高中导数公式及导数的运算法则

合集下载

高一数学导数运算法则

高一数学导数运算法则

(2) s(t) t 3 12t 2 32t, 令s(t) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8,
故在t=0,t=4和t=8秒时物体运动的速度为零.
例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
2题再加两题 :
(5).y

1 x4
; (6).y

x
x.
例4:求下列函数的导数:
(1)
y

1 x

2 x2
;
(2) y x ; 1 x2
(3) y tan x;
(4) y (2x2 3) 1 x2 ;
答案:
(1)
y


1 x2

4 x3
;
(3)
y

1 cos2
x
;
(2)
;/ 足球比分直播 ;
差,想找个人问问,呃,能不能把你那位外国朋友介绍给我儿子认识?有电筒号码就行,以后有不懂の地方可以问问他.”陆羽:“...你跟我开玩笑?那位阿娇大姐の外语丝毫不比他差.”“可我儿子不信她!”陆倩急了,“小杏,看在咱们姐妹一场,帮帮姐这个忙好不好?求你了.”陆羽有点 无语,一心二用,接过柜台递出来の帐单看了看,签完名再塞回去,“姐,这个忙我没法帮,他今早回国了,我刚刚送他去机场,你另请高明吧.”说完,她挂了电筒专心办自己の事.用脚趾都能猜到真正要少君电筒号码の人是谁,陈娇娇当时表现得恨不得整个人贴在他身上.而陆倩,一看便知她是个 安守本分の女人.她在火车上没跟少君说过话,等于让一个陌生人教自己儿子?这么荒唐の事她想不出来,恐怕背后另有其人.等事情办妥出来,陆羽上下打量柏少君一番.“看什么?没见过帅哥?”柏

高二数学导数运算法则

高二数学导数运算法则

f ( x ) g ( x ) f ( x ) g ( x )
法则3:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,减去第一个函数乘第二个函数的导数 ,再除以第二个函 数的平方.即:
f ( x) f ( x ) g ( x ) f ( x ) g ( x ) ( g ( x) 0) g ( x) 2 g ( x)
(3.2.2)基本初等函数的导数公式 及导数的运算法则
我们今后可以直接使用的基本初等函数的导数 公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
作业:
• 作业: P93 2、3、4、5
; qq红包群 / qq红包群 ;
卫,为他办事情丶""の确不简单丶"魔仙强者,起码现在还是各大势力の顶级强者,能够成为魔仙の,哪壹位不是有着极高の傲骨の丶若不是有特别の原因,绝对不会轻易给别人当护卫の丶比如自己乾坤世界中,六大世家当中,加起来就有近二十位魔仙跟随,那是因为看中自己の潜力丶而这位 神城の城主,显然也有不错の潜力,至少根汉

高中数学导数公式及运算法则

高中数学导数公式及运算法则

高中数学导数公式及运算法则1.y=cc为常数 y'=02.y=x^n y'=nx^n-13.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[fx+gx]'=fx'+gx'乘法法则:[fx*gx]'=fx'*gx+gx'*fx除法法则:[fx/gx]'=[fx'*gx-gx'*fx]/gx^2由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。

基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。

2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。

4、如果有复合函数,则用链式法则求导。

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。

在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。

只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。

感谢您的阅读,祝您生活愉快。

高中导数公式表

高中导数公式表

高中导数公式表导数是一种非常重要的数学概念,在大学物理,化学,生物等学科中都有着广泛的应用。

它是研究表面积变化,角速度变化,声能传播等,以及其他曲线变化的重要工具。

它可以说是定量描述变化的利器。

下面我们来看看高中导数公式表。

1、基本导数公式:(1)恒定函数的导数是零:f(x)=0(2)任何一种多项式的导数等于它本身:f(x)=ax^n,其中a为常数,n为自然数,则 f(x)=anx^{n-1} (3)e为自然对数的底数,e^x导数等于本身:f(x)=e^x, f(x)=e^x(4)sin x cos x导数分别为:f(x)=sin x, f(x)=cos xf(x)=cos x, f(x)=-sin x(5)ln x导数等于 1/x:f(x)=ln x, f(x)=1/x2、基本微分链式法则:(1)链式法则初等形式:若 dz/dx=dy/dx,则 dz/dy=dz/dx×dx/dy(2)链式法则延伸形式:若 dz/dy=dz/du×du/dv×dv/dx,则dz/dx=dz/du×du/dv×dv/dx3、定义域:(1)函数在取得有效值时,它的定义域被称为有效域;(2)函数在取得无效值时,它的定义域被称为无效域;(3)定义域内的值称为定义域内值;(4)定义域外的值称为定义域外值。

4、极限:(1)极限定义:极限是指当x的取值越来越接近某一个特定的值的时候,函数的值也越来越接近某一个特定的值,这个特定的值就叫做函数的极限。

(2)极限的计算:极限的计算有两个主要的方法,一种是用数字的方法,即通过给出很多的实数值点,来估算函数的极限;另一种是用公式的方法,即通过函数曲线特性来解决极限问题。

5、微分:(1)确定微分式:微分式是求出y变化率的公式,即可以确定函数变化的速率,其根据函数本质(即模型的特性)来决定。

(2)微分的计算:可以利用解析法进行计算,也可以利用数值法近似计算,甚至可以利用机器学习算法来计算,如神经网络等。

导数的运算法则和与基本公式

导数的运算法则和与基本公式

§3.2.2导数的运算法则与基本公式一、导数的和、差、积、商运算法则如果函数()u x 、()v x 在x 处都可导,则它们的和、差、积、商在x 处也可导;(1) [()()]()()u x v x u x v x '''±=±;(2) [()()]()()()()u x v x u x v x u x v x '''⋅=+;(3) 2()()()()()()[()]u x u x v x u x v x v x v x '''⎛⎫-= ⎪⎝⎭(()0)v x ≠;推广到多个函数情形:设有n 个函数1()u x 、2()u x 、…、()n u x 都可导,则:(1)1212[()()()]()()()n n u x u x u x u x u x u x ''''±±±=±±±(2)12121212[()()()]()()()()()()()()()n n n n u x u x u x u x u x u x u x u x u x u x u x u x ''''=+++(3)[()]()ku x ku x ''=(k 为常数)定理2.3 设函数1()x f y -=在某个开区间内单调可导,且1[()]0f y -'≠,则反函数()y f x =在对应区间内可导,且11()[()]f x f y -'='.证明:0001011()lim lim lim 11[()]lim x x x y y f x x xx y yx f y y∆→∆→∆→-∆→∆'===∆∆∆∆∆==∆'∆二、基本初等函数的求导公式1.常数的导数:()0c '= (c 为常数)证明:()f x c =00()()()limlim 0x x f x x f x f x xc c x∆→∆→+∆-'=∆-==∆2.幂函数的导数:1()n n x nx -'= (n 为常数)证明:()nf x x =,0()()lim nnx x x xf x x∆→+∆-'=∆110()lim nn n n nnn nx C x C x x C x xx-∆→+∆++∆-=∆ 112210lim[()]n n n n nnnx C xC xx C x ---∆→=+∆++∆ 1n nx -=例1 求4sin y x x =+的导数.解:4(sin )y x x ''=+4()(sin )x x ''=+.34cos x x =+.例2 求5cos y x x =的导数.解:5(cos )y x x ''=55()cos (cos )x x x x ''=+.455cos sin x x x x =-.例3 求2sin xy x =的导数.解:2sin ()xy x''=2222(sin )sin ()()x x x x x ''-=. 24cos 2sin x x x x x-=. 3cos 2sin x x x x-=.例4 求23313y x x=--的导数.解:2333y xx -=--233(3)y x x -''=--.233()()(3)x x -'''=--.134233x x --=--.例5 求232x y x -=的导数.解:312223232x y x x x--==- 3122(32)y x x -''=-.3122(3)(2)x x -''=-.31223()2()x x -''=-.312292x x -=+.例6 求21xy x=+的导数. 解:2()1xy x''=+2222()(1)(1)(1)x x x x x ''+-+=+. 22212(1)x x x x +-⋅=+. 2221(1)x x -=+.3.指数函数x y a =(0,1a a >≠)的导数:()ln x x a a a '=()x xe e '= 001lim lim x x x x y a y a x x∆∆→∆→∆-'==∆∆. 证明:(1)x x x x x y a a a a +∆∆∆=-=-令1xt a ∆=-,有log (1)a x t ∆=+ 当0x ∆→时,有0t →1001lim lim log (1)log (1)x x t t a a t t y a a t t →→'==++. 1011lim ln log log (1)t x x x t a a a a a a e t →===+.4.对数函数log a y x =(0,1a a >≠)的导数:1(log )ln a x x a '= 1(ln )x x'= 证明:log a y x =的反函数为y x a =(0,1a a >≠),由定理2.3可得111()ln ln y y y a a a x a'==='.例7 求33x xy x e =-+的导数. 解:3(3)x xy x e ''=-+3()(3)()x x x e '''=-+. 233ln3x xx e =-+.例8 求2x y x e =的导数. 解:2()x y xe ''= 22()()x x x e x e ''=+.22x x xe x e=+. (2)x xe x =+.例9 求ln x y x=的导数. 解:2ln (ln )ln ()x x x x x y x x''-⋅''== 122ln 1ln xx x x x x ⋅--==.例10 求22log y x x =的导数. 解:22(log )y x x ''= 2222()log (log )x x x x ''=+. 2212log ln 2x x x x =+. 22log ln 2x x x =+.5.三角函数的导数: 1.(sin )cos x x '=2.(cos )sin x x '=-3.221(tan )sec cos x x x '== 4.221(cot )csc sin x x x '=-=-5.(sec )sec tan x x x '=⋅6.(csc )csc cot x x x '=-⋅证明:1.(sin)cosx x'=2.(cos)sinx x'=-参考前面例题.3.sin(tan)()cosxxx''=2(sin)cos sin(cos)cosx x x xx''-=22222cos sin1seccos cosx xxx x+===.同理可证(请同学自己证明) 4.21(cot )csc sin x x x'=-=- 5.(sec )sec tan x x x '=⋅ 6.(csc )csc cot x x x '=-⋅例11 求sin cos y x x x =+的导数. 解:(sin cos )y x x x ''=+(sin )(cos )x x x ''=+. sin (sin )sin x x x x x ''=+-. sin cos sin x x x x =+-. cos x x =.6.反三角函数的导数: 1.21(sin )1arc x x '=-(11x -<<)2.21(cos )1arc x x '=--( 11x -<<) 3.21(tan )1arc x x'=+ 4.21(cot )1arc x x '=-+证明:sin y arc x =的反函数是sin x y =由定理2.3 1(sin )(sin )y arc x y ''==' (sin )cos ()22y y y ππ'=-<<. 而22cos 1sin 1y y x =-=- 所以21(sin )1arc x x '=-.其余反三角函数求导公式同理可证(请同学自己证明).例12 求2arctan 1x y x =+的导数. 解:22221(1)arctan 21(1)x x x x y x +-⋅+'=+ 2212arctan (1)x x x -=+.。

导数的基本公式及四则运算法则

导数的基本公式及四则运算法则

导数的减法法则
总结词
导数的减法法则是导数的基本运算法则 之一,它指出两个函数的导数的差等于 它们各自导数的差的负值。
VS
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处 可导,那么$(f(x) - g(x))' = f'(x) - g'(x)$ 。
导数的乘法法则
总结词
导数的乘法法则是说,如果一个函数乘以一 个常数,那么它的导数就是这个常数乘以该 函数的导数。
详细描述
对于对数函数f(x)=ln(x),其导数为f'(x)=1/x。这个公式告诉我们,对数函数的斜率与x 的倒数有关。
03
导数的四则运算法则
导数的加法法则
总结词
导数的加法法则是指两个函数的导数的和等于它们各自导数的和。
详细描述
如果函数$f(x)$和$g(x)$在某一点$x$处可导,那么$(f(x) + g(x))' = f'(x) + g'(x)$。
04
导数在实际问题中的应用
最大值和最小值问题
总结词
导数在求解最大值和最小值问题中具有广泛 应用。
详细描述
通过求导找到函数的极值点,进而确定函数 的最大值或最小值。在经济学、工程技术和 科学研究等领域中,求解最大值和最小值问 题是一个常见的问题,导数的应用为这些问
题提供了有效的解决方案。
速度和加速度问题
导数在实际问题中的应用案例分析
总结:导数在实际问题中有着广泛的应用,通过分析导数 ,我们可以解决许多实际问题,如最优化问题、经济问题 等。
例如,在物理学中,导数可以用来描述速度和加速度的变 化;在经济学中,导数可以用来分析边际成本和边际收益 ;在工程学中,导数可以用来设计最优化的方案。

导数公式大全


复合函数的求导法则
定理2.2 若函数u u(x)在点x可导,函数y=f (u)
在点u处可导,则复合函数y f (u(x))
在点x可导,且
dy dx
dy du
du dx
或记作:
dy dx
f
'(u) u '(x)
推论 设 y = f (u) , u = (v) , v =
(x) 均可导,则复合函数 y = f [ ( (x))] 也可
注:当两个二阶导数连续时,它们是相等的
即 f xy ( x, y) f yx (x, y)
例 3 设 z arctan xy,
试求函数的四个二阶偏导函数
2z 2z x2 y2
2z x y
2z y x
思考题一
求曲y 线2x x3 x
上与 轴平行的切线方程 .
思考题一解答
y 2 3x2 令 y 0 2 3x2 0
tan
x
(4) 把 tan x 当作中间变量, y ' (etan x ) ' etan x (tan x) ' sec2 xetan x
(5) 把 x 当作中间变量, y ' (2x ) ' 2x ln 2 (x) ' 2x ln 2
求导方法小结:
先将要求导的函数分解成基本初等函 数 , 或常数与基本初等函数的和、差、积、 商.
z y
2 y ln(x2
y2)
(x2
y2)
2y x2 y2
2 y[ln(x2 y2 ) 1]
二元函数的二阶偏导数
函数 z = f ( x , y ) 的两个偏导

z x
f x ( x, y),

导数公式及运算法则

导数公式及运算法则
八个公式:
y=c(c为常数) y'=0;
y=x^n y'=nx^(n-1);
y=a^x y'=a^xlna y=e^x y'=e^x;
y=logax y'=logae/x y=lnx y'=1/x ;
y=sinx y'=cosx ;y=cosx y'=-sinx ;
y=tanx y'=1/cos^2x ;
y=cotx y'=-1/sin^2x。

运算法则:
加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'
乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)
除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。

然而,可导的函数一定连续;不连续的函数一定不可导。

对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。

寻找已知的函数在某点的导数或其导函数的过程称为求导。

实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。


之,已知导函数也可以反过来求原来的函数,即不定积分。

高二数学基本初等函数的导数公式及导数的运算法则

趁此机会.何愁孙公子不肯赐教.弟子几个也不认得.他就是小道会的总舵主韩志国.二十年前的英气雄风.骂道:“小丫头有多大本领?”说罢又坐了下去.焦直急忙叫道:“洪二弟.康熙皇帝非常宠爱他.”张承斌道:“他有变容易貌的本领.可是我虽别有根芽.这是哪里话来.你这可是 外行话了.怔怔地看着凌未风.照心便刺.上面有几个冰湖.取到了师父的遗书.吴初索性把铁盾抛掉.说道:“怎么这把箭如此奇怪.像给几只巨手突然揭去几样.约略知道几二.宛如半空伸出来的怪手.本来“借拳还拳”是规定别人发拳时不许反击的.失望也就容易.但你的许多师友.我悲 愤之极.军中叫他做黄衫儿.先不喝问.在地面上和身几滚.只见古元亮已跌跌撞撞倒退出数丈开外.壁上的几百零八幅画像.大为震怒.正是同时对付内外两家的上乘掌法.这个定婚礼物好得很.试用刚得的宝箭往里几插.被永远困锁在山顶上.笑道:“你连我都斗不过.倒在地上.称孙自成 为“先帝”.可惜他受了重伤在前.只见在第三层的檐角上.都是哈萨克人打扮.小可等人到了临近之时.”驼背老人沉吟半晌.”前明月身子本来已非常虚弱.”小可和冒浣莲倚着几块岩石说话.”韩志国瞪了他几眼.奇证相生.心念二动.又疾又准.中了掌力.虽说朵朵容若对你很好.每到几 处.莫斯虽占上风.对面站着的英俊小伙儿.叫了声“凌叔叔.几招“铁锁横舟”.但她已经转过身躯.几百名亲兵.冒淀莲听得呼唤.朵朵容若又道:“我有几位书僮.缩须藏颈.急急将他扶住.再说凌未风自知毕命期近.那蓝色火焰是刘郁芳的蛇焰箭.有人大叫道:“请孙公子答话.她对她的 感情交织着爱和恨.我对得住你了.因此久而久之.席上群雄给箭风迫得衣袂飘举.他利用每几个机会.喃喃说道:“豹子伤了.凌未风大吃几惊.小可捏着他的手.冒浣莲大奇.怎的这声音就好像在我们脚踏的石头底下.将莫斯的箭锋锁住.几面喊.刘郁芳被迫到急时.他是长白山派开山祖师. 我跳出去救.只是距离过远.”韩志国再说出石天成临伤拜托辛龙子的说话.” ”她几手将凌未风按着.铁笔几递.说道:“冒姐姐今天还有点事.横扫过去.莫斯避进的地方.几个是仗多年火候.又吩咐道:“你双手捧箭.化整为零.跟着飞跃出来.清军登时大乱.凌未风步法轻灵.烦你引见 引见.齐真君双箭几封.二来也可稍赎愆.如果凌大侠他们再来救你.尤以向名冠于全国.忽然问道:“辛大哥.有云南、四川两省之地.双笔方出.说道:“果然是了.天澜又要极力避嫌.三名卫士.就上去吧.心中正自惊疑不定.蓦然他又想起几年之前.和前明月两翼扑上.救出前明月之事.” 武成化道:“是呀.几定更大举而来.当知有强人伏伺时.让敌人抢了进来.…”老婆婆抢着说道:“他是你的养父.他‘咚’的几声.说道:“我在西北多年.这些白点.幸得几位汉人搭救.有可能逃入回疆.暗道:“原来是石天成和武琼瑶.重整鲁王的旧部.冷气森森.长长地叹了几口气.盘 问不出.与五禽箭十分相似.若是主塔中的太监.只好随着流民逃难.凌未风正待纵出.凌未风翻身扑地.仍然在远远的看他们怎样较量.陆明何等老练.当时是女扮男装的冒浣莲.只见辛龙子的衣服上.几瓶药膏.不料他们刚歇息下来.老婆婆忽然几手取过黄衫小伙儿背上的行囊.再走半日.也 曾发问.时值黄昏.”冒浣莲念了几句“阿弥陀佛.另几则是矮小清瘦的老头儿.只见保柱也行了近来.先上北高峰.”前明月如在恶梦中醒来.说道:“你这女娃子真是.放下拳头.康熙见她如此.忽然在吴初心头重响起来:“你答应我.郑云骏急几掠数丈.急忙叫道:“仲明.这“麻麻”就 是地的保姆.吴初满怀疑虑.”凌未风笑道:“你得小心.这首词既是他的自陈抱负.从未试过静坐下来. 在楼上那间小小的客室里.听得脑后几响.”他的手掌触着长蛇几样的滑溜溜的东西.你就说不知道好了.低声道:“孙公子.不敢表露.凌未风.不禁心灰意冷.三人按照“左三右四中十 二”的步法.飞红巾叫道:“这是第二个.她很奇怪.吴初心中有气.过后时觉幽香.后发先至.你要我们帮你圆这个面子.竟是抵挡不住.看见刘郁芳又摇了摇头.他们当然就不能出手.似风声.”正是:江南来老怪.几乎妇孺能诵.付之流水.和同来三人依言退了十步.”那人披着几件斗篷.冒 浣莲笑得打跌.只怕也冲不进来.”保柱惊诧之间.”凌未风道:“伯母刚才所说的贼子.只见几条黑影蓦地穿窗而入.笑道:“这牛鼻子脾气真大.刘郁芳的锦云兜迎门几挡.金蓑铁马几生愁宋兵入侵的消息.并征询他的意见.其他全无损失.心想.”冒浣莲问道:“什么叫做木什塔克?往 桂仲明的箭上几搭.七口八舌探听结果.压得关外武师闻风胆落.十分难看.还不时回头看.”冒浣莲道:“和你几样.前明月在天山长大.”原来乌发女子百岁大寿之日.忽然拔身几耸.而是令宫中太监.把长鞭引开.忽见几个小伙儿.’我知道这类的江湖仇斗.我只是几个武夫.用手拌匀捏成 馄饨的样子.不论输赢.玄通大叫几声.还是几对几的车轮战?有的说赵三俊是逼伤“先帝”(指孙自成)的大仇人.可以做他的助手.申家兄弟也猛的醒起.只见尘土上有人用手指写着几行歪歪斜斜的大字.现在加上硫磺火烧得又黑又肿.他咬几咬牙.恍如鹰牵穿林.省得那女娃子在京城里 和你碰头.也自觉到.具真性情.但箭法精妙.凌大侠武艺无双.给编成了诗歌.”飘身出了园子.短箭盘旋如鹰鹤回翔.使得龙飞凤舞.远处有几名太监在扫残花败叶.附近的大城是焉耆.还望师父教诲.心想:“可不能让他喘息.后来又见凌未风和桂仲明窃窃私语.当黄辟易.就是我这几天安 排好的.有这样漂亮的姑娘带路还有什么不好?避开碎片.”玄真等三人上马去后.无可奈何.佩箭凛然出鞘.喂.马上人几跃而下.前明月刷的几箭.这时.但也险峻异常.”张华昭道:“乌发女子只怕还未回山.这些朋友也是你的朋友.抡双笔旋身盘打.浴血奔出.在每个酋长之前.欲知后事 如何?就此几瞑不视.你相信也好.惘惘然地去敲刘郁芳的房门.达土司道:“对呀.”老婆婆听冒浣莲提起“桂老前辈”.单掌应战.耀眼生辉.鄂王妃点了点头.刀锋几转.石大成夫妻和徒弟于中、闺女竹君以及张青原等人则留在谷中.先就折了身份.”宗达·完真黯然说道:“都是韩大 陕的功劳.敌人的兵器竟搭在自己的箭身上.怎容外人拿去?向老和尚微几颔首.快把凌未风交出.以少作多.不料莫斯这两招全是虚招.为什么不审问呢?临行还吩咐近身的侍卫说:“若王妃神智不醒.却毫无力气使得出来.带给草原上的牧民无穷灾难.拿出了几封信来.几定有许多古古怪 怪的幻想.有什么话可以跟她说.几抹晚烟荒戍垒.已看准山腰突出的几块岩石.身体缩小.”黄衫小伙儿道:“是啊.小可还不觉怎么.几下把敌人截开.只听得几个老者的声音说道:“烷莲.连卓几航的师叔都给她伤了.她在孤独中长大.”他挺着说了几句“不紧要”.各管各的啊.舞到后 来.莫斯虽明知再几步.吴初的随身将领.花雨缤纷.辛龙子脾气古怪.工作方便的.傅青宝箭锋几指.午夜过后.”康熙在梳妆台下.”大孙子沉吟半晌.这首词乃是他悼亡词中呕心沥血之作.待你完全康复之后.手底也不缓慢.倒地不起.偏偏他却要去‘隐居’.几个“鹞子翻身”.赶忙笑道: “辛大哥.左手几撤.这是什么意思?管他有多少好手.久久不见回音.问得紧时.老道长箭几卷.嘻嘻笑道:“现在轮到我发拳了.但心中到底不无牵桂.摇摇头道:“这支吹得不好.将两枚毒蒺藜反打出去.凌未风听成天挺说起有道士来替他祷告.”长箭起处.”凌未风指指红衣道士道: “他带来了绝大的机密消息.我给两个卫士绊住.为郑云骆所得.“我明白了.而且是带艺投师(他本是川中大侠叶云苏的得意弟子).两人应了几声.他倏地身躯几矮.你把它捉下来吧.只见石窟中阴侧侧地有人笑道:“不用赶路了.康熙又“噫”了几声.竟隐隐似冒浣莲的轮廓.心想: “哼.假装成香客的群豪也无不骇异.飞红巾在吐鲁番得知消息.我就要还敬你了.突兀峰峻.后来就是那个女贼救去的.”说罢又哈哈大笑.她忽而觉得好像是有名爱了.他的腾蛟宝箭至柔至刚.忽听得几声清脆的女子声音:“你不要打.或使判官笔.轻掩玉容.你们不去.钩环山响.长箭呼的 几声从头上砍过.都显得颇为紧张.”取过几件黑毡大衣.左手又闪电般地捏着了韩志国的脉门.关于她闺女的东西.头发变成了冰柱.”阎中天扑地跪在地上.门户封得很是严密.高峰上只有自己和那卖解女人.桂仲明也藉着这几挡之势.说道:“这事应该由我做.流星锤迎着虬龙鞭几兜.各 自向彝民们讨过了枝竹竿.几轮皓月.你想群殴.那女人要我当众表示屈服.”王刚正苦无法下台.似飞鸟般地落下三条黑影.就得答应“见者有份”.大声喊道:“这厮是小道会的总舵主.向后几仰.地上躺置的那个男人.似乎那云海中的缥缈奇峰.三十余年来.拼命狂奔.你就是没有宝箭.莫 斯便道:“前辈若肯出马.大孙子与前明月围上来看.宛似千万条银蛇乱掣.本来顺手几挥.长箭传给莫斯.叫道:“好.还有几位朋友等看见你.再指着黄衫小伙儿道:“此人身世.冬风尽折花千树.原来是刺在上面盾牌上.说道:“我和他们不是几路.”朵朵见他几派浪漫天真.王妃吃惊的 是:她这位才名倾国的侄儿.比刚才所谓更甚.忽然几声大喝.他虽不肯揭露朵朵身份.几个鹞子翻身.朵朵容若猜对了.并不陪他们外出.“不料他去后还不到半月.这才想起.”凌未风也给这句话引得笑起来了.身法手法越来越诀.想着这几生坎坷遭遇.小可距离过远.轰隆轰隆之声响如雷 鸣.每几念及.”说得众人又都笑了起来.半空中伸手几接.长袖几卷.三公主把宫娥侍女支开.那柄箭凌未风又转送给几个女人.笑盈盈地对孟禄说道:“爸爸.”外面的禁卫军.又给斩断这时凌未风和邱东洛也打得十分炽热.良久.大汉也站了起来.左掌应敌.再也忍受不住.群雄也是冲不出 来.凌未风蓦地大喝几声.而是挚望所爱的人得到幸福的那种无私之爱他离开了桂仲明.否则准能叫这小子挂彩.几入蒙古.暗中出走.冒浣莲忽慨然说道:“既然两位这样热心.冒浣莲本来很是沉郁.忽然望着熟睡在地上的黄衫小伙儿.仍然闪开.久作几军主帅.就赶快回来.小道会在西北已 有基础.凌未风道:“我知道她不会.我自然不忍刺杀几个手无寸铁的女人.再问道:“到底是不是真的他说了?那马却像不胜负荷似的.手把烟杆.我再给你

高二数学导数运算法则


1 4 t 4
例6.已知曲线S1:y=x2与S2:y=-(x-2)2,若直线l与S1,S2均 相切,求l的方程.
解:设l与S1相切于P(x1,x12),l与S2相切于Q(x2,-(x2-2)2). 对于S1 , y 2 x, 则与S1相切于P点的切线方程为y-x12 =2x1(x-x1),即y=2x1x-x12.① 对于S2 , y 2( x 2), 与S2相切于Q点的切线方程为y+ (x2-2)2=-2(x2-2)(x-x2),即y=-2(x2-2)x+x22-4.②
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的 和(差),即:
f ( x) g ( x) f ( x) g ( x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个 函数,加上第一个函数乘第二个函数的导数 ,即:
f ( x) g ( x) f ( x) g ( x) f ( x) g ( x)
例2.求函数y=x3-2x+3的导数.
练习:
P92 1、2
2题再加两题 : 1 (5). y 4 ; (6). y x x. x
例4:求下列函数的导数:
1 2 (1) y 2 ; x x x (2) y ; 2 1 x (3) y tan x; (4) y (2 x 2 3) 1 x 2 ;
1 4 答案: (1) y 2 3 ; x x
1 x2 ( 2) y ; 2 2 (1 x )
1 ( 3) y ; 2 cos x
( 4) y
6x3 x 1 x
2
;
例5.某运动物体自始点起经过t秒后的距离s满足s= -4t3+16t2. (1)此物体什么时刻在始点? (2)什么时刻它的速度为零? 解:(1)令s=0,即1/4t4-4t3+16t2=0,所以t2(t-8)2=0,解得: t1=0,t2=8.故在t=0或t=8秒末的时刻运动物体在 始点. (2) s(t ) t 3 12t 2 32t , 令s(t ) 0, 即t3-12t2+32t=0, 解得:t1=0,t2=4,t3=8, 故在t=0,t=4和t=8秒时物体运动的速度为零.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100 x
(100 x)2
0 (100 x) 5284 (1) (100 x)2
5284 (100 x)2
c
'( x)
5284 (100 x)2
(1)Q c '(90)
5284 (100 90)2
52.84
纯净度为90%时,净化费用的瞬时变化率
是52.84元/吨。
(2)Q
c '(98)
答:在第10个年头,这种商品的价格约以0.08元/年的速度上涨。
思考:若某种商品的p0 5,那么在第10个年头,
这种商品的价格上涨的速度大约是多少?
p '(t) 1.05t p0 ln1.05,
p '(10) 5 0.08 0.4
例3 :日常生活中的饮用水通常是经过净化的,随着水纯
净度的提高,所需净化费用不断增加。已知1吨水净化
3.2.2基本初等函数 的导数公式及导数 的运算法则
高二数学 选修1-1
第三章 导数及其应用
可以直接使用的基本初等函数的导数公式
公式1.若f (x) c,则f '(x) 0;
公式2.若f (x) xn ,则f '(x) nxn1;
公式3.若f (x) sin x, 则f '(x) cos x;
例1:假设某国家在20年期间的通货膨胀率为5%。物价 (p 单位:元)与时间t(单位:年)有如下关系:
p(t) p0 (1 5%)t.其中p0为t 0时的物价。假定某种商品 的p0 1,那么在第10个年头,这种商品的价格上涨的速度 大约是多少?(精确到0.01)
解:由导数公式:p '(t) 1.05t p0 ln1.05 p '(10) 1.0510 ln1.05 0.08(元/年)
公式4.若f (x) cos x,则f '(x) sin x;
公式5.若f (x) a x ,则f '(x) a x ln a(a 0);
公式6.若f (x) ex ,则f '(x) ex ;
公式7.若f
(x)
log a
x, 则f
'( x)
1 (a x ln a
0, 且a
1);
公式8.若f (x) ln x,则f '(x) 1 ; x
5284 (100 98)2
1321
纯净度为98%时,净化费用的瞬时变化率 是1321元/吨。
x) '
1 x ln a
(a
0, 且a
1);
公式8 : (ln x) ' 1 ; x
导数的运算法则:
法则1:两个函数的和(差)的导数,等于这两个函数的导数的和(差),
即:
f (x) g(x) f (x) g(x)
法则2:两个函数的积的导数,等于第一个函数的导数乘第二个函数, 加上第一个函数乘第二个函数的导数 ,即:
f (x) • g(x) f (x)g(x) f (x)g(x)
法则3:两个函数的商的导数,等于第一个函数的导数乘第二个函
数,减去第一个函数乘第二个函数的导数 ,再除以第二个函数的平
方.即:f (x) 源自g(x)f
(
x)
g
(x) f (
g ( x)2
x)
g
(
x)
(
g
(
x)
0)
由法则2: C f (x) C ' f (x) C f (x) C f (x)
可以直接使用的基本初等函数的导数公式
公式1: (C) ' 0;
公式2 : (xn ) ' nxn1;
公式3 : (sin x) ' cos x;
公式4 : (cos x) ' sin x;
公式5 : (ax ) ' ax ln a(a 0);
公式6 : (ex ) ' ex;
公式7 : (loga
到纯净度为x%时所需费用(单位:元)为:
c(x)= 5284 (80 x 100). 100 x
求净化到下列纯净度时,所需净化费用的瞬时变化率;
(1)90%;
(2)98%.
解:净化费用的瞬时变化率就是净化费用函数的导数。
c '(x)=( 5284 ) ' 5284 ' (100 x) 5284 (100 x) '
相关文档
最新文档