高中数学导数的计算
高中数学 导数的运算

y =
lim
x0
f
(x x) x
f
(x)
=
lim
x0
4(
x
x) x
4
x
= lim 4 = 4. x0
(2x)=2. (3x)=3. (4x)=4.
y y=4x y=3x
4 y=2x 3 2
o1 x
练习: (课本13, 14页 “探究”)
1. 在同一平面直角坐标系中, 画出函数 y=2x,
y=3x, y=4x 的图象, 并根据导数定义, 求它们的导数.
导数的运算法则(第二课时)
几个常用函数的导数
返回目录
1. 常数函数, 正比例函数, 反比例函数, 幂函数等的导数各是多少?
2. 以上函数的导数与图象、函数性质各 有什么关系?
问题1. 上一课时我们学习了导函数, 你能求出以
下函数的导函数吗? 其几何意义和物理意义如何?
(1) y=c (c为常数);
y=x2y o
(3) y=x2;
(4)
y
=
1 x
;
(5) y = x.
(3) y=x2,
y
x
= = =
lim
x0
lim
x0
lim
x0
y x
= lim x0
f
(x x) x
f
(
(x x)2 x2
x x2 2x(x) (x)2 x2
x
x)
几何意义: 当 x<0 时, 切线的斜率为 负, 且逐渐增大;
4. 若 f(x)=cos x, 则 f (x)= sin x;
5. 若 f(x)=ax, 则 f (x)=ax lna;
高中数学选修2-2第1章第2节导数的计算课件

f′(x)=__e_x_______ 1
f′(x)=___x_ln__a____(a>0 且 a≠1) 1
f′(x)=__x________
数学 选修2-2
1.指数函数与对数函数的导数公式的记忆
对于公式(logax)′=
1 xln
a
,(ax)′=axln
ห้องสมุดไป่ตู้
∴ lim Δx→0
2x+Δx+xx-+2Δx=2x-x22.
数学 选修2-2
[问题3] F(x)的导数与f(x),g(x)的导数有何关系? [提示3] F(x)的导数等于f(x),g(x)导数和.
[问题 4] [提示 4]
试说明 y=cos3x-π4如何复合的. 令 u=g(x)=3x-π4,y=f(u)=cos u,
导数几何意义的应用
已知曲线方程y=x2,求过点B(3,5)且与曲线相切 的直线方程.
[思路点拨] 解决切线问题的关键是求切点的坐标,要注 意区分是曲线在某点处的切线还是过某点的切线.
设出切点 → 函数求导 → 写出切线方程 → 条件代入 → 解出切点 → 得出答案
数学 选修2-2
设 P(x0,y0)为切点,则切线斜率
数学 选修2-2
已知 f(x)=x2,g(x)=2x. [问题 1] f(x),g(x)的导数分别是什么? [提示 1] f′(x)=2x,g′(x)=-x22.
数学 选修2-2
[问题2] 试求F(x)=f(x)+g(x)的导数.
[提示 2] ΔΔxy=x+Δx2+xΔ+2xΔx-x2+2x
=2x+Δx+xx-+2Δx,
数学 选修2-2
第一章
高中求导公式运算法则

高中求导公式运算法则
在高中求导过程中,常用的公式和运算法则包括:
1. 基本导数公式:
-常数导数:常数的导数为零。
-幂函数导数:对于函数y = x^n,其中n是实数常数,其导数为dy/dx = nx^(n-1)。
-指数函数导数:对于函数y = e^x,其导数为dy/dx = e^x。
-对数函数导数:对于函数y = ln(x),其中x > 0,其导数为dy/dx = 1/x。
2. 基本运算法则:
-和差法则:对于函数y = u(x) ± v(x),其导数为dy/dx = u'(x) ± v'(x),其中u'(x)和v'(x)分别表示u(x)和v(x)的导数。
-常数倍法则:对于函数y = ku(x),其中k为常数,其导数为dy/dx = k * u'(x)。
-乘积法则:对于函数y = u(x) * v(x),其导数为dy/dx = u'(x) * v(x) + u(x) * v'(x)。
-商法则:对于函数y = u(x) / v(x),其导数为dy/dx = (u'(x) * v(x) - u(x) * v'(x)) / v(x)^2,其中v(x) ≠ 0。
3. 链式法则:对于复合函数y = f(g(x)),其导数为dy/dx = f'(g(x)) * g'(x)。
这些是高中求导过程中常用的公式和运算法则。
当然,导数的计算还涉及到其他公式和技巧,具体问题具体分析。
对于更高级的求导
技巧和运算法则,可能需要在大学或高等数学课程中学习。
高中数学导数的计算

高中数学导数的计算导数是微积分中的一项重要概念,用于描述函数在其中一点的变化率。
在高中数学中,我们主要学习了常见函数的导数计算方法,包括多项式函数、指数函数、对数函数、三角函数等。
下面我们将通过一些例子详细介绍这些函数的导数计算方法。
一、多项式函数的导数计算多项式函数的一般形式为f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,其中aₙ、aₙ₋₁、..、a₁、a₀为常数,n为正整数。
多项式函数的导数计算可通过幂次降低的方法来进行。
具体来说,对于f(x)=aₙxⁿ+aₙ₋₁xⁿ⁻¹+...+a₁x+a₀,如果n≥1,则有f’(x)=naₙxⁿ⁻¹+(n-1)aₙ₋₁xⁿ⁻²+...+a₁。
如果n=0,则f’(x)=0。
例题1:求函数f(x)=4x⁴+2x³-3x²+5的导数。
解:f’(x)=4*4x³+3*2x²-2*3x¹+0=16x³+6x²-6x二、指数函数的导数计算指数函数的一般形式为f(x)=aᵏx,其中a为常数,k为指数。
指数函数的导数计算可以通过应用导数的基本性质和指数函数的特点来求解。
具体来说,对于函数f(x)=aᵏx,根据导数的基本性质,有f’(x)=k*aᵏ⁻¹x。
同样地,对于指数函数f(x)=a,它的导数为f’(x)=0。
例题2:求函数f(x)=3e²ˣ的导数。
解:f’(x)=3*2e²ˣ=6e²ˣ三、对数函数的导数计算对数函数的一般形式为f(x)=logₐx,其中a为底数。
对数函数的导数计算同样可以通过应用导数的基本性质和对数函数的特点来求解。
具体来说,对于函数f(x)=logₐx,根据导数的基本性质,有f’(x)=1/(xlna)。
例题3:求函数f(x)=ln(4x)的导数。
解:f’(x)=1/(4x)四、三角函数的导数计算三角函数是高中数学中常见的函数,包括正弦函数、余弦函数和正切函数等。
高中数学公式大全导数与函数的凹凸性的计算公式

高中数学公式大全导数与函数的凹凸性的计算公式高中数学公式大全:导数与函数的凹凸性的计算公式在高中数学学习中,导数与函数的凹凸性是一个重要的概念。
通过计算公式,我们可以确定函数的变化趋势以及函数的凹凸性。
下面是一些常用的计算公式,帮助我们更好地理解导数与函数的凹凸性。
一、导数的计算公式1. 基本导数公式:- 常数函数的导数为零:d/dx(c) = 0,其中c为常数。
- 幂函数的导数:d/dx(x^n) = n * x^(n-1),其中n为实数。
- 指数函数的导数:d/dx(e^x) = e^x。
- 对数函数的导数:d/dx(ln(x)) = 1/x,其中x大于零。
2. 三角函数的导数:- 正弦函数的导数:d/dx(sin(x)) = cos(x)。
- 余弦函数的导数:d/dx(cos(x)) = -sin(x)。
- 正切函数的导数:d/dx(tan(x)) = sec^2(x)。
- 余切函数的导数:d/dx(cot(x)) = -csc^2(x)。
- 反正弦函数的导数:d/dx(arcsin(x)) = 1/√(1 - x^2),其中|x|小于等于1。
- 反余弦函数的导数:d/dx(arccos(x)) = -1/√(1 - x^2),其中|x|小于等于1。
- 反正切函数的导数:d/dx(arctan(x)) = 1/(1 + x^2)。
3. 对数函数的导数:- 常用对数函数的导数:d/dx(logx) = 1/x,其中x大于零。
- 自然对数函数的导数:d/dx(ln(x)) = 1/x,其中x大于零。
二、函数的凹凸性的计算公式1. 函数凹凸性与导数的关系:- 如果函数f'(x)在区间I上单调递增,那么函数f(x)在区间I上是凹的。
- 如果函数f'(x)在区间I上单调递减,那么函数f(x)在区间I上是凸的。
2. 凹凸点的计算方法:- 凹点:对于函数f(x),如果x=a是定义域内的一点,在x=a的左侧,f''(x)从正变为负,则点(x=a, f(a))是函数f(x)的一个凹点。
高中导数公式表

高中导数公式表当涉及微积分时,高中导数公式表是一项极其重要的计算工具。
高中导数公式表可以帮助学生记忆和处理复杂微积分问题。
下表是一个常用的高中导数公式表:数t导数y = x^ntdy/dx = nx^(n-1)y = a^xtdy/dx = a^xln ay = ln xtdy/dx = 1/xy = sin xtdy/dx = cos xy = cos xtdy/dx = -sin xy = tan xtdy/dx = sec^2 x高中导数公式表的由来高中导数公式表可以追溯到17世纪,由英国物理学家邱吉尔首先提出。
他是微积分的研究的最早的科学家之一,他提出了一种工具,可以用来计算函数的极限和导数。
他的极限定理和微积分研究对现代数学有深远的影响,极大地促进了这一领域的发展。
在20世纪,更多的数学家和科学家致力于研究极限和微积分,提出了更多的公式和定理,增强了微积分的适用性,并且改进了公式表的内容。
目前的高中导数公式表已经发展成熟,并被广泛应用于数学和物理课程。
高中导数公式表的用途高中导数公式表主要用于求解和计算极限和导数。
它可以用来计算函数的极限和导数,帮助学生完成曲线上弯曲处和拐点处函数极限和导数的计算。
它还可以用来确定极值,找到局部极大值和局部极小值,并应用到曲线分析和积分中去。
此外,高中导数公式表还可以帮助学生突破极限和微积分的学习困境。
它可以帮助学生联系一些繁琐的公式,从而节省许多时间和精力,解决一些非常复杂的微积分问题。
高中导数公式表的应用高中导数公式表在高中数学和物理课程中应用极为广泛。
首先,在数学课程中,学生可以用高中导数公式表来计算函数的极限和导数,从而理解函数极限和函数的求导方法。
此外,学生也可以使用高中导数公式表计算函数极值,以及确定函数曲线上的拐点、弯曲处和波峰波谷处。
此外,高中导数公式表也可以用于物理课程中的曲线分析。
在物理实验中,学生可以使用高中导数公式表求出曲线上的拐点,以及曲线弯曲处的极值,这可以帮助学生更好地理解曲线上的变化。
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!

高中数学导数公式、定义证明、运算法则,实用干货,收藏好!导数,也叫导函数值。
那么,高中数学导数公式及运算法则有哪些呢?高中数学导数公式有哪些1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
高中数学 选修2-2 第一章 1.2 导数的计算 1.2.1 1.2.2讲解

3 2.
不正确.因为sin 6π = 12 是一个常数,而常数的导
数为零,所以sin6π′=0.
指数函数、对数函数的导数公式的记忆对于公式(ln
x)′=
1 x
,(ex)′=ex很好记,但公式(logax)′=
1 xln
a
,(ax)′
=axln a的记忆比较难,设平行于直线y=x的直线与曲线y =ex相切于点P(x0,y0),该切点即为与y=x距离最近的点, 如图所示.
则在点P(x0,y0)处的切线斜率为1,即y′|x=x0=1. ∵y′=(ex)′=ex, ∴ex0=1,
得x0=0,代入y=ex,得y0=1,即P(0,1).
利用点到直线的距离公式得最小距离为|0-1|= 2
5.一质点沿直线运动的路程和时间的关系是s= 5 t , 求质点在t=4时的速度.
解:∵s=5 t=t51,∴s′=(t15)′=15t-45.
t=4时,s′=15·4-54=
1 5
.
10 8
即质点在t=4时的速度为 1 . 5
10 8
∴y′=(x32)′=32x21=32
x .
(2)y=x5,∴y′=(x5)′=5x4.
求曲线y=lg x在点M(10,1)处的切线的斜率 和切线方程.
【分析】 M(10,1)在曲线上,故所求切线斜率就是 函数y=lg x在x=10处的导数.
【解】 ∵y′=(lg x)′=xln110,∴y′|x=10=10l1n 10. ∴曲线y=lg x在点M(10,1)处的切线的斜率为k=10l1n 10. ∴切线方程为y-1=10l1n 10(x-10), 即x-(10ln 10)y+10(ln 10-1)=0.
(x0,x02).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 本节总结
• 1.求导数的方法 • (1)定义法:运用导数的定义来求函数的导数. • (2)公式法:运用已知函数的导数公式及导数的四则运算法 则求导数.
• 3.已知抛物线y=ax2+bc的值.
解析:
由题意知a4+a+b+2bc+=c1=-1
是否有更简便的求导数的方法呢?
带着问题看课本:
1,基本初等函数的导数公式是什么? 2,导数的运算法则是什么? 3,如何利用公式和法则进行简单的计算
。
• 2.基本初等函数的导数公式
y′=0 y′= y′=μxμ-1 y′=axln_a y′=ex
y′=xln1 a y′=1x y′=cos x
y′=-sin x
• 3.导数的四则运算法则 • 设f(x)、g(x)是可导的.
f′(x)±g′(x)
f′(x)g(x)+f(x)g′(x)
和(差)
gfxx′=gxf′xg-2xfxg′x (g(x)≠0)
求下列函数的导函数: (1)y=x12;(2)y=x14;(3)y=5 x3; (4)y=2sin2xcos2x;(5)y=log12x;(6)y=3x.
• [总结] (1)应用导数的定义求导,是求导数的基本方法, 但运算较繁琐,而利用导数公式求导数,可以简化求导过程 ,降低运算难度,是常用的求导方法.
• (2)利用导数公式求导,应根据所给问题的特征,恰当地选 择求导公式,有时还要先对函数解析式进行化简整理,这样 能够简化运算过程.
1.求下列函数的导数: (1)y=x x;(2)y=log31x;(3)y=2-x; (4)y=log2x2-log2x;(5)y=-2sin2x(1-2cos24x).
求下列函数的导数. (1)f(x)=13ax3+bx2+c; (2)f(x)=xln x+2x; (3)f(x)=xx+-11; (4)f(x)=x2·ex.
注意导数公式和导数法则的应用,先化简再求导数.
• [题后感悟] (1)应用基本初等函数的导数公式和导数的四 则运算法则可迅速解决一些简单的求导问题.要透彻理解函 数求导法则的结构特点,准确记忆公式,还要注意挖掘知识 的内在联系及其规律.
• 答案: C
求曲线 y=x+ x在点(1,2)处的切线在 x 轴上的截距.
解答本题可先运用求导法则求出 y′,进而求出 y′|x=1, 再用点斜式写出切线方程,令 y=0,求出 x 的值,即为切线 在 x 轴上的截距.
• [题后感悟] 求曲线在点P(x0,y0)处的切线方程,关键是 确定切线的斜率,即函数在x=x0处的导数值,然后用点斜式 写出切线方程,研究其有关性质.
• 导数的计算
• 1.掌握基本初等函数的导数公式. • 2.掌握导数的和、差、积、商的求导法则. • 3.会运用导数的四则运算法则解决一些函数的求导问题.
• 1.导数公式表的记忆.(重点) • 2.应用四则运算法则求导.(重点) • 3.利用导数研究函数性质.(难点)
高铁是目前一个非常受欢迎的交通工具,既低碳又快 捷.设一高铁走过的路程 s(单位:m)关于时间 t(单位:s)的 函数 s=f(t)=2t2,求它的瞬时速度,即求 f(t)的导数.根据 导数的定义,就是求当 Δt→0 时,ΔΔst所趋近的那个定值,运 算比较复杂,而且,有的函数如 y=sin x,y=ln x 等很难运 用定义求导数.
• (2)在求较复杂函数的导数时,首先利用代数或三角恒等变 形对已知函数解析式进行化简变形.如,把乘积的形式展开 ,分式形式变为和或差的形式,根式化为分数指数幂,然后 再求导,这样可减少计算量.
2.求下列函数的导数.
(1)y=x·tan x;(2)y=(x+1)(x+2)(x+3);
(3)y=xx2++33;(4)y=xsin x-co2s x;
① ②
又∵y′=(ax2+bx+c)′=2ax+b,
∴y′|x=2=4a+b=1.
③
由①②③解得 a=3,b=-11,c=9.
• 作业布置 • 课本课后习题
此课件下载可自行编辑修改,供参考! 感谢你的支持,我们会努力做得更好!
(5)y=
x5+
x7+ x
x9;
(6)y=x-sin2xcos2x.
• (2011·山东高考)曲线y=x3+11在点P(1,12)处的切线与y轴 交点的纵坐标是( )
• A.-9
B.-3
• C.9
D.15
• 解析: y′=3x2,故曲线在点P(1,12)处的切线斜率是3, 故切线方程是y-12=3(x-1),令x=0得y=9.