南通市2019年中考模数学全真模拟试题附答案20
江苏省南通市2019-2020学年中考数学模拟试题(3)含解析

江苏省南通市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.估算18的值是在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.下列四个多项式,能因式分解的是( ) A .a -1 B .a 2+1 C .x 2-4yD .x 2-6x +93.已知反比例函数2y x-=,下列结论不正确的是( ) A .图象经过点(﹣2,1)B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >24.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) A .B .C .D .5.二次函数y =ax 2+c 的图象如图所示,正比例函数y =ax 与反比例函数y =cx在同一坐标系中的图象可能是( )A .B .C .D .6.如图,菱形ABCD 中,∠B =60°,AB =4,以AD 为直径的⊙O 交CD 于点E ,则»DE的长为( )A .3πB .23π C .43π D .76π7.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D8.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.59.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185 180 185 180方差 3.6 3.6 7.4 8.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲B.乙C.丙D.丁10.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2 B.y=3(x﹣1)2C.y=3(x﹣1)2+2 D.y=2x211.如图,在⊙O中,弦AB=CD,AB⊥CD于点E,已知CE•ED=3,BE=1,则⊙O的直径是()A.2 B.5C.5D.512.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.14.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD 的长为_____15.已知关于x的方程有解,则k的取值范围是_____.16.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.17.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.18.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.(1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);(2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)20.(6分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:2 1.41,?3 1.73≈≈)21.(6分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 43时,求»QD的长(结果保留π);若△APO的外心在扇形COD的内部,求OC的取值范围.22.(8分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.23.(8分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即F D≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)24.(10分)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.求证:BG=FG;若AD=DC=2,求AB的长.25.(10分)如图,已知△ABC内接于Oe,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B= 时,四边形OCAD是菱形;②当∠B= 时,AD与Oe相切.26.(12分)已知:如图,四边形ABCD的对角线AC和BD相交于点E,AD=DC,DC2=DE•DB,求证:(1)△BCE∽△ADE;(2)AB•BC=BD•BE.27.(12分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】,推出45,即可得出答案.【详解】,∴45,4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,,题目比较好,难度不大.2.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.3.D【解析】【分析】【详解】A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B选项:因为-2<0,图象在第二、四象限,故本选项正确;C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;D选项:当x>0时,y<0,故本选项错误.故选D.4.B【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.5.C【解析】【分析】根据二次函数图像位置确定a<0,c>0,即可确定正比例函数和反比例函数图像位置.【详解】解:由二次函数的图像可知a<0,c>0,∴正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.6.B【解析】【分析】连接OE,由菱形的性质得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性质和三角形内角和定理求出∠DOE=60°,再由弧长公式即可得出答案.【详解】解:连接OE,如图所示:∵四边形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴»DE的长=602180π⨯=23π;故选B.【点睛】本题考查弧长公式、菱形的性质、等腰三角形的性质等知识;熟练掌握菱形的性质,求出∠DOE的度数是解决问题的关键.7.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.8.A【解析】【分析】根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【点睛】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.9.A【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】∵x甲=x丙>x乙=x丁,∴从甲和丙中选择一人参加比赛,∵2S甲=2S乙<2S丙<2S丁,∴选择甲参赛,故选A.【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定. 10.D【解析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;D、y=3x2的图象平移不能得到y=2x2,故本选项正确.故选D.11.C【解析】【分析】作OH⊥AB于H,OG⊥CD于G,连接OA,根据相交弦定理求出EA,根据题意求出CD,根据垂径定理、勾股定理计算即可.【详解】解:作OH⊥AB于H,OG⊥CD于G,连接OA,由相交弦定理得,CE•ED=EA•BE,即EA×1=3,解得,AE=3,∴AB=4,∵OH⊥AB,∴AH=HB=2,∵AB=CD,CE•ED=3,∴CD=4,∵OG⊥CD,∴EG=1,由题意得,四边形HEGO是矩形,∴OH=EG=1,由勾股定理得,OA=225+=,AH OH∴⊙O的直径为25,故选C.【点睛】此题考查了相交弦定理、垂径定理、勾股定理、矩形的判定与性质;根据图形作出相应的辅助线是解本题的关键.12.B【解析】【分析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.55.【解析】【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.14.2【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=22,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=22222222OA OC+=+=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=12222⨯=,故答案为2.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.15.k≠1【解析】试题分析:因为,所以1-x+2(x-2)=-k,所以1-x+2x-4=-k,所以x=3-k,所以,因为原方程有解,所以,解得.考点:分式方程.16.1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx1+5x+m1﹣1m=0有一个根为0,∴m1﹣1m=0且m≠0,解得,m=1,故答案是:1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.17.135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=m,所以在Rt△ACD中,AD==135m.考点:解直角三角形的应用.18.1【解析】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=1.故答案为1.点睛:此题考查了数字的有规律变化,解答此类题目的关键是要求学生通对题目中给出的图表、数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)21米(2)见解析【解析】试题分析:(1)根据题意易发现,直角三角形ABC 中,已知AC 的长度,又知道了∠ACB 的度数,那么AB 的长就不难求出了.(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的. 解:(1)在Rt △BAC 中,∠ACB=68°,∴AB=AC•tan68°≈100×2.1=21(米)答:所测之处江的宽度约为21米.(2)①延长BA 至C ,测得AC 做记录;②从C 沿平行于河岸的方向走到D ,测得CD ,做记录;③测AE ,做记录.根据△BAE ∽△BCD ,得到比例线段,从而解答20.5.5米【解析】【分析】过点C 作CD ⊥AB 于点D ,设CD=x ,在Rt △ACD 中表示出AD ,在Rt △BCD 中表示出BD ,再由AB=4米,即可得出关于x 的方程,解出即可.【详解】解:过点C 作CD ⊥AB 于点D ,设CD=x ,在Rt △ACD 中,∠CAD=30°,则33在Rt △BCD 中,∠CBD=45°,则BD=CD=x. 3x ﹣x=4, 解得:)x 231 5.531==≈-. 答:生命所在点C 的深度为5.5米.21.(1)详见解析;(2)143π;(3)4<OC<1.【解析】【分析】(1) 连接OQ ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL 得Rt △APO ≌Rt △BQO ,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ ,从而可得P 、O 、Q 三点共线,在Rt △BOQ 中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB =⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=433QB OB ==, ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4, ∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=,(3)解:设点M为Rt△APO的外心,则M为OA的中点,∵OA=1,∴OM=4,∴当△APO的外心在扇形COD的内部时,OM<OC,∴OC的取值范围为4<OC<1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出Rt△APO≌Rt△BQO;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.22.(1)答案见解析;(2)答案见解析.【解析】试题分析:(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形AFBE是对角线交点,点N是正方形ABCD的对角线的交点,直线MN就是所求的线段AB的垂直平分线.考点:作图—应用与设计作图.23.不满足安全要求,理由见解析.【解析】【分析】在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通过已知条件可证得四边形EACG是矩形,从而可得GC=AE=2m;这样可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“设计方案不满足安全要求”.解:施工方提供的设计方案不满足安全要求,理由如下:在Rt △ABC 中,AC=15m ,∠ABC=45°,∴BC=0tan45AC =15m . 在Rt △EFG 中,EG=15m ,∠EFG=37°,∴GF=0tan37EG ≈1534=20m . ∵EG=AC=15m ,AC ⊥BC ,EG ⊥BC ,∴EG ∥AC ,∴四边形EGCA 是矩形,∴GC=EA=2m ,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的设计方案不满足安全要求.24.(1)证明见解析;(2)AB=3【解析】【详解】(1)证明:∵90ABC ∠=o ,DE ⊥AC 于点F ,∴∠ABC=∠AFE .∵AC=AE,∠EAF=∠CAB ,∴△ABC ≌△AFE∴AB=AF .连接AG ,∵AG=AG ,AB=AF∴Rt △ABG ≌Rt △AFG∴BG=FG(2)解:∵AD=DC ,DF ⊥AC∴1122AF AC AE ==∴∠FAD=∠E=30°∴25.(1)证明见解析;(2)① 30°,② 45°【解析】试题分析:(1)根据已知条件求得∠OAC=∠OCA ,∠AOD=∠ADO ,然后根据三角形内角和定理得出∠AOC=∠OAD ,从而证得OC ∥AD ,即可证得结论;(2)①若四边形OCAD 是菱形,则OC=AC ,从而证得OC=OA=AC ,得出∠60AOC ∠=o ,即可求得1302B AOC ∠=∠=o ; ②AD 与O e 相切,根据切线的性质得出90OAD ∠=o ,根据AD ∥OC ,内错角相等得出90AOC ∠=o ,从而求得145.2B AOC ∠=∠=o 试题解析:(方法不唯一)(1)∵OA=OC ,AD=OC ,∴OA=AD ,∴∠OAC=∠OCA ,∠AOD=∠ADO ,∵OD ∥AC ,∴∠OAC=∠AOD ,∴∠OAC=∠OCA=∠AOD=∠ADO ,∴∠AOC=∠OAD ,∴OC ∥AD ,∴四边形OCAD 是平行四边形;(2)①∵四边形OCAD 是菱形,∴OC=AC ,又∵OC=OA ,∴OC=OA=AC ,∴60AOC ∠=o , ∴1302B AOC ∠=∠=o ; 故答案为30.o②∵AD 与O e 相切,∴90OAD ∠=o ,∵AD∥OC,∴90AOC∠=o,∴145.2B AOC∠=∠=o故答案为45.o26.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC=∠DCA,对顶角∠AED=∠BEC,可证△BCE∽△ADE.(2)根据相似三角形判定得出△ADE∽△BDA,进而得出△BCE∽△BDA,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解. 27.(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为m 元,则: ()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥,解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.。
江苏省南通市中考数学模拟试卷(word版,含解析)

南通市2019年初中毕业、升学考试试卷解析数 学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 2的相反数是A .2-B .21-C .2D .21 考点:相反数的定义解析: 2的相反数是2- ,选A2. 太阳半径约为696000km ,将696000用科学记数法表示为A .696×103B .69.6×104C .6.96×105D .0.696×106考点:科学记数法解析:将696000用科学记数法表示为6.96×105,选C 3. 计算x x 23-的结果是 A .26xB .x 6 C .x25 D .x1考点:分式的减法 解析:x x 23-=x1,选D 4. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共是A . 4个B .3个C .2个D .1个考点:轴对称图形,中心对称图形,正方形、正多边形和等腰三角形的性质 解析:是轴对称图形但不是中心对称图形有等腰三角形、正五边形,共两个,选C 5. 若一个多边形的外角和与它的内角和相等,则这个多边形是A .三角形B .四边形C .五边形D .六边形考点:多边形的内角和解析:多边形的外角和为360,多边形的外角和与它的内角和相等,则内角和为360,为四边形,等腰三角形正方形正五边形圆选B 6. 函数y =112--x x 中,自变量x 的取值范围是 A .21≤x 且1≠x B .21≥x 且1≠xC .21>x 且1≠x D .21<x 且1≠x 考点:二次根式的意义,分式的意义,函数自变量的取值范围解析:由⎩⎨⎧≠-≥-01012x x ,解得21≥x 且1≠x ,选B7. 如图为了测量某建筑物MN 的高度,在平地上A 处测得建筑物 顶端M 的仰角为30°,沿N 点方向前进16 m 到达B 处,在B 处 测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于A .8(3+1)mB . 8 (3—1) mC . 16 (3+1) mD .16(3-1)m考点:锐角三角函数 解析:由1645tan 30tan =- MN MN ,得)13(81316+=-=MN m ,选A 8. 如图所示的扇形纸片半径为5 cm ,用它围成一个圆锥的侧面,该圆锥的高是4 cm ,则该圆锥的底面周长是A .π3 cmB .π4 cmC .π5 cmD .π6 cm考点:扇形、弧长公式,圆周长,圆锥侧面展开图解析:圆锥底面圆的半径为34522=-cm ,该圆锥的底面周长是π6cm 9. 如图,已知点)1,0(A ,点B 是x 轴正半轴上一动点,以AB 为边作等腰 直角三角形ABC ,使点C 在第一象限,90=∠BAC .设点B 的横坐标为x ,点C 的纵坐标为y ,则表示y 与x 的函数关系的图像大致是考点:函数图象,数形结合思想解析:过C 点作y CD ⊥轴,易得ACD ∆≌BAO ∆全等;OB AD =∴ 设点B 的横坐标为x ,点C 的纵坐标为y ;则x y =-1(0>x );1+=x y (0>x ),故选A10.平面直角坐标系xOy 中,已知)0,1(-A 、)0,3(B 、)1,0(-C 三点,),1(m D 是一个动点,当 (第8题)(第9题)(第9题)ACD ∆周长最小时,ABD ∆的面积为A .31 B .32 C .34 D .38 考点:最短路径问题解析:D 为直线1=x 上一动点,点A 、B 关于直线1=x 对称,连接BC 直线BC 方程为:131-=x y ,右图为ACD∆周长最小,)32,1(-D 此时 ABD ∆的面积为3443221=⨯⨯,选C二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答.题卡相应位置......上) 11.计算25x x ⋅= ▲ . 考点:幂的运算 解析:25x x ⋅=7x12.已知,如图,直线AB ,CD 相交于点O ,OE ⊥AB ,∠COE =60°,则∠BOD 等于 ▲ 度. 考点:相交线,对顶角,垂直,余角解析:OE ⊥AB ,∠COE =60°,则∠BOD=∠AOC=3013.某几何体的三视图如图所示,则这个几何体的名称是 ▲ . 考点:三视图,圆柱解析:由几何体的三视图可知,该几何体为圆柱14.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,A 的值是 ▲ . 考点:直角三角形斜边中线等于斜边的一半,锐角三角函数 解析:直角三角形斜边中线等于斜边的一半,CD =2,则AB=4,cos A =43=AB AC15.已知一组数据5,10,15,x ,9的平均数是8,那么这组数据的中位数是 ▲ . 考点:平均数,中位数EDC B AOABDC(第14题)解析:85915105=++++x ,1=x ,这组数据的中位数是916.设一元二次方程0132=--x x 的两根分别是1x ,2x ,则)3(22221x x x x -+= ▲考点:一元二次方程根的概念,一元二次方程根与系数的关系解析:2x 是一元二次方程0132=--x x 的根,∴013222=--x x ,13222=-x x ,则3)3(2122221=+=-+x x x x x x17.如图,BD 为正方形ABCD 的对角线,BE 平分DBC ∠,交DC 于点E ,将BCE ∆绕点C 顺时针旋转90得到DCF ∆,若CE=1cm 考点:角平分线的性质,勾股定理,正方形 解析:BE 平分DBC ∠,则GE=CE=1cm DG=GE=1cm ;2=DE cm,BC=CD=1)2(+cm;)22(+=∴BF cm18.平面直角坐标系xOy 中,已知点),(b a 在直线222++=m mx y 04)21(2222=+++-+b m bm b a ,则=m ▲ .考点:配方法;求根公式解析:已知点),(b a 在直线222++=m mx y (0>m )上,222++=∴m ma b (*)代入04)21(2222=+++-+b m bm b a 整理得:0)()2(22=++-m a m b 解得⎩⎨⎧=-=m b ma 2回代到 (*)式得22222++-=m m m ,即0222=-+m m ,解得31±-=m ,又0>m ,13-=∴m三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本小题满分10分)(1)计算4)5()1(202--+-+-;(2) 解方程组:⎩⎨⎧-=-=+52392y x y x考点:(1)非零数的零次幂等于1,实数运算 (2)二元一次方程的解法 解析:(1)原式=22112=-++(2)①+②,得:1,44==x x ;代入①,得4=y ,⎩⎨⎧==∴4,1y x 20.(本小题满分8分)(第17题)解不等式组⎩⎨⎧+>++<-71533315x x x x ,并写出它的所有所有整数解.考点:一元一次不等式组解析:解:由①,得2<x ,由②,得4->x ;所以不等式组的解集为24<<-x ;它的整数解1,0,1,2,3---21.(本小题满分9分)某水果批发市场新进一批水果,有苹果、西瓜、桃子和香蕉四个品种,统计后将结果绘制成条形图(如图).已知西瓜的重量占这批水果总重量的40%. 回答下列问题:(1)这批水果总重量为 ▲ kg ; (2)请将条形图补充完整;(3)若用扇形图表示统计结果,则桃子 所对应扇形的圆心角为 ▲ 度. 考点:条形图、扇形图,条形图的画法,统计 解析:(1)4000(2)1200200100016004000=---补全统计图如下:(3)9022.(本小题满分7分)在不透明的袋子里装有红色、绿色小球各一个,除颜色外无其他差别.随机摸出一个小球后,放回并摇匀,再随即摸出一个,求两次都摸到红色小球的概率. 考点:树形图,随机事件等可能性 解析:画出树形图如下:从树形图看出,所有可能出现的结果共有4种,两次都摸到红色小球的情况有1种.重量(kg 重量(kg第一次第二次 红绿 绿红绿∴两次都摸到红色小球的概率为4123.(本小题满分8分) 列方程解应用题:某列车平均提速h km /60,用相同的时间,该列车提速前行使km 200,提速后比提速前多行使km 100,求提速前该列车的平均速度.考点:二元一次方程应用题解析:设提速前该列车的平均速度为v h km /,行使的相同时间为t h由题意得:⎩⎨⎧=+=300)60(,200t v vt 解得:⎪⎩⎪⎨⎧==35120t v答:提速前该列车的平均速度为h km / 120 24.(本小题满分9分)已知:如图,AM 为⊙O 的切线,A 为切点,过⊙O 上一点B 作AM BD ⊥于点D ,BD 交⊙O 于C ,OC 平分AOB ∠(1)求AOB ∠的度数;(2)若⊙O 的半径为2 cm ,求线段CD 的长.考点:圆的切线,角平分线,直线平行,三角形的内角和。
江苏省南通市2019-2020学年中考数学一模考试卷含解析

江苏省南通市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是抛物线y 1=ax 2+bx+c (a≠0)图象的一部分,其顶点坐标为A (﹣1,﹣3),与x 轴的一个交点为B (﹣3,0),直线y 2=mx+n (m≠0)与抛物线交于A ,B 两点,下列结论:①abc >0;②不等式ax 2+(b ﹣m )x+c ﹣n <0的解集为﹣3<x <﹣1;③抛物线与x 轴的另一个交点是(3,0);④方程ax 2+bx+c+3=0有两个相等的实数根;其中正确的是( )A .①③B .②③C .③④D .②④2.如图,⊙O 的半径为1,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( )A .3B .23C .33D .1.533.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1094.如图,Rt AOB V 中,AB OB ⊥,且AB OB 3==,设直线x t =截此三角形所得阴影部分的面积为S ,则S 与t 之间的函数关系的图象为下列选项中的( )A .B .C .D .5.已知关于x 的不等式组﹣1<2x+b <1的解满足0<x <2,则b 满足的条件是( )A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣3 6.如图,在平行四边形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④B.②和③C.③和④D.②和④7.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°8.下列各数3.1415926,227-,39,π,16,5中,无理数有()A.2个B.3个C.4个D.5个9.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负责校园足球工作.2018 年2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到2020 年要达到85000 块.其中85000 用科学记数法可表示为()A.0.85 ⨯ 105B.8.5 ⨯ 104C.85 ⨯ 10-3D.8.5 ⨯ 10-410.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b211.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<012.如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =6cm ,动点P 从点A 出发,沿AB 方向以每秒2cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒lcm 的速度向终点C 运动,将△PQC沿BC 翻折,点P 的对应点为点P′,设Q 点运动的时间为t 秒,若四边形QP′CP 为菱形,则t 的值为_____.14.化简二次根式3a -的正确结果是_____.15.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b)落在双曲线3y x =-上的概率是_________.16.对于函数n m y x x =+,我们定义11n m y nx mx --'=+(m 、n 为常数).例如42y x x =+,则342y x x '=+.已知:()322113y x m x m x =+-+.若方程0y '=有两个相等实数根,则m 的值为__________. 17.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为 .18.计算:38-﹣|﹣2|+(13)﹣1=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知:AD 和 BC 相交于点 O ,∠A=∠C ,AO=2,BO=4,OC=3,求 OD 的长.20.(6分)已知,关于x 的方程x 2+2x-k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2是这个方程的两个实数根,求121211x x x x +++的值; (3)根据(2)的结果你能得出什么结论?21.(6分)已知关于x 的方程x 2﹣6mx+9m 2﹣9=1.(1)求证:此方程有两个不相等的实数根;(2)若此方程的两个根分别为x1,x2,其中x1>x2,若x1=2x2,求m的值.22.(8分)我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图1中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=;如图2,当∠ABE=10°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图1证明你发现的关系式;拓展应用(1)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=1.求AF的长.23.(8分)观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.24.(10分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.(10分)如图,已知AB为⊙O的直径,AC是⊙O的弦,D是弧BC的中点,过点D作⊙O的切线,分别交AC、AB的延长线于点E和点F,连接CD、BD.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.26.(12分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,y m与甲队工作时间x(天)因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.27.(12分)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B 点的切线交OP于点C.求证:∠CBP=∠ADB.若OA=2,AB=1,求线段BP的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】①错误.由题意a >1.b >1,c <1,abc <1;②正确.因为y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确;③错误.抛物线与x 轴的另一个交点是(1,1);④正确.抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.【详解】解:∵抛物线开口向上,∴a >1,∵抛物线交y 轴于负半轴,∴c <1,∵对称轴在y 轴左边,∴-2b a<1, ∴b >1,∴abc <1,故①错误.∵y 1=ax 2+bx+c (a≠1)图象与直线y 2=mx+n (m≠1)交于A ,B 两点,当ax 2+bx+c <mx+n 时,-3<x <-1;即不等式ax 2+(b-m )x+c-n <1的解集为-3<x <-1;故②正确,抛物线与x 轴的另一个交点是(1,1),故③错误,∵抛物线y 1=ax 2+bx+c (a≠1)图象与直线y=-3只有一个交点,∴方程ax 2+bx+c+3=1有两个相等的实数根,故④正确.故选:D .本题考查二次函数的性质、二次函数与不等式,二次函数与一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.2.A【解析】分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×3,即可推出BC=2BH=3,详解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB•sin60°=1×32=32,∴3.故选A.点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.3.A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:数字338 600 000用科学记数法可简洁表示为3.386×108故选:A本题考查科学记数法—表示较大的数.4.D【解析】【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t 之间的函数关系式,由函数解析式来选择图象.【详解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=12×OD×CD=12t2(0≤t≤3),即S=12t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3],开口向上的二次函数图象;故选D.【点睛】本题主要考查的是二次函数解析式的求法及二次函数的图象特征,解答本题的关键是根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.5.C【解析】【分析】根据不等式的性质得出x的解集,进而解答即可.【详解】∵-1<2x+b<1∴1122b bx---<<,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴12122bb--⎧≥⎪⎪⎨-⎪≤⎪⎩,解得:-3≤b≤-1,故选C.【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.6.D【解析】∵四边形ABCD是平行四边形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②与④不一定成立,∵当四边形是菱形时,②和④成立.故选D.7.D【解析】【分析】由EF⊥BD,∠1=60°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°-∠DEF-∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选D.【点睛】本题考查平行线的性质以及三角形内角和为180°,解题关键是根据平行线的性质,找出相等、互余或互补的角.8.B【解析】【分析】根据无理数的定义即可判定求解.【详解】在3.1415926,227-π4=,3.1415926,227-是有理数,π3个, 故选:B .【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:2ππ,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.B【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,等于这个数的整数位数减1.【详解】解:85000用科学记数法可表示为8.5×104, 故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.B【解析】【分析】根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b )1=a 1±1ab+b 1.可巧记为:“首平方,末平方,首末两倍中间放”可得答案.【详解】A 选项:4x 3•1x 1=8x 5,故原题计算正确;B 选项:a 4和a 3不是同类项,不能合并,故原题计算错误;C 选项:(-x 1)5=-x 10,故原题计算正确;D 选项:(a-b )1=a 1-1ab+b 1,故原题计算正确;故选:B .【点睛】考查了整式的乘法,关键是掌握整式的乘法各计算法则. 11.A 【解析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了.【详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m , 解不等式②得:x>-1,由于原不等式组无解,所以m≤-1, 故选A.【点睛】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键. 12.C 【解析】 【分析】因为R 不动,所以AR 不变.根据三角形中位线定理可得EF=12AR ,因此线段EF 的长不变. 【详解】 如图,连接AR ,∵E 、F 分别是AP 、RP 的中点, ∴EF 为△APR 的中位线, ∴EF=12AR ,为定值. ∴线段EF 的长不改变. 故选:C . 【点睛】本题考查了三角形的中位线定理,只要三角形的边AR 不变,则对应的中位线的长度就不变. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.1 【解析】作PD ⊥BC 于D ,PE ⊥AC 于E ,如图,AP=2t ,BQ=tcm ,(0≤t <6) ∵∠C=90°,AC=BC=6cm , ∴△ABC 为直角三角形, ∴∠A=∠B=45°,∴△APE 和△PBD 为等腰直角三角形, ∴PE=AE=22AP=tcm ,BD=PD , ∴CE=AC ﹣AE=(6﹣t )cm , ∵四边形PECD 为矩形, ∴PD=EC=(6﹣t )cm , ∴BD=(6﹣t )cm ,∴QD=BD ﹣BQ=(6﹣1t )cm ,在Rt △PCE 中,PC 1=PE 1+CE 1=t 1+(6﹣t )1,在Rt △PDQ 中,PQ 1=PD 1+DQ 1=(6﹣t )1+(6﹣1t )1, ∵四边形QPCP′为菱形, ∴PQ=PC ,∴t 1+(6﹣t )1=(6﹣t )1+(6﹣1t )1, ∴t 1=1,t 1=6(舍去), ∴t 的值为1. 故答案为1.【点睛】此题主要考查了菱形的性质,勾股定理,关键是要熟记定理的内容并会应用 . 14.﹣a -【解析】30a -≥Q ,0a ∴≤ .32a a a a -=-⋅=-- .15.320【解析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组21x y b ax y -=⎧⎨+=⎩和双曲线3y x =-,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,则(a ,b )的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、 (﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、 (0,﹣3)、(0,﹣1)、(0,1)、(0,3)、 (1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x =-上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x =-上的概率是:320.故答案为320. 点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性. 16.12【解析】分析:根据题目中所给定义先求y ',再利用根与系数关系求m 值.详解:由所给定义知,2221y x m x m '=+-+,若22210x m x m +-+=,22414m m =--⨯n ()=0,解得m=12. 点睛:一元二次方程的根的判别式是()200ax bx c a ++=≠,△=b 2-4ac,a,b,c 分别是一元二次方程中二次项系数、一次项系数和常数项. △>0说明方程有两个不同实数解, △=0说明方程有两个相等实数解, △<0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对△的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.17.310【解析】 【分析】让黄球的个数除以球的总个数即为所求的概率. 【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出2个球是黄球的概率是310. 故答案为:310. 【点睛】本题考查了概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比. 18.﹣1 【解析】 【分析】根据立方根、绝对值及负整数指数幂等知识点解答即可. 【详解】 原式= -2 -2+3= -1 【点睛】本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.OD=6. 【解析】 【分析】(1)根据有两个角相等的三角形相似,直接列出比例式,求出OD 的长,即可解决问题. 【详解】在△AOB 与△COD 中,A CAOB COD ∠=∠⎧⎨∠=∠⎩, ∴△AOB ~△COD ,∴OA OBOC OD =, ∴243OD=, ∴OD=6. 【点睛】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求. 20.(1)k >-1;(2)2;(3)k >-1时,121211x xx x +++的值与k 无关. 【解析】 【分析】(1)由题意得该方程的根的判别式大于零,列出不等式解答即可.(2)将要求的代数式通分相加转化为含有两根之和与两根之积的形式,再根据根与系数的关系代数求值即可.(3)结合(1)和(2)结论可见,k >-1时,121211x xx x +++的值为定值2,与k 无关. 【详解】(1)∵方程有两个不等实根, ∴△>0,即4+4k >0,∴k >-1 (2)由根与系数关系可知 x 1+x 2=-2 ,x 1x 2=-k ,∴121211x x x x +++ 122112(1)(1)(1)(1)x x x x x x +++=++12121212212221x x x x x x x x k k++=+++--==--(3)由(1)可知,k >-1时,121211x xx x +++的值与k 无关. 【点睛】本题考查了一元二次方程的根的判别式,根与系数的关系等知识,熟练掌握相关知识点是解答关键. 21. (1)见解析;(2)m=2 【解析】 【分析】(1)根据一元二次方程根的判别式进行分析解答即可;(2)用“因式分解法”解原方程,求得其两根,再结合已知条件分析解答即可.【详解】(1)∵在方程x 2﹣6mx+9m 2﹣9=1中,△=(﹣6m )2﹣4(9m 2﹣9)=26m 2﹣26m 2+26=26>1. ∴方程有两个不相等的实数根;(2)关于x 的方程:x 2﹣6mx+9m 2﹣9=1可化为:[x ﹣(2m+2)][x ﹣(2m ﹣2)]=1, 解得:x=2m+2和x=2m-2, ∵2m+2>2m ﹣2,x 1>x 2, ∴x 1=2m+2,x 2=2m ﹣2, 又∵x 1=2x 2,∴2m+2=2(2m ﹣2)解得:m=2. 【点睛】(1)熟知“一元二次方程根的判别式:在一元二次方程20?(0)ax bx c a ++=≠中,当240b ac ->时,原方程有两个不相等的实数根,当240b ac -=时,原方程有两个相等的实数根,当240b ac -<时,原方程没有实数根”是解答第1小题的关键;(2)能用“因式分解法”求得关于x 的方程x 2﹣6mx+9m 2﹣9=1的两个根是解答第2小题的关键.22.(1)25,25;213,27;(2)2a +2b =52c ;(1)AF=2. 【解析】试题分析:(1)∵AF ⊥BE ,∠ABE=25°,∴AP=BP=AB=2,∵AF ,BE 是△ABC 的中线,∴EF ∥AB ,EF=AB=,∴∠PFE=∠PEF=25°,∴PE=PF=1,在Rt △FPB 和Rt △PEA 中,AE=BF==,∴AC=BC=2,∴a=b=2,如图2,连接EF ,同理可得:EF=×2=2,∵EF ∥AB ,∴△PEF ~△ABP ,∴,在Rt △ABP 中,AB=2,∠ABP=10°,∴AP=2,PB=2,∴PF=1,PE=,在Rt △APE 和Rt △BPF 中,AE=,BF=,∴a=2,b=2,故答案为2,2,2,2;(2)猜想:a 2+b 2=5c 2,如图1,连接EF ,设∠ABP=α,∴AP=csinα,PB=ccosα,由(1)同理可得,PF=PA=,PE==,AE 2=AP 2+PE 2=c 2sin 2α+,BF 2=PB 2+PF 2=+c 2cos 2α,∴=c 2sin 2α+,=+c 2cos 2α,∴+=+c 2cos 2α+c 2sin 2α+,∴a 2+b 2=5c 2;(1)如图2,连接AC ,EF 交于H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P ,∵点E 、G 分别是AD ,CD 的中点,∴EG ∥AC ,∵BE ⊥EG ,∴BE ⊥AC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC=2,∴∠EAH=∠FCH,∵E,F分别是AD,BC的中点,∴AE=AD,BF=BC,∴AE=BF=CF=AD=,∵AE∥BF,∴四边形ABFE是平行四边形,∴EF=AB=1,AP=PF,在△AEH 和△CFH中,,∴△AEH≌△CFH,∴EH=FH,∴EQ,AH分别是△AFE的中线,由(2)的结论得:AF2+EF2=5AE2,∴AF2=5﹣EF2=16,∴AF=2.考点:相似形综合题.23.(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】【分析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.24.(1) B(-1.2);(2) y=57x?66x;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP 可知点P 在线段AO 的下方,过P 作PE ∥y 轴交线段OA 于点E ,可求得直线OA 解析式,设出P 点坐标,则可表示出E 点坐标,可表示出PE 的长,进一步表示出△POA 的面积,则可得到四边形ABOP 的面积,再利用二次函数的性质可求得其面积最大时P 点的坐标. 【详解】(1)如图1,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,∵△AOB 为等腰三角形, ∴AO=BO , ∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°, ∴∠AOC=∠OBD , 在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ), ∵A (2,1),∴OD=AC=1,BD=OC=2, ∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==,∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP , ∴可知点P 在线段OA 的下方, 过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(1)见解析;(2)1【解析】【分析】(1)连接AD,如图,利用圆周角定理得∠ADB=90°,利用切线的性质得OD⊥DF,则根据等角的余角相等得到∠BDF=∠ODA,所以∠OAD=∠BDF,然后证明∠COD=∠OAD得到∠CAB=2∠BDF;(2)连接BC交OD于H,如图,利用垂径定理得到OD⊥BC,则CH=BH,于是可判断OH为△ABC的中位线,所以OH=1.5,则HD=1,然后证明四边形DHCE为矩形得到CE=DH=1.【详解】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵EF为切线,∴OD⊥DF,∵∠BDF+∠ODB=90°,∠ODA+∠ODB=90°,∴∠BDF=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠OAD=∠BDF,∵D是弧BC的中点,∴∠COD=∠OAD,∴∠CAB=2∠BDF;(2)解:连接BC交OD于H,如图,∵D是弧BC的中点,∴OD⊥BC,∴CH=BH,∴OH为△ABC的中位线,∴113 1.522OH AC==⨯=,∴HD=2.5-1.5=1,∵AB为⊙O的直径,∴∠ACB=90°,∴四边形DHCE为矩形,∴CE=DH=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理.26.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.【点睛】本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.27.(1)证明见解析;(2)BP=1.【解析】分析:(1)连接OB,如图,根据圆周角定理得到∠ABD=90°,再根据切线的性质得到∠OBC=90°,然后利用等量代换进行证明;(2)证明△AOP∽△ABD,然后利用相似比求BP的长.详(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴AP AOAD AB=,即1241BP+=,∴BP=1.点睛:本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和相似三角形的判定与性质.。
2019年南通市中考数学模拟试题(含答案)

2019年南通市中考数学模拟试题(满分:150分 时间:120分钟)一、 选择题(每小题3分,共30分) 1. 下列数中,与-2的和为0的数是( ) A. 2 B. -2 C. 12 D. -122. 下列算式中,正确的是( )A. 3a 3-4a 2=-aB. 2a +b =3abC. (-a 2)3=a 6D. a 2÷a =a 3. 下列四个几何体中,主视图与其他三个不同的是( )4. 某校师生植树节积极参加以组为单位的植树活动,七个小组植树情况如表:则本组数据的众数与中位数分别为( ) A. 5,4 B. 5,5 C. 6,4 D. 6,55. 如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB =90°,若∠1=40°,则∠2的度数为( )A. 140°B. 130°C. 120°D. 110°(第5题) (第8题)6. 现有长度为2,3,4,5的四条线段,从中任选三条,能组成三角形的概率是( ) A. 14 B. 12 C. 34D. 1 7. 某件商品原价为200元,连续两次提价x%后售价为288元,下列所列方程正确的是( ) A. 200(1+x %)=288 B. 200(1+x %)2=288 C. 200(1-x %)=288 D. 200(1-x %)2=2888. 如图,△ABC 中,CD ⊥AB 于D ,下列能确定△ABC 为直角三角形的条件的个数是( ) ①∠1=∠A ,②CD AD =DBCD,③∠B +∠2=90°,④BC ∶AC ∶AB =3∶4∶5. A. 1 B. 2 C. 3 D. 49. 甲、乙两车在同一直线上从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早出发2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车离开A 地的距离y (km )与甲行驶的时间x (h )的函数图像.根据图中提供的信息,有下列说法:①m 的值为1;②a 的值为40;③乙车比甲车早74h 到达B 地.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 在直角坐标系xOy 中,点O (0,0),动点A (t ,t )在第一象限,动点B (0,m )在y 轴上.当AB =4时,△OAB 面积的最大值为( ) A. 8 B. 42+4 C. 42-4 D. 8 2 二、 填空题(每小题3分,共24分) 11. 若1x -1在实数范围内有意义,则x 的取值范围是 . 12. 分解因式:a 3-ab 2= .13. 在学习“用直尺和圆规作射线OC ,使它平分∠AOB ”时,教科书介绍如下:作法:(1)以O 为圆心,任意长为半径作弧,交OA 于D ,交OB 于E ;(2)分别以D ,E 为圆心,以大于12DE 的同样长为半径作弧,两弧交于点C ;(3)作射线OC ,则OC 就是所求作的射线.小东同学想知道为什么射线OC 就是∠AOB 的平分线.小红的思路是连接DC ,EC ,可证△ODC ≌△OEC ,就能得到∠AOC =∠BOC. 小红证明△ODC ≌△OEC 的理由是 .(第13题) (第17题)14. 在Rt △ABC 中,∠C =90°,sin A =45,则tan A 的值为 .15. 一个圆锥底面圆的半径为3 cm ,母线长为5 cm ,则这个圆锥的侧面积为 cm 2. 16. 关于x 的不等式组⎩⎪⎨⎪⎧x -m <0,x +1>0恰有3个整数解,则实数m 的取值范围为 .17. 如图,△ABC 中,AB =AC ,∠BAC =120°,D ,E 是边BC 上两点,且∠DAE =60°.若BD =3 cm ,CE =4 cm ,则DE = cm.18. 已知m ,n ,t 都为实数,点P (t 2+t -12,n )和点Q (-t 2+6t -9+4,n )都在抛物线y =x 2-2mx -1上,则t +n +m = . 三、 解答题(本大题共10小题,共96分)19. (10分)(1)计算:tan 60°-⎝⎛⎭⎫12-1+(1-5)0+|3-2|.(2)先化简,再求值:1x +1-1x 2-1·x 2-2x +1x +1;其中x =2-1.20. (8分)有甲、乙两种货车,3辆甲种货车与4辆乙种货车一次可运货23吨,1辆甲种货车与5辆乙种货车一次可运货15吨.求甲、乙两种货车每辆一次分别可运货多少吨?21. (8分)为推广阳光体育“大课间”活动,某中学决定在学生中开设A :实心球;B :立定跳远;C :跳绳;D :跑步,共四种活动项目.为了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②所示的不完整统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整; (3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生.现在从这5名学生中任意抽取2名学生.请用画树状图或列表的方法求恰好抽到同性别学生的概率.22. (8分)如图,一艘轮船航行到B 处时,测得小岛A 在船的北偏东60°的方向上,轮船从B 处继续向正东方向航行100海里到达C 处时,测得小岛A 在船的北偏东30°的方向上,AD ⊥BC于点D,求AD的长.23.(8分)如图,在直角坐标系xOy中,直线y=mx与双曲线y=nx相交于A(-1,a),B两点,BC⊥x轴,垂足是C,△AOC的面积是1.(1)求m,n的值;(2)求直线AC的解析式.24.(8分)如图,四边形ABCD中,AD∥BC,AD<BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥AD,交BD于点F,连接AF,求证:四边形ADEF是菱形.25.(9分)如图,在⊙O中,半径OC⊥弦AB,垂足为点D,过点A作⊙O的切线交OC的延长线于点E.(1)求证:∠EAC=∠BAC;(2)若AB=8,cos∠E=45,求CD的长.26.(10分)欧尚超市准备代销一款运动鞋,每双的成本是160元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出6双(售价不得低于160元/双),设每双售价降低x元(x为正整数),该款运动鞋每天的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每双运动鞋的售价定为多少元时,该款运动鞋每天可获得最大利润?最大利润是多少?27.(13分)定义:点P、点Q分别为两个图形G1、G2上任一点,如果线段PQ的长度存在最小值时,就称该最小值为图形G1和G2的“近距离”;如果线段PQ的长度存在最大值时,就称该最大值为图形G1和G2的“远距离”.请你在理解上述定义的基础上,解决下面问题:在平面直角坐标系xOy中,点A(-3,4),B(-3,-4),C(3,-4),D(3,4). (1)直接写出线段AB与线段CD的“近距离”是,“远距离”是;(2)设⊙O半径为1,直接写出⊙O与四边形ABCD的“近距离”是,“远距离”是;(3)若⊙M的半径为12,且圆心M在射线y=12x(x≥0)上移动,当⊙M与四边形ABCD的“近距离”不大于12时,求⊙M与四边形ABCD的“远距离”d的取值范围.28.(14分)在直角坐标系xOy中,已知抛物线y=x2+mx+2m-4(m<2)与x轴交于A,B 两点(点A在点B的右侧),与y轴交于点C,顶点为D.(1)当m=32时,求∠ACB的度数;(2)设E(0,6),当∠OEB+∠OCB=∠OAC时,求四边形ABDC的面积;(3)在(2)的条件下,直线y=32x+t与该抛物线交于点G(x1,y1),H(x2,y2),x1<x2,当y1BG+x2+2BH=0时,直接写出t的值.参考答案5. B解析:本题考查了平行线的性质以及补角的定义.如图,∵m∥n,∠1=40°,∴∠3=∠1=40°.又∵∠ACB=90°,∴∠4=∠ACB-∠3=90°-40°=50°,根据补角的定义,∠2=180°-∠4=180°-50°=130°.故选B.6. C解析:本题考查了三角形的三边关系以及概率公式.共有2,3,4;2,3,5;2,4,5;3,4,5四种情况,其中只有2,3,5这种情况不能组成三角形,所以P(任取三条,能组成三角形)=34;故选C.7.B解析:本题考查了一元二次方程的应用.根据题意列方程,200(1+x%)2=288,故选B.8.C解析:本题考查了相似三角形的判定与性质以及勾股定理的逆定理.∵∠A+∠2=90°,∠1=∠A,∴∠1+∠2=90°,即△ABC为直角三角形,①正确;根据CDAD=DBCD,∠ADC=∠CDB=90°,则△ACD∽△CBD,∴∠1=∠A,∠2=∠B,根据三角形内角和定理得∠ACB=90°,②正确;由∠B+∠2=90°,∠B+∠1=90°,得∠1=∠2,无法得到两角和为90°,③错误;设BC=3x,则AC=4x,AB=5x,∴9x2+16x2=25x2,符合勾股定理的逆定理,∴∠ACB=90°,④正确,故选C.9. A解析:本题考查了一次函数的应用.根据甲车途中休息了0.5 h,得m=1.5-0.5=1,故①正确;根据“路程÷时间=速度”求出甲的速度,即120÷(3.5-0.5)=40(km/h),则a=1×40=40(km),故②正确;由②知甲的速度是40 km/h,甲到达B地所需时间为260÷40+0.5=7(h),由图知乙的速度为120÷(3.5-2)=80(km/h),∴乙到达B地所需时间为260÷80=3.25(h),∴乙车比甲车早7-(2+3.25)=74(h)到达B地,故③正确,故选A.10.B解析:本题考查了圆周角定理、垂径定理及三角形的面积公式.如图,根据条件可知tan∠AOB=tt=1,∴∠AOB=45°,AB=4,以AB为弦,所对圆周角等于45°作一辅助圆,当点O位于优弧中点时,点O到直线AB的距离最大,即“高”最大,而底AB为定值4,∴此时△OAB的面积最大,设辅助圆的圆心为点D,此时高OE过圆心D.由动点A(t,t),可得∠ADB=2∠AOB=90°,由AB=4,得BD=AD=OD=22,由DE⊥AB,得DE=12AB=2,所以OE=22+2,从而△OAB的面积为12×4×(22+2)=42+4,故选B.11. x≠112. a(a+b)(a-b)13. SSS14. 43 解析:本题考查了锐角三角函数的计算.由∠C =90°,sin A =a c =45,设a =4x ,c =5x ,则b =(5x )2-(4x )2=3x ,∴tan A =a b =4x 3x =43.15. 15π 解析:本题考查了圆锥侧面积的计算.圆锥的侧面积S 侧=12lr =12×(2π×3)×5=15π.16. 2<m ≤3 解析:本题考查了一元一次不等式组的解法.解不等式x -m <0,得x <m ,解不等式x +1>0,得x >-1.∵不等式组有3个整数解,∴不等式组的3个整数解为0,1,2,则2<m ≤3.17. 13 解析:本题考查了旋转的性质,全等三角形的性质与判定以及勾股定理.如图,将△ABD 绕点A 旋转,得到△ACD′,∴∠DAD′=∠BAC =120°,AD =AD ′,CD ′=BD =3 cm ,∠ACD ′=∠B =30°,∴∠ECD ′=60°.∵∠DAE =60°,∴∠EAD ′=∠DAD ′-∠DAE =120°-60°=60°,∴∠DAE =∠D ′AE .在△DAE与△D ′AE中,⎩⎪⎨⎪⎧AD =AD ′,∠DAE =∠D ′AE ,AE =AE ,∴△DAE ≌△D ′AE (SAS),∴DE =D ′E .过点E 作EH ⊥CD ′,∴CH =CE cos 60°=2 cm ,EH =CE sin 60°=23cm ,D ′H =1 cm ,∴D ′E =(23)2+12=13(cm),∴DE =13cm.【技法点拨】本题中的BD ,CE 以及要求的DE 在同一直线上,结合等腰三角形以及∠DAE =12∠BAC ,联想到利用旋转,将条件转化到△CED ′中解决. 18. 4 解析:本题考查了二次根式的意义以及二次函数的图像与性质.∵-t 2+6t -9+4=-(t -3)2+4有意义,∴-(t -3)2≥0,解得t =3,∴P(0,n),Q(4,n).又∵P ,Q 都在抛物线上,∴抛物线的对称轴为直线x =2,∴m =2,则抛物线的解析式为y =x 2-4x -1,当x =0时,y =n =-1,∴t +n +m =4.【易错提醒】 本题对审题要求较高,要从-t 2+6t -9+4中看出被开方数小于等于0,再根据二次根式的被开方数大于等于0,得出t 的值.19. 解:(1)原式=3-2+1+2-3=1.(2)原式=1x +1-1(x -1)(x +1)·(x -1)2x +1=1x +1-x -1(x +1)2=(x +1)-(x -1)(x +1)2=2(x +1)2,当x =2-1时 ,原式=1.20. 解:设甲种货车每辆一次可运货x 吨,乙种货车每辆一次可运货y 吨,根据题意得⎩⎪⎨⎪⎧3x +4y =23,x +5y =15,解得⎩⎪⎨⎪⎧x =5,y =2. 答:甲种货车每辆一次可运货5吨,乙种货车每辆一次可运货2吨. 21. 解析:本题考查了条形统计图、扇形统计图以及画树状图或列表求概率.(1)用A 项目的人数除以它所占的百分比得到调查的总人数;(2)用总人数分别减去其他项目的人数得到B 项目的人数,用B 项目人数除以总人数得到B 项目的百分比,然后补全两个统计图;(3)画树状图表示所有等可能的结果数,再找出抽到同性别学生的结果数,然后利用概率公式求解.解:(1)15÷10%=150,所以共调查了150名学生.(2)喜欢“立定跳远”的学生人数为150-15-60-30=45(人),喜欢“立定跳远”所占百分比为45150×100%=30%,补充两个统计图为:①②(3)画树状图如下:共有20种等可能的结果数,其中抽到同性别学生的结果数为8,所以恰好抽到同性别学生的概率为820=25.22. 解析:本题考查了等腰三角形判定与性质以及解直角三角形的应用——方向角问题.由等角对等边知BC =AC =100,设CD =x ,在Rt △ACD 和Rt △ABD 中,利用三角函数表示出AD ,AC ,BD ,再根据BD =CB +CD 列方程,求得x ,从而求得AD 的长.解:由题意知∠ABD =30°,∠ACD =60°.∴∠CAB =∠ABD ,∴BC =AC =100海里.在Rt △ACD 中,设CD =x 海里,则AC =2x 海里,AD =AC sin 60°=3x 海里,在Rt △ABD 中,BD =AD ·tan 60°=3x ,又∵BD =BC +CD ,∴3x =100+x ,解得x =50,∴AD =3x =503(海里).23. 解析:本题考查了待定系数法求函数解析式以及反比例函数与一次函数的图像与性质.(1)由交点的对称性得到B 的横坐标为1,由此确定C 点坐标,根据△AOC 的面积求出A 点纵坐标,将A 点坐标代入一次函数与反比例函数解析式,即可求出m ,n ;(2)设直线AC 解析式为y =kx +b ,将点A ,C 的坐标代入解析式即可.解:(1)∵直线y =mx 与双曲线y =nx相交于A(-1,a),B 两点,∴B 点横坐标为1,即C(1,0),∵△AOC 的面积为1,∴A(-1,2),将A(-1,2)代入y =mx ,y =nx可得,m =-2,n =-2.(2)设直线AC 的解析式为y =kx +b ,∵y =kx +b 经过点A(-1,2),C(1,0),∴ ⎩⎪⎨⎪⎧-k +b =2,k +b =0, 解得⎩⎪⎨⎪⎧k =-1,b =1,∴直线AC 的解析式为y =-x +1. 24. 解析:本题考查了平行线的性质、等腰三角形的性质、全等三角形的判定与性质以及菱形的判定.(1)如图,利用等腰三角形的性质以及平行线的性质证明∠1=∠2.再利用AAS 即可证△ABD ≌△EBD ;(2)利用(1)结论得AD =DE ,再根据对边平行且相等的四边形是平行四边形,证四边形AFED 是平行四边形,最后结合EF =DE ,可得平行四边形AFED 是菱形.解:(1)如图,∵AD ∥BC ,∴∠1=∠DBC.∵BC =DC ,∴∠2=∠DBC ,∴∠1=∠2.∵BA ⊥AD ,BE ⊥CD ,∴∠BAD =∠BED =90°.在△ABD 和△EBD 中,⎩⎪⎨⎪⎧∠1=∠2,∠BAD =∠BED ,BD =BD ,∴△ABD ≌△EBD (AAS).(2)由(1)得,AD =ED ,∠1=∠2.∵EF ∥DA ,∴∠1=∠3.∴∠2=∠3.∴EF =ED .∴EF =AD .∴四边形AFED 是平行四边形.又∵EF =ED ,∴平行四边形AFED 是菱形.25. 解析:本题考查了切线的性质、相似三角形的判定与性质、锐角三角函数以及勾股定理.(1)连接OA ,根据切线的性质得OA ⊥AE ,根据等角的余角相等证明∠EAC =∠BAC ;(2)根据垂径定理求出AD ,证明△ODA ∽△OAE ,得到∠OAD =∠E ,根据余弦值计算即可.解:(1)连接OA ,∵AE 切⊙O 于点A ,∴OA ⊥AE ,∴∠OAE =90°,即∠OAC +∠EAC =90°.∵OC ⊥AB ,∴∠ADC =90°,即∠BAC +∠ACD =90°.∵OA =OC ,∴∠OAC =∠ACD ,∴∠EAC =∠BAC .(2)∵OD ⊥AB ,AB =8,∴AD =12AB =4.∵∠OAE =∠ODA =90°,∠O =∠O ,∴△ODA ∽△OAE ,∴∠OAD =∠E .∵cos ∠E =45,∴cos ∠OAD =45=AD OA =4OA,∴OA =5,∴OD =3,∴CD =OC -OD =5-3=2.26. 解析:本题考查了二次函数的应用.(1)根据“利润=(售价-成本)×销售量”列出函数关系式;(2)把(1)中的二次函数关系式转化为顶点式,利用二次函数图像的性质进行解答.解:(1)根据题意可得y =(200-x -160)(40+6x)=-6x 2+200x +1 600,x 的取值范围为1≤x ≤40,且x 为正整数.(2)∵y =-6x 2+200x +1 600=-6⎝⎛⎭⎫x -5032+9 8003,且x 为正整数,∴当x =17,即售价定为每双183元时,y 有最大值,最大值为3 266元.答:每双运动鞋售价定为183元时,该款运动鞋每天可获得最大利润为3 266元.27. 解析:本题考查了新定义题、圆的有关性质、勾股定理以及一次函数的图像与性质.(1)在平面直角坐标系中画出图形,如图①,依据“近距离”的定义,即两平行线间的距离BC =6;依据“远距离”的定义,即A ,C(或B ,D)两点之间的距离为10.(2)如图①,“近距离”可以看作点G 到AB 的距离为2,“远距离”可以看作AP 的距离为6;(3)在直线y =12x 上确定“近距离”等于12的两个特殊点M 1,M 2,确定这两点的远距离,从而得出“远距离”d 的取值范围.①解:(1)6 10 (2)2 6(3)如图②中,当M 1(2,1)和M 2(4,2)时,⊙M 与四边形ABCD 的近距离恰为12.②由于M 1B =(2+3)2+(1+4)2=52,M 2B =(4+3)2+(2+4)2=85,可知此时:⊙M 1与四边形ABCD 的远距离为52+12,⊙M 2与四边形ABCD 的远距离为85+12,∴52+12≤d ≤85+12. 28. 解析:本题考查了二次函数的图像与性质、勾股定理、锐角三角函数、相似三角形的判定与性质以及数形结合思想.(1)求出当m =32时,A ,B ,C 各点的坐标,然后用勾股定理求出各边的长度,最后用勾股定理的逆定理得出∠ACB 是直角;(2)利用∠OEB +∠OCB =∠OAC ,在OC 上取点F ,使∠FBC =∠BEC ,从而得出∠BFO =∠OAC ,tan ∠BFO = tan ∠OAC ,得出F (0,-1),利用△CBF ∽△CEB ,求出m 的值,再计算四边形ABDC 的面积;(3)如图③,作GJ ⊥x 轴,HK ⊥x 轴,交点G ,H 的坐标是方程组⎩⎪⎨⎪⎧y =x 2+x -2,y =32x +t 的解,即x 2-12x -(t +2)=0,∴⎩⎪⎨⎪⎧x 1+x 2=12,x 1x 2=-(t +2),⎩⎨⎧y 1=32x 1+t ,y 2=32x 2+t .由于x 1+x 2>0且x 1<x 2,∴x 2>0,由x 2+2BH =-y 1BG ,∴-y 1>0,即y 1<0,∴G 在第三象限,H 在第一象限.∴BK =x 2+2,GJ =-y 1,即BK BH =GJ BG,又∠GJB =∠BKH =90°,∴△BGJ ∽△HBK ,∴BK HK =GJ BJ ,即x 2+2y 2=-y 1x 1+2,∴(x 1+2)·(x 2+2)=-⎝⎛⎭⎫32x 1+t ⎝⎛⎭⎫32x 2+t ,∴t 2-52t -32=0,解得t 1=-12,t 2=3(舍),故t =-12.③解:(1)如图①,当m =32时,y =x 2+32x -1,令y =0时,x 2+32x -1=0,解得,x 1=12,x 2=-2,∴A ⎝⎛⎭⎫12,0,B (-2,0),∴OA =12,OB =2,令x =0时,y =-1,∴C (0,-1),即OC =1.∵AB 2=⎝⎛⎭⎫12+22=254,BC 2=22+12=5,AC 2=12+⎝⎛⎭⎫122=54,∴BC 2+AC 2=5+54=254,∴BC 2+AC 2=AB 2,∴∠ACB =90°.①②(2)令y =0时,x 2+mx +2m -4=0,∴(x +2)(x +m -2)=0,解得x 1=-2,x 2=2-m .∵m <2,点A 在点B 的右侧,∴A (2-m ,0),B 点(-2,0).易知C 点(0,2m -4),∴OA =2-m ,OC=4-2m ,∴tan ∠OAC =OC OA =4-2m 2-m=2.如图②,在线段OC 上取一点F ,使∠CBF =∠OEB .∵∠OEB +∠OCB =∠OAC ,∴∠CBF +∠OCB =∠OAC .∵∠OFB =∠OCB +∠CBF ,∴∠OFB =∠OAC ,∴tan ∠OFB =tan ∠OAC =2,∴在Rt △OBF 中,OB OF=2.∵OB =2,∴OF =1,∴CF =OC -OF =4-2m -1=3-2m .∵∠BCF =∠ECB ,∠CBF =∠CEB ,∴△CBF ∽△CEB ,∴CB CE =CF CB,即CB 2=CE ·CF .∵CB 2=22+(4-2m )2=20-16m +4m 2,CE =6-(2m -4)=10-2m ,∴20-16m +4m 2=(10-2m )(3-2m ),解得m =1,此时A (1,0),C (0,-2),D ⎝⎛⎭⎫-12,-94,∴S 四边形ABDC =12×32×94+⎝⎛⎭⎫2+94×122+12×2×1=154. (3)t =-12. 【难点突破】本题第三问难度较大,条件y 1BG +x 2+2BH=0的运用是解决本题的关键,先将式子改写为x 2+2BH =-y 1BG,将分子转化为线段的长,这样可以寻找相似三角形,利用相似三角形的性质解决问题,数形结合是解决本题最重要的数学思想.。
2019-2020学年江苏省南通市中考数学模拟试卷(有标准答案)(2)

江苏省南通市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题要求的)1.(3分)6的相反数为()A.﹣6 B.6 C.﹣D.2.(3分)计算x2•x3结果是()A.2x5B.x5C.x6D.x83.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥14.(3分)2017年国内生产总值达到827 000亿元,稳居世界第二.将数827 000用科学记数法表示为()A.82.7×104B.8.27×105C.0.827×106D.8.27×1065.(3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,126.(3分)如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上7.(3分)若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.78.(3分)一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2 B.12πcm2 C.8πcm2D.4πcm29.(3分)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为()A.B.C.D.10.(3分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan ∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)11.(3分)计算:3a2b﹣a2b= .12.(3分)某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为度.13.(3分)一个等腰三角形的两边长分别为4cm和9cm,则它的周长为cm.14.(3分)如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE= 度.15.(3分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为.16.(3分)如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是(填序号).17.(3分)若关于x的一元二次方程x2﹣2mx﹣4m+1=0有两个相等的实数根,则(m﹣2)2﹣2m(m﹣1)的值为.18.(3分)在平面直角坐标系xOy中,已知A(2t,0),B(0,﹣2t),C(2t,4t)三点,其中t>0,函数y=的图象分别与线段BC,AC交于点P,Q.若S△PAB ﹣S△PQB=t,则t的值为.三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步驟)19.(10分)计算:(1)(﹣2)2﹣+(﹣3)0﹣()﹣2;(2)÷.20.(8分)解方程:.21.(8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.22.(8分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E 三点在一直线上(取1.732,结果取整数)?23.(9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一二三四五六七销售额13≤x<1616≤x<1919≤x<2222≤x<2525≤x<2828≤x<3131≤x<34频数793a2b2数据分析表平均数众数中位数20.3c18请根据以上信息解答下列问题:(1)填空:a= ,b= ,c= ;(2)若将月销售额不低于25万元确定为销售目标,则有位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.25.(9分)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.26.(10分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2(k﹣1)x+k2﹣k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值﹣,求k的值.27.(13分)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE=CF;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.28.(13分)【定义】如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.【运用】如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).江苏省南通市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题要求的)1.(3分)6的相反数为()A.﹣6 B.6 C.﹣D.【解答】解:6的相反数为:﹣6.故选:A.2.(3分)计算x2•x3结果是()A.2x5B.x5C.x6D.x8【解答】解:x2•x3=x5.故选:B.3.(3分)若代数式在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故选:D.4.(3分)2017年国内生产总值达到827 000亿元,稳居世界第二.将数827 000用科学记数法表示为()A.82.7×104B.8.27×105C.0.827×106D.8.27×106【解答】解:827 000=8.27×105.故选:B.5.(3分)下列长度的三条线段能组成直角三角形的是()A.3,4,5 B.2,3,4 C.4,6,7 D.5,11,12【解答】解:A、∵32+42=52,∴三条线段能组成直角三角形,故A选项正确;B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误;故选:A.6.(3分)如图,数轴上的点A,B,O,C,D分别表示数﹣2,﹣1,0,1,2,则表示数2﹣的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上【解答】解:2<<3,∴﹣1<2﹣<0,∴表示数2﹣的点P应落在线段BO上,故选:B.7.(3分)若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.7【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=720°,解得n=6,故这个多边形为六边形.故选:C.8.(3分)一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2 B.12πcm2 C.8πcm2D.4πcm2【解答】解:根据题意得圆锥的母线长为4,底面圆的半径为2,所以这个圆锥的侧面积=×4×2π×2=8π(cm2).故选:C.9.(3分)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为()A.B.C.D.【解答】解:由作图可知,四边形ECFD是正方形,∴DE=DF=CE=CF,∠DEC=∠DFC=90°,∵S△ACB =S△ADC+S△CDB,∴×AC×BC=×AC×DE+×BC×DF,∴DE==,故选:D.10.(3分)如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan ∠DCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为()A.B.C.D.【解答】解:设AB=x,则AE=EB=由折叠,FE=EB=则∠AFB=90°由tan∠DCE=∴BC=,EC=∵F、B关于EC对称∴∠FBA=∠BCE∴△AFB∽△EBC∴∴y=故选:D.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)11.(3分)计算:3a2b﹣a2b= 2a2b .【解答】解:原式=(3﹣1)a2b=2a2b,故答案为:2a2b.12.(3分)某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,绘制成如图所示的扇形统计图,则甲地区所在扇形的圆心角度数为60 度.【解答】解:甲部分圆心角度数是×360°=60°,故答案为:60.13.(3分)一个等腰三角形的两边长分别为4cm和9cm,则它的周长为22 cm.【解答】解:①当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去.②当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=22cm.故填22.14.(3分)如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE= 130 度.【解答】解:∵∠AOB=40°,OP平分∠AOB,∴∠AOC=∠BOC=20°,又∵CD⊥OA于点D,CE∥OB,∴∠DCP=90°+20°=110°,∠PCE=∠POB=20°,∴∠DCE=∠DCP+∠PCE=110°+20°=130°,故答案为:130.15.(3分)古代名著《算学启蒙》中有一题:良马日行二百四十里.驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.意思是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可追上慢马?若设快马x天可追上慢马,则由题意,可列方程为240x=150x+12×150 .【解答】解:设快马x天可以追上慢马,据题题意:240x=150x+12×150,故答案为:240x=150x+12×15016.(3分)如图,在△ABC中,AD,CD分别平分∠BAC和∠ACB,AE∥CD,CE∥AD.若从三个条件:①AB=AC;②AB=BC;③AC=BC中,选择一个作为已知条件,则能使四边形ADCE为菱形的是②(填序号).【解答】解:当BA=BC时,四边形ADCE是菱形.理由:∵AE∥CD,CE∥AD,∴四边形ADCE是平行四边形,∵BA=BC,∴∠BAC=∠BCA,∵AD ,CD 分别平分∠BAC 和∠ACB , ∴∠DAC=∠DCA , ∴DA=DC ,∴四边形ADCE 是菱形.17.(3分)若关于x 的一元二次方程x 2﹣2mx ﹣4m+1=0有两个相等的实数根,则(m ﹣2)2﹣2m (m ﹣1)的值为.【解答】解:由题意可知:△=4m 2﹣2(1﹣4m )=4m 2+8m ﹣2=0, ∴m 2+2m=∴(m ﹣2)2﹣2m (m ﹣1) =﹣m 2﹣2m+4 =+4=故答案为:18.(3分)在平面直角坐标系xOy 中,已知A (2t ,0),B (0,﹣2t ),C (2t ,4t )三点,其中t >0,函数y=的图象分别与线段BC ,AC 交于点P ,Q .若S △PAB ﹣S △PQB =t ,则t 的值为 4 .【解答】解:如图所示, ∵A (2t ,0),C (2t ,4t ), ∴AC ⊥x 轴, 当x=2t 时,y==,∴Q (2t ,),∵B (0,﹣2t ),C (2t ,4t ), 易得直线BC 的解析式为:y=3x ﹣2t , 则3x ﹣2t=,解得:x 1=t ,x 2=﹣t (舍),∴P (t ,t ),∵S △PAB =S △BAC ﹣S △APC ,S △PQB =S △BAC ﹣S △ABQ ﹣S △PQC , ∵S △PAB ﹣S △PQB =t ,∴(S △BAC ﹣S △APC )﹣(S △BAC ﹣S △ABQ ﹣S △PQC )=t , S △ABQ +S △PQC ﹣S △APC =+﹣=t ,t=4,故答案为:4.三、解答题(本大题共10小题,共96分.解答时应写出文字说明、证明过程或演算步驟) 19.(10分)计算: (1)(﹣2)2﹣+(﹣3)0﹣()﹣2; (2)÷.【解答】解:(1)原式=4﹣4+1﹣9=﹣8;(2)原式=•=.20.(8分)解方程:.【解答】解:方程两边都乘3(x+1), 得:3x ﹣2x=3(x+1), 解得:x=﹣,经检验x=﹣是方程的解,∴原方程的解为x=﹣.21.(8分)一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.【解答】解:画树状图得:则共有9种等可能的结果,两次摸出的小球标号相同时的情况有3种,所以两次取出的小球标号相同的概率为.22.(8分)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=520m,∠D=30°.那么另一边开挖点E离D多远正好使A,C,E三点在一直线上(取1.732,结果取整数)?【解答】解:∵∠ABD=120°,∠D=30°,∴∠AED=120°﹣30°=90°,在Rt△BDE中,BD=520m,∠D=30°,∴BE=260m,∴DE==260≈450(m).答:另一边开挖点E离D450m,正好使A,C,E三点在一直线上.23.(9分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:171816132415282618192217161932301614152615322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下.频数分布表组别一二三四五六七销售额13≤x<1616≤x<1919≤x<2222≤x<2525≤x<2828≤x<3131≤x<34频数793a2b2数据分析表平均数众数中位数20.3c18请根据以上信息解答下列问题:(1)填空:a= 3 ,b= 4 ,c= 15 ;(2)若将月销售额不低于25万元确定为销售目标,则有8 位营业员获得奖励;(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.【解答】解:(1)在22≤x<25范围内的数据有3个,在28≤x<31范围内的数据有4个,15出现的次数最大,则中位数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,你认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.24.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,且交⊙O于点E.连接OC,BE,相交于点F.(1)求证:EF=BF;(2)若DC=4,DE=2,求直径AB的长.【解答】(1)证明:∵OC⊥CD,AD⊥CD,∴OC∥AD,∠OCD=90°,∴∠OFE=∠OCD=90°,∵OB=OE,∴EF=BF;(2)∵∵AB为⊙O的直径,∴∠AEB=90°,∵∠OCD=∠CFE=90°,∴四边形EFCD是矩形,∴EF=CD,DE=CF,∵DC=4,DE=2,∴EF=4,CF=2,设⊙O的为r,∵∠OFB=90°,∴OB2=OF2+BF2,即r2=(r﹣2)2+42,解得,r=5,∴AB=2r=10,即直径AB的长是10.25.(9分)小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件)购买总费用(元)A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.【解答】解:(1)设A种商品的单价为x元,B种商品的单价为y元,根据题意可得:,解得:,答:A种商品的单价为20元,B种商品的单价为15元;(2)设第三次购买商品B种a件,则购买A种商品(12﹣a)件,根据题意可得:a≥2(12﹣a),得:8≤a≤12,∵m=20a+15(12﹣a)=5a+180∴当a=8时所花钱数最少,即购买A商品8件,B商品4件.26.(10分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2(k﹣1)x+k2﹣k(k为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值﹣,求k的值.【解答】解:(1)把点(1,k2)代入抛物线y=x2﹣2(k﹣1)x+k2﹣k,得k2=12﹣2(k﹣1)+k2﹣k解得k=(2)把点(2k,y1)代入抛物线y=x2﹣2(k﹣1)x+k2﹣k,得y1=(2k)2﹣2(k﹣1)•2k+k2﹣k=k2+k把点(2,y2)代入抛物线y=x2﹣2(k﹣1)x+k2﹣k,得y2=22﹣2(k﹣1)×2+k2﹣k=k2﹣k+8∵y1>y2∴k2+k>k2﹣k+8解得k>1(3)抛物线y=x2﹣2(k﹣1)x+k2﹣k解析式配方得y=(x﹣k+1)2+(﹣)将抛物线向右平移1个单位长度得到新解析式为y=(x﹣k)2+(﹣)当k<1时,1≤x≤2对应的抛物线部分位于对称轴右侧,y随x的增大而增大,∴x=1时,y最小=(1﹣k)2﹣k﹣1=k2﹣k,∴k2﹣k=﹣,解得k1=1,k2=都不合题意,舍去;当1≤k≤2时,y最小=﹣k﹣1,∴﹣k﹣1=﹣解得k=1;当k>2时,1≤x≤2对应的抛物线部分位于对称轴左侧,y随x的增大而减小,∴x=2时,y最小=(2﹣k)2﹣k﹣1=k2﹣k+3,∴k2﹣k+3=﹣解得k1=3,k2=(舍去)综上,k=1或3.27.(13分)如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE=CF;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.【解答】(1)证明:如图1,由旋转得:∠EDF=90°,ED=DF,∵四边形ABCD是正方形,∴∠ADC=90°,AD=CD,∴∠ADC=∠EDF,即∠ADE+∠EDC=∠EDC+∠CDF,∴∠ADE=∠CDF,在△ADE和△DCF中,∵,∴△ADE≌△DCF,∴AE=CF;(2)解:如图2,过F作OC的垂线,交BC的延长线于P,∵O是BC的中点,且AB=BC=2,∵A,E,O三点共线,∴OB=,由勾股定理得:AO=5,∵OE=2,∴AE=5﹣2=3,由(1)知:△ADE≌△DCF,∴∠DAE=∠DCF,CF=AE=3,∵∠BAD=∠DCP,∴∠OAB=∠PCF,∵∠ABO=∠P=90°,∴△ABO∽△CPF,∴==2,∴CP=2PF,设PF=x,则CP=2x,由勾股定理得:32=x2+(2x)2,x=或﹣(舍),∴FP=,OP=+=,由勾股定理得:OF==,(3)解:如图3,由于OE=2,所以E点可以看作是以O为圆心,2为半径的半圆上运动,延长BA到P点,使得AP=OC,连接PE,∵AE=CF,∠PAE=∠OCF,∴△PAE≌△OCF,∴PE=OF,当PE最小时,为O、E、P三点共线,OP===5,∴PE=OF=OP﹣OE=5﹣2,∴OF的最小值是5﹣2.28.(13分)【定义】如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.【运用】如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.(1)C(4,),D(4,),E(4,)三点中,点 C 是点A,B关于直线x=4的等角点;(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).【解答】解:(1)点B关于直线x=4的对称点为B′(10,﹣)∴直线AB′解析式为:y=﹣当x=4时,y=故答案为:C(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P作BH⊥l于点H∵点A和A′关于直线l对称∴∠APG=∠A′PG∵∠BPH=∠A′PG∴∠AGP=∠BPH∵∠AGP=∠BHP=90°∴△AGP∽△BHP∴,即∴mn=2,即m=∵∠APB=α,AP=AP′∴∠A=∠A′=在Rt△AGP中,tan(3)如图,当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方的圆上若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q 由对称性可知:∠APQ=∠A′PQ,又∠APB=60°∴∠APQ=∠A′PQ=60°∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°∴∠BAQ=60°=∠AQB=∠ABQ∴△ABQ是等边三角形∵线段AB为定线段∴点Q为定点若直线y=ax+b(a≠0)与圆相切,易得P、Q重合∴直线y=ax+b(a≠0)过定点Q连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N∵A(2,),B(﹣2,﹣)∴OA=OB=∵△ABQ是等边三角形∴∠AOQ=∠BOQ=90°,OQ=∴∠AOM+∠NOD=90°又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO∵∠AMO+∠ONQ=90°∴△AMO∽△ONQ∴∴∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)设直线BQ解析式为y=kx+b将B、Q坐标代入得解得∴直线BQ的解析式为:y=﹣设直线AQ的解析式为:y=mx+n将A、Q两点代入解得∴直线AQ的解析式为:y=﹣3若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣若点P与点A重合,则直线PQ与直线AQ重合,此时,b=7又∵y=ax+b(a≠0),且点P位于AB右下方∴b<﹣且b≠﹣2或b>。
江苏省南通市2019-2020学年中考数学仿真第一次备考试题含解析

江苏省南通市2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知☉O 的半径为5,且圆心O 到直线l 的距离是方程x 2-4x-12=0的一个根,则直线l 与圆的位置关系是( )A .相交B .相切C .相离D .无法确定2.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或03.将抛物线2y x =向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )A .2(2)3y x =+-B .2(2)3y x =++C .2(2)3y x =-+D .2(2)3y x =--4.下列计算正确的是( )A .x 2+x 3=x 5B .x 2•x 3=x 5C .(﹣x 2)3=x 8D .x 6÷x 2=x 35.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )A .B .C .D .6.如图,点E 是四边形ABCD 的边BC 延长线上的一点,则下列条件中不能判定AD ∥BE 的是( )A .12∠=∠B .34∠=∠C .D 5∠∠= D .B BAD 180∠∠+=o 7.点A (m ﹣4,1﹣2m )在第四象限,则m 的取值范围是 ( )A .m >12B .m >4C .m <4D .12<m <4 8.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3309.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4 B.23C.12 D.4310.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.11.下列二次根式中,是最简二次根式的是()A.48B.22x yC.15D.0.312.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC 的值为()A.3B.3C.3D.3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:_____.14.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________.15.某校体育室里有球类数量如下表:球类篮球 排球 足球 数量 3 5 4如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是_____.16.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数:__________.17.如图,矩形ABCD ,AB=2,BC=1,将矩形ABCD 绕点A 顺时针旋转90°得矩形AEFG ,连接CG 、EG ,则∠CGE=________.18.如图,在等腰△ABC 中,AB=AC ,BC 边上的高AD=6cm ,腰AB 上的高CE=8cm ,则BC=_____cm三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数. 20.(6分)反比例函数k y x=的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.(6分)如图,直线y=2x+6与反比例函数y=kx(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?22.(8分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O 交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G(1)求证:直线AB是⊙O的切线;(2)求证:△GOC∽△GEF;(3)若AB=4BD,求sinA的值.23.(8分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.(1)求证:∠BDA=∠ECA.(2)若2n=3,∠ABC=75°,求BD的长.(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)(4)试探究线段BF,AE,EF三者之间的数量关系。
江苏省南通市2019-2020学年中考第二次模拟数学试题含解析

江苏省南通市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.“车辆随机到达一个路口,遇到红灯”这个事件是( )A.不可能事件B.不确定事件C.确定事件D.必然事件2.在平面直角坐标系中,位于第二象限的点是()A.(﹣1,0)B.(﹣2,﹣3)C.(2,﹣1)D.(﹣3,1)3.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A.3.5 B.3 C.4 D.4.54.把不等式组11xx<-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.已知圆锥的侧面积为10πcm2,侧面展开图的圆心角为36°,则该圆锥的母线长为()A.100cm B.10cm C.10cm D.10cm6.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.7.已知抛物线y=ax2+bx+c与x轴交于(x1,0)、(x2,0)两点,且0<x1<1,1<x2<2与y轴交于(0,-2),下列结论:①2a+b>1;②a+b<2;③3a+b>0;④a<-1,其中正确结论的个数为( )A.1个B.2个C.3个D.4个8.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=kx(k≠0)的图象恰好经过点C和点D,则k的值为()A.813B.81316C.813D.81349.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同10.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°11.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B,如果60APB∠=o,8PA=,那么弦AB的长是()A.4B.3C.8D.8312.在直角坐标系中,设一质点M自P0(1,0)处向上运动一个单位至P1(1,1),然后向左运动2个单位至P2处,再向下运动3个单位至P3处,再向右运动4个单位至P4处,再向上运动5个单位至P5处……,如此继续运动下去,设P n(x n,y n),n=1,2,3,……,则x1+x2+……+x2018+x2019的值为()A.1 B.3 C.﹣1 D.2019二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:16a3﹣4a=_____.14.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角α为60o时,两梯角之间的距离BC的长为3m.周日亮亮帮助妈妈整理换季衣服,先使α为60o,后又调整α为45o,则梯子顶端离地面的高度AD下降了______m(结果保留根号).15.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.16.如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B 顺时针旋转90°得到线段BF,连接BF,则图中阴影部分的面积是_____.17.已知4360{24140x y zx y z--=+-=(x、y、z≠0),那么22222223657x y zx y z++++的值为_____.18.“若实数a,b,c满足a<b<c,则a+b<c”,能够说明该命题是假命题的一组a,b,c的值依次为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A 种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.20.(6分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.(1)求二次函数的表达式;(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.①求平移后图象顶点E的坐标;②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.21.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由22.(8分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.23.(8分)甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A,B都分成3等份的扇形区域,并在每一小区域内标上数字(如图所示),游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲获胜;若指针所指两个区域的数字之和为4的倍数,则乙获胜.如果指针落在分割线上,则需要重新转动转盘.请问这个游戏对甲、乙双方公平吗?说明理由.24.(10分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.25.(10分)如图,一次函数y=kx+b的图象与反比例函数ayx=的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数ayx=的图象于点N,若NM=NP,求n的值.26.(12分)关于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有两个实数根.求m的取值范围;若m为正整数,求此方程的根.27.(12分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】“车辆随机到达一个路口,遇到红灯”是随机事件.故选:B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质. 3.B【解析】【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=12∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P点是BD的中点,∴CP=12BD=1.故选B.4.C【解析】【分析】求得不等式组的解集为x<﹣1,所以C是正确的.【详解】解:不等式组的解集为x<﹣1.故选C.【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.C【解析】【分析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长.【详解】设母线长为R,则圆锥的侧面积=236360R=10π,∴R=10cm,本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.6.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A 选项几何体的左视图为;B 选项几何体的左视图为;C 选项几何体的左视图为;D 选项几何体的左视图为;故选:A .【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.7.A【解析】【分析】【详解】如图,120112x x <<,<< 且图像与y 轴交于点()0,2-,可知该抛物线的开口向下,即0a <,2c =-①当2x =时,4220y a b =+-<422a b +< 21a b +<故①错误.②由图像可知,当1x =时,0y >∴20a b +->∴2a b +>故②错误.③∵120112x x <<,<< ∴1213x x +<<, 又∵12b x x a +=-, ∴13b a-<<, ∴3a b a <<-﹣,∴30a b +<,故③错误;④∵1202x x <<,122c x x a=<, 又∵2c =-,∴1a <-.故④正确.故答案选A.【点睛】本题考查二次函数2y ax bx c =++系数符号的确定由抛物线的开口方向、对称轴和抛物线与坐标轴的交点确定.8.A【解析】试题分析:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,如图所示.设BD=a ,则OC=3a .∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=32a,CE=22OC OE-=33a,∴点C(32a,33a).同理,可求出点D的坐标为(1﹣12a,3a).∵反比例函数kyx=(k≠0)的图象恰好经过点C和点D,∴k=32a×332a=(1﹣12a)×32a,∴a=65,k=81325.故选A.9.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D 、由以上可得,此选项错误;故选B .【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.10.A【解析】分析:根据平行线的性质求出∠C ,求出∠DEC 的度数,根据三角形内角和定理求出∠D 的度数即可.详解:∵AB ∥CD ,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE ⊥AC ,∴∠DEC=90°,∴∠D=180°﹣∠C ﹣∠DEC=30°.故选A .点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C 的度数是解答此题的关键.11.C【解析】【分析】先利用切线长定理得到PA PB =,再利用60APB ∠=o 可判断APB V 为等边三角形,然后根据等边三角形的性质求解.【详解】解:PA Q ,PB 为O e 的切线,PA PB ∴=,60APB ∠=o Q ,APB ∴V 为等边三角形,8AB PA ∴==.故选C .【点睛】本题考查切线长定理,掌握切线长定理是解题的关键.12.C【解析】【分析】根据各点横坐标数据得出规律,进而得出x 1 +x 2 +…+x 7 ;经过观察分析可得每4个数的和为2,把2019个数分为505组,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:x1、x2、x3、x4、x5、x6、x7、x8的值分别为:1,﹣1,﹣1,3,3,﹣3,﹣3,5;∴x1+x2+…+x7=﹣1∵x1+x2+x3+x4=1﹣1﹣1+3=2;x5+x6+x7+x8=3﹣3﹣3+5=2;…x97+x98+x99+x100=2…∴x1+x2+…+x2016=2×(2016÷4)=1.而x2017、x2018、x2019的值分别为:1009、﹣1009、﹣1009,∴x2017+x2018+x2019=﹣1009,∴x1+x2+…+x2018+x2019=1﹣1009=﹣1,故选C.【点睛】此题主要考查规律型:点的坐标,解题关键在于找到其规律二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4a(2a+1)(2a﹣1)【解析】【分析】首先提取公因式,再利用平方差公式分解即可.【详解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案为4a(2a+1)(2a﹣1)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.14.32【解析】【分析】根据题意画出图形,进而利用锐角三角函数关系得出答案.【详解】解:如图1所示:过点A作AD BC⊥于点D,由题意可得:B C 60∠∠==o ,则ABC V 是等边三角形,故BC AB AC 3m ===, 则33AD 3sin60m 2o ==,如图2所示:过点A 作AE BC ⊥于点E ,由题意可得:B C 60∠∠==o ,则ABC V 是等腰直角三角形,BC AB 3m ==,则32AE 3sin45==o , 故梯子顶端离地面的高度AD 下降了332m.2 故答案为:3322.【点睛】 此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键. 15.1【解析】【分析】【详解】解:∵正六边形ABCDEF 的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF 的长=3×6﹣3﹣3═12,∴扇形AFB (阴影部分)的面积=12×12×3=1. 故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.16.6﹣π【解析】过F 作FM ⊥BE 于M ,则∠FME=∠FMB=90°,∵四边形ABCD 是正方形,AB=2,∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,由勾股定理得:2,∵将线段CD 绕点C 顺时针旋转90°得到线段CE ,线段BD 绕点B 顺时针旋转90°得到线段BF , ∴∠DCE=90°,2,∠FBE=90°-45°=45°,∴BM=FM=2,ME=2,∴阴影部分的面积BCD BFE DCE DBF S S S S S =++-V V 扇形扇形=12×2×2+12×4×2+2902360π⨯290(22)π⨯=6-π. 故答案为:6-π.点睛:本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.17.1【解析】解:由436024140x y z x y z --=⎧⎨+-=⎩(x 、y 、z≠0),解得:x=3z ,y=2z ,原式=222222181269207z z z z z z ++++=223636z z =1.故答案为1.点睛:本题考查了分式的化简求值和解二元一次方程组,难度适中,关键是先用z 把x 与y 表示出来再进行代入求解.18.答案不唯一,如1,2,3;【解析】分析:设a ,b ,c 是任意实数.若a<b<c ,则a+b<c”是假命题,则若a<b<c ,则a+b≥c”是真命题,举例即可,本题答案不唯一详解:设a ,b ,c 是任意实数.若a<b<c ,则a+b<c”是假命题,则若a<b<c ,则a+b≥c”是真命题,可设a ,b ,c 的值依次1,2,3,(答案不唯一),故答案为1,2,3.点睛:本题考查了命题的真假,举例说明即可,三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A 、B 两种奖品的单价各是10元、15元;(2)W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【解析】【分析】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意可以列出相应的方程组,从而可以求得A 、B 两种奖品的单价各是多少元;(2)根据题意可以得到W (元)与m (件)之间的函数关系式,然后根据A 种奖品的数量不大于B 种奖品数量的3倍,可以求得m 的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设A 种奖品的单价是x 元、B 种奖品的单价是y 元,根据题意得:32605395x y x y +=⎧⎨+=⎩解得:1015x y =⎧⎨=⎩. 答:A 种奖品的单价是10元、B 种奖品的单价是15元.(2)由题意可得:W=10m+15(100﹣m )=﹣5m+1.∵A 种奖品的数量不大于B 种奖品数量的3倍,∴m≤3(100﹣m ),解得:m≤75∴当m=75时,W 取得最小值,此时W=﹣5×75+1=2.答:W (元)与m (件)之间的函数关系式是W=﹣5m+1,当购买A 种奖品75件时,费用W 的值最少.【点睛】本题考查了一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.20.(1)y =﹣x 2+4;(2)①E (5,9);②1.【解析】【分析】(1)待定系数法即可解题,(2)①求出直线DA 的解析式,根据顶点E 在直线DA 上,设出E 的坐标,带入即可求解;②AB 扫过的面积是平行四边形ABGE,根据S 四边形ABGE =S 矩形IOKH ﹣S △AOB ﹣S △AEI ﹣S △EHG ﹣S △GBK ,求出点B (2,0),G(7,5),A(0,4),E(5,9),根据坐标几何含义即可解题. 【详解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函数的图象的顶点为A(0,4),∴设二次函数表达式为y=ax2+4,将B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函数表达式y=﹣x2+4;(2)①设直线DA:y=kx+b(k≠0),将A(0,4),D(﹣4,0)代入,得440bk b=⎧⎨-+=⎩,解得,14kb=⎧⎨=⎩,∴直线DA:y=x+4,由题意可知,平移后的抛物线的顶点E在直线DA上,∴设顶点E(m,m+4),∴平移后的抛物线表达式为y=﹣(x﹣m)2+m+4,又∵平移后的抛物线过点B(2,0),∴将其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合题意,舍去),∴顶点E(5,9),②如图,连接AB,过点B作BL∥AD交平移后的抛物线于点G,连结EG,∴四边形ABGE的面积就是图象A,B两点间的部分扫过的面积,过点G作GK⊥x轴于点K,过点E作EI⊥y轴于点I,直线EI,GK交于点H.由点A(0,4)平移至点E(5,9),可知点B先向右平移5个单位,再向上平移5个单位至点G.∵B(2,0),∴点G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四边形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣12×2×4﹣12×5×5﹣12×2×4﹣12×5×5=63﹣8﹣25=1答:图象A,B两点间的部分扫过的面积为1.【点睛】本题考查了二次函数解析式的求法,二次函数的图形和性质,二次函数的实际应用,难度较大,建立面积之间的等量关系是解题关键.21.(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】【分析】(1)由A、B在抛物线上,可求出A、B点的坐标,从而用待定系数法求出直线AB的函数关系式.(2)用t表示P、M、N 的坐标,由等式MN NP MP=-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t.再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=52,∴点B的坐标为(3,52),设直线AB的函数关系式为y=kx+b,1532bk b=⎧⎪⎨+=⎪⎩,解得,121k b ⎧=⎪⎨⎪=⎩, 则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1), 当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3); (3)若四边形BCMN 为平行四边形,则有MN=BC ,∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形,①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴MC=5≠MN ,此时四边形BCMN 不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用. 22.(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m 的值,然后解方程即可求得方程的另一个根; (2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1. ∴∴另一根是2;(2)∵, ∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根23.见解析【解析】【详解】解:不公平,理由如下:列表得:1 2 32 1,2 2,2 3,23 1,3 2,3 3,34 1,4 2,4 3,4由表可知共有9种等可能的结果,其中数字之和为3的倍数的有3种结果,数字之和为4的倍数的有2种,则甲获胜的概率为3193=、乙获胜的概率为29,∵12 39≠,∴这个游戏对甲、乙双方不公平.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.24.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.25.20(1)y=2x-5, y=12x;(2)n=-4或n=1【解析】【分析】(1)由点A坐标知OA=OB=5,可得点B的坐标,由A点坐标可得反比例函数解析式,由A、B两点坐标可得直线AB的解析式;(2)由k=2知N(2,6),根据NP=NM得点M坐标为(2,0)或(2,12),分别代入y=2x-n可得答案.【详解】解:(1)∵点A的坐标为(4,3),∴OA=5,∵OA=OB ,∴OB=5,∵点B 在y 轴的负半轴上,∴点B 的坐标为(0,-5),将点A (4,3)代入反比例函数解析式y=a x 中, ∴反比例函数解析式为y=12x, 将点A (4,3)、B (0,-5)代入y=kx+b 中,得:k=2、b=-5,∴一次函数解析式为y=2x-5;(2)由(1)知k=2,则点N 的坐标为(2,6),∵NP=NM ,∴点M 坐标为(2,0)或(2,12),分别代入y=2x-n 可得:n=-4或n=1.【点睛】本题主要考查直线和双曲线的交点问题,解题的关键是熟练掌握待定系数法求函数解析式及分类讨论思想的运用.26.(1)98m £且0m ≠;(2)10x =,21x =-. 【解析】【分析】(1)根据一元二次方程的定义和判别式的意义得到m≠0且()()22341m m m =----⎡⎤⎣⎦V ≥0,然后求出两个不等式的公共部分即可;(2)利用m 的范围可确定m=1,则原方程化为x 2+x=0,然后利用因式分解法解方程.【详解】(1)∵2=[(23)]4(1)m m m ∆---- =89m -+. 解得98m ≤且0m ≠. (2)∵m 为正整数, ∴1m =.∴原方程为20x x +=.解得10x =,21x =-.【点睛】考查一元二次方程()200ax bx c a ++=≠根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.27.(6+23)米 【解析】【分析】根据已知的边和角,设CQ=x ,BC=3QC=3x ,PC=3BC=3x ,根据PQ=BQ 列出方程求解即可.【详解】解:延长PQ 交地面与点C ,由题意可得:AB=6m ,∠PCA=90°,∠PAC=45°,∠PBC=60°,∠QBC=30°,设CQ=x ,则在Rt △BQC 中,33,∴在Rt △PBC 中3,∵在Rt △PAC 中,∠PAC=45°,则PC=AC ,∴,3,解得33-3∴PQ=PC-CQ=3x-x=2x=6+23则电线杆PQ 高为(6+3米.【点睛】 此题重点考察学生对解直角三角形的理解,掌握解直角三角形的方法是解题的关键.。
2019年南通市中考数学一模试卷(含答案)

一、选择题
1.在“朗读者”节目的影响下,某中学开展了“好 书伴我成长”读书活动.为了解 5 月份八年 级 300 名学生读书情况,随机调查了八年级 50 名学生读书的册数,统计数据如下表所 示:
册数 0
1
2
3
4
人数 4
12
16
17
1
关于这组数据,下列说法正确的是( )
A.
B.
C.Leabharlann D.8.矩形 ABCD 与 CEFG,如图放置,点 B,C,E 共线,点 C,D,G 共线,连接 AF,取 AF 的中点 H,连接 GH.若 BC=EF=2,CD=CE=1,则 GH=( )
A.1
B. 2 3
C. 2 2
D. 5 2
9.某服装加工厂加工校服 960 套的订单,原计划每天做 48 套.正好按时完成.后因学校
江抓着风筝线的一端站在 D 处,他从牵引端 E 测得风筝 A 的仰角为 67°,同一时刻小芸在
附近一座距地面 30 米高(BC=30 米)的居民楼顶 B 处测得风筝 A 的仰角是 45°,已知小江
与居民楼的距离 CD=40 米,牵引端距地面高度 DE=1.5 米,根据以上条件计算风筝距地
面的高度(结果精确到 0.1 米,参考数据:sin67°≈ 12 ,cos67°≈ 5 ,tan67°≈ 12 ,
A.中位数是 2
B.众数是 17
C.平均数是 2
D.方差是 2
2.如图,在 ABC 中, ACB 90 ,分别以点 A 和点 C 为圆心,以大于 1 AC 的长为 2
半径作弧,两弧相交于点 M 和点 N ,作直线 MN 交 AB 于点 D ,交 AC 于点 E ,连接