x =+ 1、x x x y sin 32-= 2、x e y x ln = 3、x x xy 21ln -+=(1) xx y 2sin ln = (2))32(sin 2π+=x y (3)3223++=x xy(4)4)31(1x y -=(5)21x x y += (6))132(log 22++=x x y四.课堂练习1、根据基本初等函数的导数公式和导数运算法则,求函数f (x )=x 3-2x +3的导数。

2、求下列函数的导数:x x y sin 13+=)( 3)2(24+--=x x x y 4532323-+-=x x x y )( )23)(32()4(2-+=x x yxxy x x y cos sin 6sin 52==)()( 三.导数在研究函数中的应用 1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下'关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减.Ps :二阶导数,是原函数导数的导数,将原函数进行二次求导。

一般的,函数y=f (x )的2.函数的极值(局部概念)与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值;(3) 若f '(x )=0,则在该点函数不增不减,可能为极值,也可能就为一过渡点。

4.函数的最大(小)值与导数 函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.可导奇函数的导函数的是偶函数 可导偶函数的导函数的是奇函数III. 求导的常见方法:① 常用结论:xx 1|)|(ln '=.②形如))...()((21n a x a x a x y ---=或))...()(())...()((2121n n b x b x b x a x a x a x y ------=两边同取自然对数,可转化求代数和形式.② 无理函数或形如x x y =这类函数,如x x y =取自然对数之后可变形为x x y ln ln =,对两边求导可得x x x x x y y x y y xx x y y +=⇒+=⇒⋅+=ln ln 1ln '''.利用导数研究函数的图象1. f (x )的导函数)(/x f 的图象如右图所示,则f (x )的图象只可能是( D )(A ) (B ) (C ) (D ) 2.函数的图像为14313+-=x x y ( A )3.方程内根的个数为在)2,0(076223=+-x x ( B )A 、0B 、1C 、2D 、3专题8:导数(文)经典例题剖析考点一:求导公式。

相关文档
最新文档