2019年重庆市中考数学模拟试题(1)

合集下载

重庆2019中考数学模拟试题①详解

重庆2019中考数学模拟试题①详解

CD 到达点 D ,然后再沿水平方向向右行走 40 米到达点 E(A,B,C, D,E 均在同一平 面内) .在 E 处测得建筑物顶端 A 的仰角为 24°,则建筑物 AB 的高度约为 (参考数据:
sin24°≈ 0.41, cos24°≈ 0.91, tan24°= 0.45)( )
A .21.7 米
1 个图形一共
有 6 个花盆,第 2 个图形一共有 12 个花盆,第 3 个图形一共有 20 个花盆,…则第 8 个
图形中花盆的个数为(

A .56
B .64
【分析】 由题意可知,三角形每条边上有
C. 72
D. 90
3 盆花, 共计 3× 3﹣ 3 盆花, 正四边形每条边上
有 4 盆花,共计 4×4﹣ 4 盆花,正五边形每条边上有 5 盆花,共计 5× 5﹣ 5 盆花,…则
∵∠ CBD= 20°, ∴∠ D= 70°(直角三角形的两个锐角互余),
∴∠ A= ∠ D= 70°(同弧所对的圆周角相等); 【答案】 70°.
【点评】 本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.
16.中秋节是我国四大传统文化节日之一, 为每年的农历八月十五, 自古以来都有赏月吃月
的度数,然后求出菱形 ABCO 及扇形 AOC 的面积,则由 S 扇形 AOC﹣ S 菱形 ABCO 可得答案. 解:连接 OB 和 AC 交于点 D,如图所示:
∵圆的半径为 2, ∴ OB = OA= OC= 2, 又四边形 OABC 是菱形, ∴ OB ⊥ AC, OD = OB = 1,
在 Rt△COD 中利用勾股定理可知: CD=
解.
解:∵ x+2y =3,
∴ 2x+4y+1 = 2(x+2y ) +1,

2019-2020重庆市中考数学模拟试卷带答案

2019-2020重庆市中考数学模拟试卷带答案

克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额 y(元)与进货量 x(千克)之间的函数关系 式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出 89%、95%,要使总零售 量不低于进货量的 93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是 多少?
(1)她把这个数“?”猜成 5,请你帮小华解这个分式方程;
(2)小华的妈妈说:“我看到标准答案是:方程的增根是 x 2 ,原分式方程无解”,请
你求出原分式方程中“?”代表的数是多少?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B 解析:B 【解析】 【分析】 ①点 P 在 AB 上时,点 D 到 AP 的距离为 AD 的长度,②点 P 在 BC 上时,根据同角的余角相 等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到 y 与 x 的关系式,从而得 解. 【详解】 ①点 P 在 AB 上时,0≤x≤3,点 D 到 AP 的距离为 AD 的长度,是定值 4; ②点 P 在 BC 上时,3<x≤5,
B. x 2
C. x 1
9.下列各曲线中表示 y 是 x 的函数的是( )
D. D.无解
A.
B.
C.
D.
10.如图,O 为坐标原点,菱形 OABC 的顶点 A 的坐标为 (3,4) ,顶点 C 在 x 轴的负半轴 上,函数 y k (x 0) 的图象经过顶点 B,则 k 的值为( )
x
A. 12
7.C
解析:C 【解析】 【分析】 按照题中所述,进行实际操作,答案就会很直观地呈现. 【详解】 解:将图形 按三次对折的方式展开,依次为:

2019年重庆市中考数学模拟试卷(黑卷)(解析版)

2019年重庆市中考数学模拟试卷(黑卷)(解析版)

2019年重庆市中考数学模拟试卷(黑卷)一.选择题(共12小题)1.在实数﹣1,1,0,﹣3中,最小的数是()A.﹣1B.1C.0D.﹣32.下列图形中,是轴对称图形的是()A.B.C.D.3.下列调查中,最适合采用全面调查(普查)的是()A.对全国中学生睡眠时间的调查B.对玉兔二号月球车零部件的调查C.对重庆冷饮市场上冰淇淋质量情况的调查D.对重庆新闻频道“天天630”栏目收视率的调查4.估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间5.若a=﹣,b=3,代数式4a﹣2b+5的值是()A.3B.﹣3C.9D.﹣96.下列命题是假命题的是()A.两条直线被第三条直线所截,同位角相等B.对顶角相等C.邻补角一定互补D.三角形中至少有一个角大于或等于60°7.已知△ABC∽△DEF,且△ABC与△DEF的面积比为9:4,△ABC的最短边为4.5cm,则△DEF的最短边为()A.6cm B.2cm C.3cm D.4cm8.如图,已知P A与⊙O相切于点A,连接OA,AB是⊙O的弦,且AB⊥OP,垂足为点C.若AP=3,OP=3,则OC的长为()A.B.C.2D.9.下列图形都是由大小相同的黑点按一定规律组成的,第①个图形中有3个黑点第②个图形中有11个黑点,第③个图形中有27个黑点,…,按此规律排列,则第⑦个图形中黑点的个数为()A.123B.171C.172D.18010.金佛山是巴蜀四大名山之一游客上金佛山有两种方式:一种是从西坡上山,如图,先从A沿登山步道走到点B,再沿索道乘坐缆车到点C;另一种是从北坡景区沿着盘山公路开车上山到点C.已知在点A处观测点C,得仰角∠CAD=37°,且A、B的水平距离AE =1000米,索道BC的坡度i=1:,长度为2600米,CD⊥AD于点D,BF⊥CD于点F则BE的高度为(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°=0.75,=1.73)()A.2436.8米B.2249.6米C.1036.8米D.1136.8米11.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B(﹣1,0)两点,与y轴交于点C,则下列四个结论:①ac<0;②2a+b=0;③﹣1<x<3时,y<0;④4a+c<0.其中所有正确结论的序号是()A.①②④B.①③④C.①②③D.②③④12.若数a使关于x的不等式组的解集为x<﹣2,且使关于y的分式方的解为负数,则符合条件的所有整数a的个数为()A.4B.5C.6D.7二.填空题(共6小题)13.计算:=.14.如图,在正方形ABCD中,已知正方形的边长为2,以AD、BC的中点为圆心,边长的一半为半径画弧,图中阴影部分的面积是(结果保留π).15.现有两组卡片,它们除标号外其他均相同,第一组卡片上分别写有数字“1,2,3”,第二组卡片上分别写有数字“﹣3,﹣1,1,2”,把卡片背面朝上洗匀,先从第一组卡片中随机抽出一张,将其标记为一个点坐标的横坐标,再从第二组卡片中随机抽出一张,将其标记为一个点坐标的纵坐标,则组成的这个点在一次函数y=﹣2x+3上的概率是.16.如图,在矩形ABCD中,AB=3,BC=,点P在BC边上,将△CDP沿DP折叠,点C落在点E处PE、DE分别交AB于点O、F,且OP=OF,则BF的长为.17.甲、乙两人驾车分别从A、B两地相向而行,乙出发半小时后甲出发,甲出发1.5小时后汽车出现故障,于是甲停下修车,半小时后甲修好后继续沿原路按原速与乙相遇,相遇后甲随即调头以原速返回A地,乙也继续向A地行驶,甲、乙两车之间的距离(y/千米)与甲驾车时间x(小时)之间的关系如图所示,当乙到达A地时,甲距离B地千米.18.重庆是长江上游地区的经济中心、金融中心和创新中心.某公司为了调动员工积极性,将公司员工分成了三个小组进行集分制考核:每月销售业绩第一名集x分,销售业绩第二名集y分,销售业绩第三名集0分(x>y,且均为正整数),经过若干个月(超过4个月)考核后,第一小组集分为23分,第二小组集分为20分,第三小组集分为9分,则第一小组最多得到次第二名.三.解答题(共8小题)19.计算:(1)(m+n)2﹣2m(m+n)(2)20.重庆市教委为了让广大青少年学生走向操场走进自然走到阳光下,积极参加体育锻炼,启动了“重庆学生阳光体育运动”,其中有一项是短跑运动短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中,报名参加了百米训练小组在近几次百米训练中,教练对他们两人的测试成绩进行了如下统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表平均数中位数方差张明13.30.004李亮13.30.02(1)张明第2次的成绩为;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛若你是他们的教练,应该选择谁?并说明理由.21.弹簧是一种利用弹性来工作的机械零件,用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状.某班同学在探究弹簧的长度与所受外力的变化关系时,通过实验记录得到的数据如下表:砝码的质量x(克)050100150200250300400500指针的位置y(cm)2345677.57.57.5小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究,下面是小腾的探究过程,请补充完整.(1)根据上述表格在平面直角坐标系中补全该函数的图象;(2)根据画出的函数图象,写出:①当x=0时,y=,它的实际意义是;②当指针的位置y不变时,砝码的质量x的取值范围为.22.我们将()、()称为一对“对偶式”,因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对偶式”再将其相乘可以有效的将(+)和(﹣)中的“”去掉于是二次根式除法可以这样解:如,.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小(用“>”、“<”或“=”填空);(2)已知x=,y=,求x2+y2的值;(3)计算:23.我市支持“互联网+农工贸”新业态发展,做大做强“农村电商”,鼓励各类新型经营主体开展网上经营服务和产品销售.某水果批发商尝试在线上和线下销售黄桃(1)今年7月该批发商线上、线下共售出黄桃800千克,其中线下销售的黄桃重量不超过线上销售重量的3倍,那么线下销售黄桃的重量最多为多少千克?(2)7月份结束时该商户销售黄桃的总收入为7500元,线下销售的黄桃重量恰好是计划的最大值,且线上、线下黄桃的售价之比为3:4,8月份正值黄桃产销旺季,黄桃的售价有所上涨8月份收入在7月份的基础上增加6.3a%,且8月份线上、线下黄桃售价在7月份基础上分别增加a%,2a%,销售重量在7月份基础上分别增加3a%,4a%,求a的值.24.如图,在▱ABCD中,过B作BE⊥AD于点E,过点C作CF⊥BD分别与BD、BE交于点G、F,连接GE,已知AB=BD,CF=AB.(1)若∠ABE=30°,AB=6,求△ABE的面积;(2)求证:GE=BG.25.一节数学课后,老师布置了一道课后练习:△ABC是等边三角形,点D是线段BC上的点,点E为△ABC的外角平分线上一点,且∠ADE=60°,如图①,当点D是线段BC上(除B,C外)任意一点时,求证:AD=DE(1)理清思路,完成解答本题证明思路可以用下列框图表:根据上述思路,请你完整地书写本题的证明过程;(2)特殊位置,计算求解当点D为BC的中点时,等边△ABC的边长为6,求出DE的长;(3)知识迁移,探索新知当点D在线段BC的延长线上,且满足CD=BC时,若AB=2,请直接写出△ADE的面积(不必写解答过程)26.如图①,已知抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点,抛物线的顶点为Q,连接BC.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一点,过点P作PD⊥BC于点D,在直线BC上有一动点M,当线段PD最大时,求PM+MB最小值;(3)如图②,直线AQ交y轴于G,取线段BC的中点K,连接OK,将△GOK沿直线AQ平移得△G′O'K′,将抛物线y=﹣x2+x+2沿直线AQ平移,记平移后的抛物线为y′,当抛物线y′经过点Q时,记顶点为Q′,是否存在以G'、K'、Q'为顶点的三角形是等腰三角形?若存在,求出点G′的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题)1.在实数﹣1,1,0,﹣3中,最小的数是()A.﹣1B.1C.0D.﹣3【分析】本题考查了实数的大小比较,可借助数轴,亦可通过法则进行比较.【解答】解:因为正数大于0,0大于负数,所以最小的数看:﹣1,﹣3.因为|﹣1|=1.|﹣3|=3,又因为1<3,所以﹣1>﹣3所以最小的数是﹣3.故选:D.2.下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,进而得出答案.【解答】解:A、不是轴对称图形,故A错误;B、是轴对称图形,故B正确;C、不是轴对称图形,故C错误;D、不是轴对称图形,故D错误.故选:B.3.下列调查中,最适合采用全面调查(普查)的是()A.对全国中学生睡眠时间的调查B.对玉兔二号月球车零部件的调查C.对重庆冷饮市场上冰淇淋质量情况的调查D.对重庆新闻频道“天天630”栏目收视率的调查【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似作答.【解答】解:A、对全国中学生睡眠时间的调查用抽样调查,错误;B、对玉兔二号月球车零部件的调查用全面调查,正确;C、对重庆冷饮市场上冰淇淋质量情况的调查用抽样调查,错误;D、对重庆新闻频道“天天630”栏目收视率的调查用抽样调查,错误;故选:B.4.估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】首先确定的值,进而可得答案.【解答】解:∵≈2.2∴2≈4.4∴2+3≈7.4∴7<2+3<8,故选:D.5.若a=﹣,b=3,代数式4a﹣2b+5的值是()A.3B.﹣3C.9D.﹣9【分析】将a、b的值代入所求的式子中,即可解答本题.【解答】解:∵a=﹣,b=3,∴4a﹣2b+5=4×(﹣)﹣2×3+5=(﹣2)﹣6+5=﹣3,故选:B.6.下列命题是假命题的是()A.两条直线被第三条直线所截,同位角相等B.对顶角相等C.邻补角一定互补D.三角形中至少有一个角大于或等于60°【分析】分别利用对顶角、平行线的性质和邻补角以及三角形的内角分析得出即可.【解答】解:A、两条平行线被第三条直线所截,同位角相等,是假命题;B、对顶角相等,是真命题;C、邻补角一定互补是真命题;D、三角形中至少有一个角大于或等于60°,是真命题;故选:A.7.已知△ABC∽△DEF,且△ABC与△DEF的面积比为9:4,△ABC的最短边为4.5cm,则△DEF的最短边为()A.6cm B.2cm C.3cm D.4cm【分析】根据相似三角形的面积比等于相似比的平方即可求解.【解答】解:设△DEF的最短边边长是xcm,∵△ABC∽△DEF,面积比为9:4,∴△ABC与△DEF的对应边之比3:2.∴4.5:x=3:2.则x=3.故选:C.8.如图,已知P A与⊙O相切于点A,连接OA,AB是⊙O的弦,且AB⊥OP,垂足为点C.若AP=3,OP=3,则OC的长为()A.B.C.2D.【分析】由勾股定理可知OA=3,从而可知∠AOC=45°,所以△OAC是等腰直角三角形,利用勾股定理即可求出OC的长度【解答】解:∵AP是⊙O的切线,∴∠OAP=90°,∵AP=3,OP=3,∴由勾股定理可知:OA=3,∴∠AOC=45°,∵AB⊥OP,∴∠OCA=90°,∴OC=OA=,故选:A.9.下列图形都是由大小相同的黑点按一定规律组成的,第①个图形中有3个黑点第②个图形中有11个黑点,第③个图形中有27个黑点,…,按此规律排列,则第⑦个图形中黑点的个数为()A.123B.171C.172D.180【分析】设第n个图形中黑点的个数为a n个(n为正整数),根据给定几个图形中黑点数量的变化可找出变化规律“a n=(2n﹣1)2+2(n为正整数)”,代入n=7即可求出结论.【解答】解:设第n个图形中黑点的个数为a n个(n为正整数).观察图形,可知:a1=3=12+2,a2=11=32+2,a3=27=52+2,a4=51=72+2,…,∴a n=(2n﹣1)2+2(n为正整数),∴a7=132+2=171.故选:B.10.金佛山是巴蜀四大名山之一游客上金佛山有两种方式:一种是从西坡上山,如图,先从A沿登山步道走到点B,再沿索道乘坐缆车到点C;另一种是从北坡景区沿着盘山公路开车上山到点C.已知在点A处观测点C,得仰角∠CAD=37°,且A、B的水平距离AE =1000米,索道BC的坡度i=1:,长度为2600米,CD⊥AD于点D,BF⊥CD于点F则BE的高度为(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°=0.75,=1.73)()A.2436.8米B.2249.6米C.1036.8米D.1136.8米【分析】在Rt△BCF中,根据BC的坡度i=1:,求得∠CBF=30°,根据三角函数的定义得到CF=1300,BF=1300,根据矩形的性质得到DE=BF=1300,根据三角函数的定义即可得到结论.【解答】解:在Rt△BCF中,∵BC的坡度i=1:,∴∠CBF=30°,∵BC=2600,∴CF=1300,BF=1300,∵CD⊥AD于点D,BF⊥CD,BE⊥AD,∴四边形BEDF是矩形,∴DE=BF=1300,∵AE=1000米,∴AD=AE+DE=1000+1300,∵∠CAD=37°,∴CD=AD•tan37°=(1000+1300)×0.75=2436.75,∴BE=DF=2436.75﹣1300≈1136.8米,答:BE的高度为1136.8米.故选:D.11.如图,二次函数y=ax2+bx+c的图象与x轴交于A,B(﹣1,0)两点,与y轴交于点C,则下列四个结论:①ac<0;②2a+b=0;③﹣1<x<3时,y<0;④4a+c<0.其中所有正确结论的序号是()A.①②④B.①③④C.①②③D.②③④【分析】开口向下,a<0,抛物线与y轴交于负半轴,c>0,ac<0,判断判断①;根据对称轴为x=1,即﹣=1,判断②;根据函数图象可以判断③;x=﹣1时y=a﹣b+c =0,由b=﹣2a,得到3a+c=0,由于a<0,得出4a+c<0可以判断④.【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴相交于正半轴,∴c>0,则ac<0,即①正确,该二次函数的对称轴为:x=﹣=1,整理得:2a+b=0,即②正确,∵抛物线对称轴为x=1,点B的坐标为:(﹣1,0),则点A的坐标为:(3,0),由图象可知:当1<x<3时,y>0,即③错误,由图象可知,当x=﹣1时,函数值为0,把x=﹣1代入y=ax2+bx+c得:a﹣b+c=0,∵b=﹣2a,∴3a+c=0,∵a<0,∴4a+c<0即④正确,正确结论的序号是①②④,故选:A.12.若数a使关于x的不等式组的解集为x<﹣2,且使关于y的分式方的解为负数,则符合条件的所有整数a的个数为()A.4B.5C.6D.7【分析】表示出不等式组的解集,由不等式组的解集为x<﹣2确定出a的范围,再由分式方程的解为负数以及分式有意义的条件求出满足题意整数a的值,进而求出符合条件的a的个数.【解答】解:解不等式组,得:,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,解得:a≥﹣3;分式方程去分母得:1﹣y﹣a=﹣3(y+1),解得:y=,由分式方程的解为负数以及分式有意义的条件,得,解得:a<4且a≠2;∴﹣3≤a<4且a≠2,∴a=﹣3,﹣2,﹣1,0,1,3,∴符合条件的所有整数a的个数为6个;故选:C.二.填空题(共6小题)13.计算:=3.【分析】(﹣1)2019表示(﹣1)的2019次方,由有理数的乘方的计算法则可以求出结果为﹣1,是16的算术平方根,结果为4,因此最后的答案为﹣1+4=3.【解答】解:=﹣1+4=3,故答案为:3.14.如图,在正方形ABCD中,已知正方形的边长为2,以AD、BC的中点为圆心,边长的一半为半径画弧,图中阴影部分的面积是4﹣π(结果保留π).【分析】求出正方形的面积和一个圆的面积,即可求出答案.【解答】解:∵正方形的边长为2,∴两个半圆的半径为1,∴阴影部分的面积S=S正方形ABCD﹣2×S半圆=2×2﹣π×12=4﹣π,故答案为:4﹣π.15.现有两组卡片,它们除标号外其他均相同,第一组卡片上分别写有数字“1,2,3”,第二组卡片上分别写有数字“﹣3,﹣1,1,2”,把卡片背面朝上洗匀,先从第一组卡片中随机抽出一张,将其标记为一个点坐标的横坐标,再从第二组卡片中随机抽出一张,将其标记为一个点坐标的纵坐标,则组成的这个点在一次函数y=﹣2x+3上的概率是.【分析】画树状图展示所有12种等可能的结果数,利用一次函数图象上点的坐标特征,找出组成的这个点在一次函数y=﹣2x+3上的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中组成的这个点在一次函数y=﹣2x+3上的结果有(1,1),(2,﹣1),(3,﹣3),所以组成的这个点在一次函数y=﹣2x+3上的概率==.故答案为.16.如图,在矩形ABCD中,AB=3,BC=,点P在BC边上,将△CDP沿DP折叠,点C落在点E处PE、DE分别交AB于点O、F,且OP=OF,则BF的长为.【分析】根据折叠的性质可得出DC=DE、CP=EP,证明△OEF≌△OBP,得出OE=OB,EF=BP,设BF=EP=CP=x,则AF=3﹣x,BP=﹣x=EF,DF=DE﹣EF =2+x,在Rt△ADF中,由勾股定理得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴AD=BC=,CD=AB=3,∠A=∠B=∠C=90°,根据折叠可知:△DCP≌△DEP,∴DC=DE=3,CP=EP.∠E=∠C=90°,在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP,∴BF=EP=CP,设BF=EP=CP=x,则AF=3﹣x,BP=﹣x=EF,DF=DE﹣EF=3﹣(﹣x)=2+x,∵∠A=90°,∴Rt△ADF中,AF2+AD2=DF2,即(3﹣x)2+()2=(2+x)2,解得:x=,∴BF=,故答案为:.17.甲、乙两人驾车分别从A、B两地相向而行,乙出发半小时后甲出发,甲出发1.5小时后汽车出现故障,于是甲停下修车,半小时后甲修好后继续沿原路按原速与乙相遇,相遇后甲随即调头以原速返回A地,乙也继续向A地行驶,甲、乙两车之间的距离(y/千米)与甲驾车时间x(小时)之间的关系如图所示,当乙到达A地时,甲距离B地756千米.【分析】利用速度=路程÷时间可求出乙的速度及甲、乙的速度和,二者做差后可得出甲的速度,由甲出发的时间结合修车所需时间,可求出两人相遇后乙行驶到A地所需时间,根据“路程、速度与时间的关系”可求出结论.【解答】解:乙的速度为(500﹣450)÷=100(千米/时),甲、乙的速度和为450÷(﹣2)=180(千米/时),甲的速度为:180﹣100=80(千米/时),两人相遇后,甲返回A地所需时间为:(小时),故相遇地点距离A地为:80×4=320(千米),乙从相遇地点到达A地需要行驶的时间为:320÷100=3.2(小时),当乙到达A地时,甲距离B地:5×100+80×3.2=756(千米).故答案为:75618.重庆是长江上游地区的经济中心、金融中心和创新中心.某公司为了调动员工积极性,将公司员工分成了三个小组进行集分制考核:每月销售业绩第一名集x分,销售业绩第二名集y分,销售业绩第三名集0分(x>y,且均为正整数),经过若干个月(超过4个月)考核后,第一小组集分为23分,第二小组集分为20分,第三小组集分为9分,则第一小组最多得到8次第二名.【分析】根据题意,可得一共经过了:(个)月,超过4个月,即x+y<13,故x+y可以为:1,2,4,又因为x>y,所以可得x=3,y=1,进而可以设第一小组有a 个月得第一名,b个月得第二名,根据题意可以列方程组即可得解.【解答】解:根据题意,得一共经过了:(个)月,23+20+9=52,x>y,∵>4,∴x+y<13,故x+y可以为:1,2,4,又∵x>y,故x=3,y=1,∴一共有13个月,设第一小组有a个月得第一名,b个月得第二名,根据题意,得由①得:3a+3b≤39③由②得,3a=23﹣b④将④代入③,解得b≤8,当b=8时,a=5,答:第一小组最多得到8次第二名.故答案为:8.三.解答题(共8小题)19.计算:(1)(m+n)2﹣2m(m+n)(2)【分析】(1)先利用完全平方公式与单项式乘多项式的法则计算乘法,再合并同类项即可;(2)先将括号内的项通分,利用同分母分式减法法则计算,再将除法转化为乘法,然后约分即可.【解答】解:(1)(m+n)2﹣2m(m+n)=m2+2mn+n2﹣2m2﹣2mn=﹣m2+n2;(2)=•=•=.20.重庆市教委为了让广大青少年学生走向操场走进自然走到阳光下,积极参加体育锻炼,启动了“重庆学生阳光体育运动”,其中有一项是短跑运动短跑运动可以锻炼人的灵活性,增强人的爆发力,因此张明和李亮在课外活动中,报名参加了百米训练小组在近几次百米训练中,教练对他们两人的测试成绩进行了如下统计和分析,请根据图表中的信息解答以下问题:成绩统计分析表平均数中位数方差张明13.313.30.004李亮13.313.30.02(1)张明第2次的成绩为13.4;(2)请补充完整上面的成绩统计分析表;(3)现在从张明和李亮中选择一名成绩优秀的去参加比赛若你是他们的教练,应该选择谁?并说明理由.【分析】(1)根据统计表给出的数据可直接得出答案;(2)根据中位数和平均数的计算公式分别进行解答即可;(3)在平均数、中位数相同的情况下,再根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:(1)张明第2次的成绩为13.4秒;故答案为:13.4;(2)张明的成绩是:13.3,13.4,13.3,13.2,13.3,把这些数从小到大排列为:13.2,13.3,13.3,13.3,13.4,则张明的中位数是:13.3;李亮的平均成绩是:=13.3(秒),故答案为:13.3,13.3;(3)因为张明和李亮的平均数、中位数都相同,但张明的方差小于李亮的方差,所以应该选张明参加比赛.21.弹簧是一种利用弹性来工作的机械零件,用弹性材料制成的零件在外力作用下发生形变,除去外力后又恢复原状.某班同学在探究弹簧的长度与所受外力的变化关系时,通过实验记录得到的数据如下表:砝码的质量x(克)050100150200250300400500指针的位置y(cm)2345677.57.57.5小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究,下面是小腾的探究过程,请补充完整.(1)根据上述表格在平面直角坐标系中补全该函数的图象;(2)根据画出的函数图象,写出:①当x=0时,y=2,它的实际意义是在没有砝码时指针的位置;②当指针的位置y不变时,砝码的质量x的取值范围为x≥275.【分析】(1)结合表格画图,需要求出一次函数部分与平行于x轴部分的交点坐标;(2)由图象及问题的实际意义可解.【解答】解:(1)设函数图象上一次函数部分解析式为y=kx+2,将点(50,3)代入,解得k=,故其解析式为:y=x+2,令y=7.5,代入上式得:x=275,故该函数图象如图所示:(2)①由函数图象可得,当x=0时,y=2,它的实际意义是:在没有砝码时指针的位置.故答案为:2;在没有砝码时指针的位置.②结合函数图象知,当指针位置不变时,砝码的质量x的取值范围为:x≥275.故答案为:x≥275.22.我们将()、()称为一对“对偶式”,因为(+)(﹣)=()2﹣()2=a﹣b,所以构造“对偶式”再将其相乘可以有效的将(+)和(﹣)中的“”去掉于是二次根式除法可以这样解:如,.像这样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)比较大小(用“>”、“<”或“=”填空);(2)已知x=,y=,求x2+y2的值;(3)计算:【分析】(1)先利用分母有理化的方法化简,再比较分子即可;(2)利用x2+y2=(x+y)2﹣2xy变形计算较为简单;(3)先把各个式子进行分母有理化,再裂项相消即可.【解答】解:(1)∵==,==;比较与∵>,2>,∴+2>+,∴>.故答案为:>.(2)∵x2+y2=(x+y)2﹣2xy=﹣2=182﹣2=324﹣2=322答:x2+y2的值为322.(3)=+++…+=1﹣+﹣+﹣+…+﹣=1﹣==1﹣答:的值为1﹣.23.我市支持“互联网+农工贸”新业态发展,做大做强“农村电商”,鼓励各类新型经营主体开展网上经营服务和产品销售.某水果批发商尝试在线上和线下销售黄桃(1)今年7月该批发商线上、线下共售出黄桃800千克,其中线下销售的黄桃重量不超过线上销售重量的3倍,那么线下销售黄桃的重量最多为多少千克?(2)7月份结束时该商户销售黄桃的总收入为7500元,线下销售的黄桃重量恰好是计划的最大值,且线上、线下黄桃的售价之比为3:4,8月份正值黄桃产销旺季,黄桃的售价有所上涨8月份收入在7月份的基础上增加6.3a%,且8月份线上、线下黄桃售价在7月份基础上分别增加a%,2a%,销售重量在7月份基础上分别增加3a%,4a%,求a的值.【分析】(1)设线下销售黄桃的重量为x千克,则线上销售黄桃的重量为(800﹣x)千克,根据线下销售的黄桃重量不超过线上销售重量的3倍,可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的最大值即可得出结论;(2)由(1)可知:7月份线上销售黄桃200千克.设7月份线上黄桃的售价为3m元/千克,则7月份线下黄桃的售价为4m元/千克,根据总收入=单价×销售数量结合8月份收入在7月份的基础上增加6.3a%,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)设线下销售黄桃的重量为x千克,则线上销售黄桃的重量为(800﹣x)千克,依题意,得:x≤3(800﹣x),解得:x≤600.答:线下销售黄桃的重量最多为600千克.(2)由(1)可知:7月份线上销售黄桃200千克.设7月份线上黄桃的售价为3m元/千克,则7月份线下黄桃的售价为4m元/千克,依题意,得:200(1+3a%)×3m(1+a%)+600×(1+4a%)×4m(1+2a%)=(200×3m+600×4m)(1+6.3a%),整理,得:a2﹣10a=0,解得:a1=0(舍去),a2=10.答:a的值为10.24.如图,在▱ABCD中,过B作BE⊥AD于点E,过点C作CF⊥BD分别与BD、BE交于点G、F,连接GE,已知AB=BD,CF=AB.(1)若∠ABE=30°,AB=6,求△ABE的面积;(2)求证:GE=BG.【分析】(1)由含30°角直角三角形性质得出AE=AB=3,由勾股定理得出BE==3,由三角形面积公式即可得出结果;(2)由平行四边形的性质得出AD=BC,AD∥BC,则∠ADB=∠CBD,证出∠BFC=∠BDE,得出∠CBG=∠BFG,由AAS证明△DEB≌△FBC得出BF=DE,BE=BC=2DE,设DE=x,则BE=BC=AD=2x,CF=BD=AB=x,S△BCF=CF•BG=BF•BC,求得BG=x,DG=x,过G作GH⊥AD于H,由sin∠EDG==,求得GH=x,由cos∠EDG==,求得DH=x,EH=DE﹣DH=x,由勾股定理求出EG==,即可得出结论.【解答】(1)解:∵BE⊥AD,∠ABE=30°,∴AE=AB=3,BE===3,∴S△ABE=AE•BE=×3×3=;(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠CBD,∵∠FGB=∠BED=90°,∠FBG=∠DBE∴∠BFC=∠BDE,∴∠CBG=∠BFG,∵∠CGB=∠BGF=90°,∴∠BCF=∠DBE,∴∠CBF=∠BCG+∠CBG=90°,∵BE⊥AD,AB=BD,∴AE=DE,∵AB=BD,CF=AB,∴CF=BD,在△DEB和△FBC中,,∴△DEB≌△FBC(AAS),∴BF=DE,BE=BC=2DE,设DE=x,则BE=BC=AD=2x,CF=BD=AB=x,S△BCF=CF•BG=BF•BC,即:x•BG=x•2x,∴BG=x,∴DG=x﹣x=x,过G作GH⊥AD于H,如图所示:sin∠EDG==,即:=,∴GH=x,cos∠EDG==,即:=,∴DH=x,EH=DE﹣DH=x﹣x=x,∴EG===,∴==,∴EG=BG.25.一节数学课后,老师布置了一道课后练习:△ABC是等边三角形,点D是线段BC上的点,点E为△ABC的外角平分线上一点,且∠ADE=60°,如图①,当点D是线段BC上(除B,C外)任意一点时,求证:AD=DE(1)理清思路,完成解答本题证明思路可以用下列框图表:根据上述思路,请你完整地书写本题的证明过程;(2)特殊位置,计算求解当点D为BC的中点时,等边△ABC的边长为6,求出DE的长;(3)知识迁移,探索新知当点D在线段BC的延长线上,且满足CD=BC时,若AB=2,请直接写出△ADE的面积(不必写解答过程)【分析】(1)由等边三角形的性质和平行线的性质得到∠BDF=∠BFD=60°,于是得到△BDF是等边三角形,再证明△AFD≌△DCE即可得到结论;(2)解直角三角形求出AD即可解决问题.(3)只要证明∠BAD=90°,利用勾股定理求出AD,再证明△ADE是等边三角形即可解决问题.【解答】(1)证明:如图①中,过点D作DF∥AC,交AB于点F.∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=∠ABC=60°,又∵DF∥AC,∴∠BDF=∠BFD=60°,。

重庆市 2019年九年级数学中考模拟试卷(含答案)【含答案及解析】

重庆市 2019年九年级数学中考模拟试卷(含答案)【含答案及解析】

重庆市 2019年九年级数学中考模拟试卷(含答案)【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 如图,在四边形ABCD中,E、F分別是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC等于()A. 0.75B.C. 0.6D. 0.82. 方程(m﹣2)x2+3mx+1=0是关于x的一元二次方程,则(_________ )A. m≠±2B. m=2C. m=﹣2D. m≠23. 已知反比例函数y=kx-1的图象过点P(1,3),则该反比例函数图象位于( )A. 第一、二象限B. 第一、三象限C. 第二、四象限D. 第三、四象限4. 在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势” 分别穿过这两个空洞,则该几何体为()A. B. C. D.5. 如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则△ABC边长为(_________ )A. 3B. 4C. 5D. 66. 下列命题中,正确的个数是( )①13个人中至少有2人的生日是同一个月是必然事件;②为了解我班学生的数学成绩,从中抽取10 名学生的数学成绩是总体的一个样本;③一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;④小颖在装有10个黑、白球的袋中,多次进行摸球试验,发现摸到黑球的频率在0.6附近波动,据此估计黑球约有6个.A. 1B. 2C. 3D. 47. 下列说法中正确的是()A. 两个平行四边形一定相似B. 两个菱形一定相似C. 两个矩形一定相似D. 两个等腰直角三角形一定相似8. 如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()A. 3对B. 4对C. 5对D. 6对9. 下列四边形中不一定为菱形的是()A. 对角线相等的平行四边形B. 对角线平分一组对角的平行四边形C. 对角线互相垂直的平行四边形D. 用两个全等的等边三角形拼成的四边形10. 如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A. 2mB. 2mC. (2﹣2)mD. (2﹣2)m二、选择题11. 铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)()A. 4mB. 6mC. 8mD. 12m三、单选题12. 如图,二次函数y=ax2+bx+c(a≠0)的图象过(﹣2,0),则下列结论:①bc>0;②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0.其中正确结论的个数是( )A. 5B. 4C. 3D. 2四、填空题13. 若(a-b):(a+b)=3:7, 则a:b=______14. 若将方程x2+6x=7化为(x+m)2=16,则m= .15. 如图,△ABC中,CD⊥AB,垂足为D.下列条件中,能证明△ABC是直角三角形的有____________(多选、错选不得分).①∠A+∠B=90°;②;③;④16. 若二次函数y=x2+6x+k的图象与x轴有且只有一个交点,则k的值为_____.17. 在平面直角坐标系中,直线y=﹣x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1,2,3, ,的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为______.18. 如图,矩形ABCD中,AB=6,AD=8,点E在边AD上,且AE:ED=1:3.动点P从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F,设M是线段EF的中点,则在点P运动的整个过程中,点M运动路线的长为______.五、解答题19. 解方程: (x+1)(x﹣3)=﹣1.20. 已知平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:CF2=GF•EF.21. 如图,在平面直角坐标系中,反比例函数y=kx-1(x>0)的图象经过点A(1,2)和点B (m,n)(m>1),过点B作y轴的垂线,垂足为C.(1)求该反比例函数解析式;(2)当△ABC面积为2时,求点B的坐标.(3)P为线段AB上一动点(P不与A、B重合),在(2)的情况下,直线y=ax﹣1与线段AB交于点P,直接写出a的取值范围.22. 八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.23. 类别频数(人数)频率小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 1td24. 某旅游区有一个景观奇异的望天洞,D点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A处观看旅游区风景,最后坐缆车沿索道AB返回山脚下的B处.在同一平面内,若测得斜坡BD的长为100米,坡角∠DBC=10°,在B处测得A的仰角∠ABC=40°,在D处测得A的仰角∠ADF=85°,过D点作地面BE的垂线,垂足为C.(1)求∠ADB的度数;(2)求索道AB的长.(结果保留根号)25. 在国家的宏观调控下,某市的商品房成交价由今年3月分的5000元/m2下降到5月分的4050元/m2(1)问4、5两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000元/m2?请说明理由.26. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.27. 如图,已知直线y=﹣x+3的图象分别交x轴于A点,交y轴于B点,抛物线y=﹣x2+bx+c经过点A、B两点,并与x轴交于另一点D,顶点为C.(1)求C、D两点的坐标;(2)求tan∠BAC;(3)在y轴上是否存在一点P,使得以P、B、D三点为顶点的三角形与△ABC相似?如果存在,请求出点P的坐标;如果不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。

{3套试卷汇总}2019-2020重庆市中考数学一模数学试题及答案

{3套试卷汇总}2019-2020重庆市中考数学一模数学试题及答案

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.方程x 2﹣3x =0的根是( ) A .x =0 B .x =3C .10x =,23x =-D .10x =,23x =【答案】D【解析】先将方程左边提公因式x ,解方程即可得答案. 【详解】x 2﹣3x =0, x (x ﹣3)=0, x 1=0,x 2=3, 故选:D . 【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2.如图1,在等边△ABC 中,D 是BC 的中点,P 为AB 边上的一个动点,设AP=x ,图1中线段DP 的长为y ,若表示y 与x 的函数关系的图象如图2所示,则△ABC 的面积为( )A .4B .23C .12D .3【答案】D 【解析】分析:由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可. 详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小33,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点, ∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时3∴BD=332sin 602PD =÷=,∴BC=2BD=4, ∴AB=4,∴AD=AB·sin ∠B=4×sin60°=23, ∴S △ABC=12AD·BC=1234432⨯⨯=. 故选D.点睛:“读懂题意,知道当DP ⊥AB 于点P 时,DP 最短=3”是解答本题的关键.3.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =-- 【答案】A【解析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .4.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233πB .2233π-C .433π-D .4233π-【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×32=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.5.△ABC在正方形网格中的位置如图所示,则cosB的值为( )A.5B.25C.12D.2【答案】A【解析】解:在直角△ABD中,BD=2,AD=4,则AB=22222425BD AD+=+=,则cosB=525BDAB==.故选A.6.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=【答案】B【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.7.如图所示的几何体的俯视图是()A.B.C.D.【答案】D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.8.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【答案】A【解析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC 是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66, 在Rt △AEM 中,tan24°=AMEM, ∴0.45=866AB, ∴AB=21.7(米), 故选A . 【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A .19B .16C .13D .23【答案】C【解析】分析:将三个小区分别记为A 、B 、C ,列举出所有情况即可,看所求的情况占总情况的多少即可. 详解:将三个小区分别记为A 、B 、C , 列表如下: A B C A (A ,A ) (B ,A ) (C ,A ) B (A ,B ) (B ,B ) (C ,B ) C(A ,C )(B ,C )(C ,C )由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种, 所以两个组恰好抽到同一个小区的概率为31=93.故选:C .点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为倒数的点是( )A .点A 与点B B .点A 与点DC .点B 与点DD .点B 与点C【答案】A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数. 故选A .考点:1.倒数的定义;2.数轴. 二、填空题(本题包括8个小题)11.对于任意实数m 、n ,定义一种运算m ※n=mn ﹣m ﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=1.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是_____. 【答案】45a ≤<【解析】解:根据题意得:2※x=2x ﹣2﹣x+3=x+1, ∵a <x+1<7,即a ﹣1<x <6解集中有两个整数解, ∴a 的范围为45a ≤<, 故答案为45a ≤<. 【点睛】本题考查一元一次不等式组的整数解,准确理解题意正确计算是本题的解题关键.12.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______. 【答案】1【解析】析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值. 解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根 ∴△=b 2-4ac=(-2)2-4×1?m=0 4-4m=0 m=1 故答案为113.因式分解:a 2b +2ab +b = . 【答案】b2【解析】该题考查因式分解的定义首先可以提取一个公共项b ,所以a 2b +2ab +b =b (a 2+2a +1) 再由完全平方公式(x 1+x 2)2=x 12+x 22+2x 1x 2 所以a 2b +2ab +b =b (a 2+2a +1)=b214.若x=2-1, 则x 2+2x+1=__________. 【答案】2【解析】先利用完全平方公式对所求式子进行变形,然后代入x 的值进行计算即可. 【详解】∵x=2-1,∴x 2+2x+1=(x+1)2=(2-1+1)2=2, 故答案为:2. 【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的性质等,熟练掌握相关知识是解题的关键. 15.若正六边形的内切圆半径为2,则其外接圆半径为__________. 【答案】433【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ; 则2OG =,∵六边形ABCDEF 正六边形, ∴OAB 是等边三角形,∴60OAB ∠=︒,∴43sin 603OG OA ===︒, ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为433. 【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.16.如图,⊙O 的半径为2,AB 为⊙O 的直径,P 为AB 延长线上一点,过点P 作⊙O 的切线,切点为C .若PC=23,则BC的长为______.【答案】2【解析】连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.【详解】连接OC,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=90°,∵3,OC=2,∴22OC PC+22+=4,2(23)∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等边三角形,∴BC=OB=2,故答案为2【点睛】本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.一个布袋里装有10个只有颜色不同的球,这10个球中有m个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m的值约为__________.【答案】3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答. 【详解】解:根据题意得,10m=0.3,解得m =3. 故答案为:3. 【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.18.如图,点A ,B 在反比例函数ky x(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.【答案】【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC=2BD , ∴OD=2OC . ∵CD=k , ∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92,∴CD=k=22229376()2AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键. 三、解答题(本题包括8个小题)19.如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点.点P 是x 轴上的一个动点.求此抛物线的解析式;求C 、D 两点坐标及△BCD 的面积;若点P 在x 轴上方的抛物线上,满足S △PCD =12S △BCD ,求点P 的坐标. 【答案】 (1)y=﹣(x ﹣1)2+4;(2)C (﹣1,0),D (3,0);6;(3)P (10,32),或P (110,32)【解析】(1)设抛物线顶点式解析式y=a (x-1)2+4,然后把点B 的坐标代入求出a 的值,即可得解; (2)令y=0,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P 的坐标,求出点P 的纵坐标,代入抛物线解析式即可求出点P 的坐标. 【详解】解:(1)、∵抛物线的顶点为A (1,4), ∴设抛物线的解析式y=a (x ﹣1)2+4, 把点B (0,3)代入得,a+4=3, 解得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x ﹣1)2+4; 令y=0,则0=﹣(x ﹣1)2+4,∴x=﹣1或x=3, ∴C (﹣1,0),D (3,0); ∴CD=4,∴S △BCD =12CD×|y B |=12×4×3=6; (3)由(2)知,S △BCD =12CD×|y B |=12×4×3=6;CD=4,∵S △PCD =12S △BCD ,∴S △PCD =12CD×|y P |=12×4×|y P |=3,∴|y P|= 32,∵点P在x轴上方的抛物线上,∴y P>0,∴y P= 32,∵抛物线的解析式为y=﹣(x﹣1)2+4;∴32=﹣(x﹣1)2+4,∴x=1±102,∴P(1+ 102,32),或P(1﹣102,32).【点睛】本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.20.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)【答案】(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.【详解】(1)证明:如图1中,连接BD.∵点E,H分别为边AB,DA的中点,∴EH∥BD,EH=12 BD,∵点F,G分别为边BC,CD的中点,∴FG∥BD,FG=12 BD,∴EH∥FG,EH=GF,∴中点四边形EFGH是平行四边形.(2)四边形EFGH是菱形.证明:如图2中,连接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵点E,F,G分别为边AB,BC,CD的中点,∴EF=12AC,FG=12BD,∵四边形EFGH是平行四边形,∴四边形EFGH是菱形.(3)四边形EFGH是正方形.证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四边形EFGH是菱形,∴四边形EFGH是正方形.考点:平行四边形的判定与性质;中点四边形.21.探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?【答案】探究:(1)3,1;(2)(1)2n n-;(3)参加聚会的人数为8人;拓展:琪琪的思考对,见解析.【解析】探究:(1)根据握手次数=参会人数×(参会人数-1)÷2,即可求出结论;(2)由(1)的结论结合参会人数为n,即可得出结论;(3)由(2)的结论结合共握手28次,即可得出关于n的一元二次方程,解之取其正值即可得出结论;拓展:将线段数当成握手数,顶点数看成参会人数,由(2)的结论结合线段总数为2,即可得出关于m 的一元二次方程,解之由该方程的解均不为整数可得出琪琪的思考对.【详解】探究:(1)3×(3-1)÷2=3,5×(5-1)÷2=1.故答案为3;1.(2)∵参加聚会的人数为n(n为正整数),∴每人需跟(n-1)人握手,∴握手总数为()12n n-.故答案为()12n n-.(3)依题意,得:()12n n-=28,整理,得:n2-n-56=0,解得:n1=8,n2=-7(舍去).答:参加聚会的人数为8人.拓展:琪琪的思考对,理由如下:如果线段数为2,则由题意,得:()12m m-=2,整理,得:m2-m-60=0,解得m1=12412+,m2=1-2412(舍去).∵m为正整数,∴没有符合题意的解,∴线段总数不可能为2.【点睛】本题考查了一元二次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,用含n的代数式表示出握手总数;(3)(拓展)找准等量关系,正确列出一元二次方程.22.已知关于x的方程220x ax a++-=.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴1111{211axax+=--⋅=.解得132{12xa=-=.∴a的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a∆=-⋅⋅-=-+=-++=-+>,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.23.如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同).把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是;若任意抽出一张不放回,然后再从余下的抽出一张.请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率.【答案】(1)14;(2)16.【解析】(1)既是中心对称图形又是轴对称图形只有圆一个图形,然后根据概率的意义解答即可;(2)画出树状图,然后根据概率公式列式计算即可得解.【详解】(1)∵正三角形、平行四边形、圆、正五边形中只有圆既是中心对称图形又是轴对称图形,∴抽到的卡片既是中心对称图形又是轴对称图形的概率是14;(2)根据题意画出树状图如下:一共有12种情况,抽出的两张卡片的图形是中心对称图形的是B、C共有2种情况,所以,P(抽出的两张卡片的图形是中心对称图形)21 126.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.24.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P 点坐标.【答案】(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).【解析】(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.【详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.【答案】解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理26.某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.【答案】(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x 元,则有( )A .(x ﹣20)(50﹣18010x -)=10890 B .x (50﹣18010x -)﹣50×20=10890 C .(180+x ﹣20)(50﹣10x )=10890 D .(x+180)(50﹣10x )﹣50×20=10890 【答案】C 【解析】设房价比定价180元増加x 元,根据利润=房价的净利润×入住的房同数可得.【详解】解:设房价比定价180元增加x 元,根据题意,得(180+x ﹣20)(50﹣x 10)=1. 故选:C .【点睛】此题考查一元二次方程的应用问题,主要在于找到等量关系求解.2.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A .8374y x y x +=⎧⎨-=⎩B .8374x y x y+=⎧⎨-=⎩ C .8374x y x y -=⎧⎨+=⎩D .8374y x y x -=⎧⎨+=⎩【答案】C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x y x y -=⎧⎨+=⎩, 故选C. 点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.3.方程5x +2y =-9与下列方程构成的方程组的解为212x y =-⎧⎪⎨=⎪⎩的是( ) A .x +2y =1B .3x +2y =-8C .5x +4y =-3D .3x -4y =-8 【答案】D【解析】试题分析:将x与y的值代入各项检验即可得到结果.解:方程5x+2y=﹣9与下列方程构成的方程组的解为的是3x﹣4y=﹣1.故选D.点评:此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°【答案】B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.5.关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( )A.q<16 B.q>16C.q≤4D.q≥4【答案】A【解析】∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△>0,即82-4q>0,∴q<16,故选 A.6.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.1(1)282x x-=B.1(1)282x x+=C.(1)28x x-=D.(1)28x x+=【答案】A【解析】根据应用题的题目条件建立方程即可.【详解】解:由题可得:1(1)47 2x x-=⨯即:1(1)28 2x x-=故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.7.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°【答案】D 【解析】解:∵35AOC ∠=,∴35BOD ∠=,∵EO ⊥AB ,∴90EOB ∠=,∴9035125EOD EOB BOD ∠=∠+∠=+=,故选D.8.如图,一个铁环上挂着6个分别编有号码1,2,3,4,5,6的铁片.如果把其中编号为2,4的铁片取下来,再先后把它们穿回到铁环上的仼意位置,则铁环上的铁片(无论沿铁环如何滑动)不可能排成的情形是( )A .B .C .D .【答案】D【解析】摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,无论将铁片2,4穿回哪里,铁片1,1,5,6在铁环上的顺序不变,观察四个选择即可得出结论.【详解】解:摘掉铁片2,4后,铁片1,1,5,6在铁环上按逆时针排列,∵选项A ,B ,C 中铁片顺序为1,1,5,6,选项D 中铁片顺序为1,5,6,1.故选D .【点睛】本题考查了规律型:图形的变化类,找准铁片1,1,5,6在铁环上的顺序不变是解题的关键. 9.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10【答案】B 【解析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1,∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .10.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( )A.13B.24C.2D.3【答案】B【解析】根据勾股定理和三角函数即可解答.【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=229x x-=22x.即tanA=22x =24.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.二、填空题(本题包括8个小题)11.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP+的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P. 【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时CP DP+的值最小.【详解】(Ⅰ)根据勾股定理得22345+=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC ,连接AE 交BC 于M ,则AM 即为所求的ABC 的角平分线,在AB 上取点F ,使AF=AC=1,则AM 垂直平分CF ,点C 与F 关于AM 对称,连接DF 交AM 于点P ,则点P 即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.12.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .【答案】45【解析】试题分析:根据概率的意义,用符合条件的数量除以总数即可,即1024105-=. 考点:概率13.已知一次函数y=kx+2k+3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.【答案】-2【解析】试题分析:根据题意可得2k+3>2,k <2,解得﹣<k <2.因k 为整数,所以k=﹣2.考点:一次函数图象与系数的关系.14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n 次的运算结果是____________(用含字母x 和n 的代数式表示). 【答案】2(21)1n n x x -+ 【解析】试题分析:根据题意得121x y x =+;2431x y x =+;3871x y x =+;根据以上规律可得:。

2019年重庆市江北区中考数学一诊试卷

2019年重庆市江北区中考数学一诊试卷

2019年重庆市江北区中考数学一诊试卷学校:___________姓名:___________班级:___________考号:___________注意:本试卷包含Ⅰ、Ⅱ两卷。

第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。

第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。

答案写在试卷上均无效,不予记分。

一、选择题1、下列各数中最小的数是()A. 0.1B. 0C. -D. -22、下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A. B.C. D.3、下列说法不正确的是()A. 了解全市中学生对社会主义核心价值观的知晓度的情况,适合用抽样调查B. 若甲组数据方差S2甲=0.39,乙组数据方差S2乙=0.27,则乙组数据比甲组数据稳定C. 某种彩票中奖的概率是100买100张该种彩票一定会中奖D. 旅客上飞机前的安检应该进行全面调查4、已知x-2y=3,则代数式9-2x+4y的值为()A. -3B. 3C. 6D. 125、已知直线y=kx-2经过点(3,1),则这条直线还经过下面哪个点()A. (2,0)B. (0,2)C. (1,3)D. (3,-1)6、估6-的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7、如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形的周长为()A. 40B. 30C. 28D. 208、根据以下程序,当输入x=2时,输出结果为()A. -1B. -4C. 1D. 119、如图,两个小正方形的边长都是1,以A为圆心,AD为半径作弧交BC于点G,则图中阴影部分的面积为()A. B.C. D.10、观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为()A. 61B. 72C. 73D. 8611、如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为()A. 2B. 3C. 4D.12、如果关于x的分式方程有整数解,且关于x的不等式组的解集为x>4,那么符合条件的所有整数a的值之和是()A. 7B. 8C. 4D. 5二、填空题1、计算:(-1)2019+(4-π)0-()-2=______.2、如图,在直角三角形△ABC中,∠BAC=90°,点E是斜边BC的中点,⊙O经过A、C、E三点,F是弧EC上的一个点,且∠B=24°,则∠AFC=____ __.3、在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度______.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)4、有5张正面分别写有数字-3,-2,-1,2,3的卡片,它们除数字不同外其余全部相同.现将它们面朝上,洗匀后从中随机抽取一张,记卡片上的数字为k,则使关于x为自变量的一次函数y=kx+(k-2)过第二象限,且k不是一元二次方程x2+x-2=0的解的概率是______.5、甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后______秒与甲相遇.6、在一次班级数学测试中,65分为及格分数线,全班的总平均分为66分,而所有成绩及格的学生的平均分为72分,所有成绩不及格的学生的平均分为58分,为了减少不及格的学生人数,老师给每位学生的成绩加上了5分,加分之后,所有成绩及格的学生的平均分变为75分,所有成绩不及格的学生的平均分变为59分,已知该班学生人数大于15人少于30人,该班共有______位学生.三、计算题1、计算:(1)2(m-1)2-(2m+1)(m-1)(2)(1-)______四、解答题1、已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.______2、距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:两组数据的极差、平均数、中位数、众数如表所示:(1)请将上面两个表格补充完整:a=______,b=______,c=______;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.______3、问题:探究函数y=x+的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:______;(2)如表是y与x的几组对应值,请将表格补充完整:--3-4423(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).______4、某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了a%:实木椅子的销售量比第一月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.______5、已知:平行四边形ABCD中,AD=BD且∠ADB=90°,CE平分∠BCD交AB于点E,交BD于点N,过点E作AB的垂线交AD于点F,连接BF,与线段EC交于点G.(1)如果边BC长为4,求△CBE的面积;(2)求证:EG=EN______6、材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x-2)4+(x-3)4=1解:因为-2和-3的均值为,所以,设y=x-,原方程可化为(y+)4+(y-)4=1,去括号,得:(y2+y+)2+(y2-y+)2=1y4+y2++2y3+y2+y+y4+y2+-2y3+y2-y=1整理,得:2y4+3y2-=0 (成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=,即x-=.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+______.原方程转化为:(y-______)4+(y+______)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=706______7、已知:如图,二次函数y=-x2+x+2的图象交x轴于A点和B点(A点在B点左则),交y轴于E点,作直线EB,D是直线EB上方抛物线上的一个动点,过D点作直线l平行于直线EB.M是直线EB上的任意点,N是直线l上的任意点,连接MO,NO始终保持∠MON为90°,以MO和ON为边,做矩形MO NC.(1)在D点移动过程中,求出当△DEB的面积最大时点D的坐标:在△DEB的面积最大时,求矩形MONC的面积的最小值;(2)在△DEB的面积最大时,线段ON交直线EB于点G,当点D,N,G,B四个点组成平行四边形时,求此时线段ON与抛物线的交点坐标.______2019年重庆市江北区中考数学一诊试卷参考答案一、选择题第1题参考答案: D解:∵,∴最小的数是-2,故选:D.根据正数大于负数,两个负数比较大小,绝对值大的负数反而小,可得答案.本题考查了实数大小比较,两个负数比较大小,绝对值大的负数反而小.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: B解:A、是中心对称图形,不是轴对称图形,故A错误;B、是中心对称图形,也是轴对称图形,故B正确;C、不是中心对称图形,是轴对称图形,故C错误;D、是中心对称图形,不是轴对称图形,故D错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: C解:A、了解全市中学生对社会主义核心价值观的知晓度的情况,适合用抽样调查,正确;B、若甲组数据方差S2甲=0.39,乙组数据方差S2乙=0.27,则乙组数据比甲组数据稳定,正确;C、某种彩票中奖的概率是100,但买100张该种彩票不一定会中奖,错误;D、旅客上飞机前的安检应该进行全面调查,正确;故选:C.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似和方差和概率判断即可.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: B解:当x-2y=3时,9-2x+4y=9-2(x-2y)=9-2×3=9-6=3,故选:B.将x-2y的值代入9-2x+4y=9-2(x-2y)计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: A解:点(3,1)代入直线y=kx-2,得1=3k-2,解得k=1,∴y=x-2,把(2,0),(0,2),(1,3),(3,-1)代入y=x-2中,只有(2,0)满足条件.故选:A.把点(3,1)代入直线y=kx-2,解出k,然后逐个点代入,找出满足条件的答案.本题考查了一次函数图象上点的坐标特点,熟悉一次函数图象上点的特点是解此题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: C解:,∵,∴,故选:C.先化简后利用的范围进行估计解答即可.此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: D解:四边形ABCD是菱形,∴AB=BC=CD=AD,BO=OD=3,AO=OC=4,AC⊥BD,∴AB==5,故菱形的周长为4×5=20.故选:D.根据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOB中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第8题参考答案: D解:当x=2时,x2-5=22-5=-1,结果不大于1,代入x2-5=(-1)2-5=-4,结果不大于1,代入x2-5=(-4)2-5=11,故选:D.根据流程图所示顺序,逐框分析代入求值即可.本题考查了代数式求值,正确代入求值是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第9题参考答案: A解:如图,过点点G作GM⊥AD,垂足为M,则四边形GCMD是矩形,∴GM=CD=1,又∵AG=AD=2,∴在RT△AGM中,∠GAM=30°,则图中阴影部分的面积为:=,故选:A.过点点G作GM⊥AD,垂足为M,在RT△AGM中可知∠GAM=30°,根据扇形面积公式计算即可.本题主要考查扇形面积的求法,熟记面积公式是基础,根据题意求出扇形所对圆心角度数是关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第10题参考答案: C解:设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选:C.设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+ n+1(n为正整数)”是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第11题参考答案: C解:∵AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=,△CBD的面积=,∵△OAC与△CBD的面积之和为,∴,∴k=4.故选:C.由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=,△CBD的面积=,根据△OAC与△CBD的面积之和为,即可得出k的值.本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△O AC与△CBD的面积.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第12题参考答案: B解:由分式方程可得1-ax+2(x-2)=-1解得x=∵关于x的分式方程有整数解,且a为整数∴a=0、1、3、4又∵关于x的不等式组整理得而不等式组的解集为x>4∴a≤4于是符合条件的所有整数a的值之和为:0+1+3+4=8故选:B.解关于x的不等式组,结合解集为x>4,确定a的范围,再由分式方程结合有整数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.二、填空题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: -4解:原式=-1+1-4=-4.故答案为:-4.直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 48°解:如图,连接AE.∵∠BAC=90°,BE=CE,∴AE=BE=CE,∴∠B=∠EAB=24°,∴∠AEC=∠B+∠EAB=48°,∴∠AFC=∠AEC=48°,故答案为48°.如图,连接AE.首先证明EB=EA,求出∠AEC,利用圆周角定理即可解决问题.本题考查圆周角定理,直角三角形斜边中线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: 12.2m【分析】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.【解答】解:延长AD交BC的延长线于点E,作DF⊥CE于点F.在△DCF中,∵CD=4m,DF:CF=1:,∴tan∠DCF=,∴∠DCF=30°,∠CDF=60°.∴DF=2(m),CF=2(m),在Rt△DEF中,因为∠DEF=50°,所以EF=≈1.67(m)∴BE=EF+FC+CB=1.67+2+5≈10.13(m),∴AB=BE•tan50°≈12.2(m),故答案为12.2m.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案:解:在这5张卡片中抽出1张共有5种等可能结果,其中一次函数y=kx+(k-2)过第二象限且不是一元二次方程x2+x-2=0的解的有-3,-1,3这3张,∴符合条件的概率为,故答案为:.从这5个数中找到一次函数y=kx+(k-2)过第二象限且不是一元二次方程x2+x-2=0的解的结果数,在依据概率公式计算可得.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了一次函数图象与性质和一元二次方程的解.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 30解:由图象可得V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,则乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200-990=210m则最后相遇的时间为:=30s故答案为:30由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 28解:设加分前及格人数为x人,不及格人数为y,原来不及格加分为为及格的人数为n,根据题意得,解得,所以x+y=n,而15<n<30,n为正整数,n为整数,所以n=5,所以x+y=28,即该班共有28位学生.故答案为28.设加分前及格人数为x人,不及格人数为y,原来不及格加分为为及格的人数为n,所以,用n分别表示x、y得到x+y=n,然后利用15<n<30,n为正整数,n为整数可得到n=5,从而得到x+y的值.本题考查了加权平均数:熟练掌握加权平均数的计算方法.构建方程组的模型解决问题.三、计算题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 解:(1)原式=2(m2-2m+1)-(2m2-2m+m-1)=2m2-4m+2-2m2+2m-m+1=-3m+3;(2)原式=(-)÷=•=.(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得.本题主要考查分式和整式的混合运算,解题的关键是掌握分式与整式的混合运算顺序和运算法则.四、解答题- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第1题参考答案: 证明:(1)∵EC⊥DM,∴∠ECD=90°,∵∠ACB=90°,∴∠ACB=∠DCE,∴∠DCA=∠ECB,∵CD=CE,CA=CB,∴△ADC≌△BEC(SAS).证明:(2)∵EB⊥EC,∴∠E=90°,∵△ADC≌△BEC,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.(1)利用SAS即可证明△ADC≌△BEC.(2)想办法证明AD⊥DM即可.本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第2题参考答案: 6 179 188解:(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第3题参考答案: x≠0 3 3解:(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;(1)由分母不为零,确定x的取值范围;(2)将x=1,x=2代入解析式即可;(3)描点画图;(4)观察函数图象有最低点和最高点,得到一个性质;本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第4题参考答案: 解:(1)设普通椅子销售了x把,实木椅子销售了y把,依题意,得:,解得:.答:普通椅子销售了400把,实木椅子销售了500把.(2)依题意,得:(180-30)×400(1+a%)+400(1-2a%)×500(1+a%)=251000,整理,得:a2-225=0,解得:a1=15,a2=-15(不合题意,舍去).答:a的值为15.(1)设普通椅子销售了x把,实木椅子销售了y把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论.本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第5题参考答案: 解:(1)如下图所示:过点C作CH⊥AB交AB的延长线于点H,设CH的长为x,∵AD=BD且∠ADB=90°,∴∠A=∠ABD=45°,又∵四边形ABCD是平行边形∴AB∥DC,∴∠DCE=∠CEB,∵CE是∠BCD的角平分线,∴∠DCE=∠BCE,∴∠BCE=∠BEC,∴BC=BE,又∵BC=4,∴BE=4.∵∠DCB=∠CBH=45°,在Rt△CBH中,有BC2=BH2+CH2,∴x2+x2=42,解得x=∴S△BEC=•BE•CH=×4×=(2)作G关于BE的对称点M,连接ME、MG、MN,图形如下所示:∴ME=GE,MG⊥BE,又∵EF⊥BE,∴EF∥MN,又∵BC=BE,BC=BD=AD,∴BE=BD,在Rt△BDF和Rt△BEF中,∴Rt△BDF≌Rt△BEF(HL)∴∠DBF=∠EBF=∠DBE=22.5°,又∵∠CEB=22.5°,∴∠EGF=45°,又∵∠GEM=45°,∴FG∥EM,∴四边形EFGM是平行四边形.∴FE=GM.在△EFB和△BNC中,∴△EFB≌△BNC(ASA),∴EF=BN,∴GM=NB.又∵GE=ME,∠GEM=45°∴∠EGM=∠EMG=67.5°,在△MGN和△BNG中,∴.∴∠GMN=∠NBG=22.5°,又∵∠EMG+∠GMN=∠EMN,∴∠EMN=67.5°+22.5°=90°,∴△EMN是等腰直角三角形,∴Sin∠ENM=Sin45°==,∴EM=EN,∴.(1)求△CBE的面积,只需找到三角形的一边及相应边上的高可求其面积,角平分线和平行线性质易求BE的长,构造BE边上的高,在等腰直角三角形中由勾股定理易求CH的长;(2)由EG=EN得,,可知构建一个等腰直角三角形,作G点关于BE的对称点M,连接ME、MG、MN,证明EMN=90°即可.本题综合考查了平行四边形、等腰三角形、角平分线、平行线、勾股定理的性质,轴对称图形,全等三角形判定与性质和三角函数等相关知识,难点是作图,构建轴对称图形,证明直角三角形,变形求三角函数值.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第6题参考答案: 4 4 1 1解:(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y-1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y-1)4+(y+1)4=706,去括号,得:(y2-2y+1)2+(y2+2y+1)2=706,y4+4y2+1-4y3+2y2-4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2-704=0 (成功地消去了未知数的奇次项)解得:y2=16 或y2=-22(舍去)所以y=±4,即x+2=±4.所以x=2或x=-6.(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y-1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y-1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -第7题参考答案: 解:(1)如图1所示,过点D作y轴的平行线交MB于点H,过点O作OQ垂直M B于点Q,令y=0,解得x1=-1,x2=4,∴A(-1,0),B(4,0),令x=0,y=2,∴E(0,2),设直线BE的解析式为y=kx+b,解得,∴直线BE的解析式为y=-x+2,∵DN∥BE,∴设直线DN的解析式为y=-x+b1,S△DEB=DH•(x B-x E),∴当△DEB面积最大时,即是DH最大的时候,∴-x+b1=-x2+x+2,△=b2-4ac=0,即16-4(2b1-4)=0,解得b1=4,点D(2,3),S矩=2S△MOG+S平形四边形,∴矩形面积最小时就是MG最小,设QG=m,MQ=n,∴MG=m+n,∵m+n≥2,∵△QOG∽△MQO,∴OQ2=m•n,∵△OEQ∽△EOB,∴OQ=,∴m•n=,∴m+n的最小值为.∴MG=,∴S矩=2S△MOG+S平形四边形=.(2)分两种情况讨论,情况一:当GN∥DB时,直线DB的解析式为:y=-x+6,则直线NG的解析式为y=-x,∴-x=-x2+x+2,解得x1=3+,x2=3-,∴交点坐标为(3+,-),(3-,-),情况二:DB为对角线时,此时NG必过DB的中点(3,),设直线ON的解析式为y=k1x,则k1=,∴直线OD的解析式为y=x,=-x2+x+2,解得x1=1-,x2=1+,∴交点坐标为(1-,),(1+,),综上所述:交点坐标为(3+,-),(3-,-),(1-,),(1+,).(1)当△DEB的面积最大时,直线DN与抛物线相切,可求出直线DN的解析式和点D的坐标,当矩形面积最小时,MG最小,求出MG的最小值即可.(2)分两种情况讨论,以DB为边和以DB为对角线,分别求出此时ON的解析式,联立求出交点坐标即可.此题考查了二次函数的性质以及二次函数与几何相结合的问题,转化矩形面积最小和三角形面积最大为某条线段的最值为解题关键.。

重庆市中考数学模拟试题

重庆市中考数学模拟试题

重庆市2019年初中毕业暨高中招生考试数学模拟试卷(二)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1 •试题卷上各题的答案用黑色签字笔或钢笔书写在答题卡,2 •答题前认真阅读答题卡.上的注意事项;3•作图(包括作辅助线)请一律用黑色的签字笔完成;4•考试结束,由监考人员将试题卷和答题卡一并收回.2.如图图形中,是中心对称图形的是(上,不得在试题卷上直接作答;参考公式:2抛物线y ax bx c(a 0)的顶点坐标为2—,4ac—),对称轴公式为x2a 4ab2a 、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给岀了代号为A,B,C, D 的四个答案,其中只有一个是正确的, 请将答题卡上题号右侧正确答案所对应的方框涂黑. 12019 的相反数是()A.—2019B. 2019C.2019D.20193.( 5x3y)2计算的结果是(A. 25x5y2B. 25x6y2C. -5x3y2 6 2D.- 10x y4•下列调查中,适宜采用全面调查(普查)方式的是(A.调查一批新型节能灯泡的使用寿命B•调查荣昌区中小学生的课外阅读时间C.调查我区初中学生的视力情况 D •调查“神州十号飞船零部件的安全性能5•要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为的最短边长为2.5cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cm6.下列命题是真命题的是()5cm, 6cm和9cm,另一个三角形D. 5cm)C.两直线平行,同旁内角互补D.如果a>b,那么a2>b2知折痕AE = 1010,且CE CF = 3: 4,那么该矩形的周长为线上.13.( 1 ) 2314. 一个不透明的容器中装有大小、质地都相同的小球,球面上分别标有 3、1、-2,均匀搅拌后任意摸岀一个球(摸岀后不放回),记下数字作为P 点的横坐标,再从余下的两个小球中任意摸岀一个小球,记下数字作为点 P 的纵坐标,则点 P 落在第二象限的概率为 ________________ .15 •如图,AB 是O O 的直径,DC 与O O 相切于点 C,若/ D=30 ° OA=2,贝U CD= __________16 •如图,点是矩形 ABCD 的边CD 上一点,把△ ADE 沿AE 对折,使点D 恰好落在BC 边上的F 点处•已7.估计,2.8 1的值应在()A.3和4之间B.4 和5之间C.5 8. 按如图所示的运算程序, 能使运算输岀的结果为 7的是( )A. x 2, y 3B. x 2, y 39. 如图,在矩形 ABCD 中, 长为半径作圆,该圆与 A. 3nBAB = 4,BC = 6,点E 是AB 中点,在 AD 上取一点 G ,以点 G 为圆心,GD 的 BC 边相切于点F ,连接DE, EF ,则图中阴影部分面积为( ) 4 nC. 2 n +6D. 5 n +210•重庆朝天门码头位于置庆市油中半岛的嘉陵江与长江交汇处,是重庆最古老的码头•如图,小王在 码头某点E 处测得朝天门广场上的某高楼AB 的顶端A 的仰角为45°,接着他沿着坡度为1 : 2.4的斜坡EC 走了 26米到达坡顶C 处,至U C 处后继续朝高楼 AB 的方向前行16米到D 处,在D 处测得A 的仰角为 74°, 则此时小王距高楼的距离 BD 的为()米(结果精确到1 米, 参考数据:sin74 °~ 0.96 ,cos74 ~ 0.28 , tan74 °~ 3.49 ) A. 12题图D . 16C. 15A1111•已知,如图 Rt △ OAB 是等腰直角三角形, 交OA , AB 于E, F.连接E ,卩,则厶AFEA. 42 炉 2 2 2yj C 为AD 中点,双曲线经过点 C ,A6C -----x 2 x,有解且最多有8个整数解,则满足条件的所有整数a 的值之和是()12 .若数m 使关于x 的分式方且关于°3x 的不等式组X 3A. 3二、填空题:(本大题6个小题,每小题 4分,共24 分)请将每小题的答案直接填在答题卡中对应的横和6之间 D.6 和7之间B . 13 题图10底边 积为 )2的解为正整数, C.题图OB 边上的高D.2C17•在一条笔直的公路上顺次有 A , B , C 三地,甲车从 B 地岀发往 A 地匀速行驶,到达 A 地后停 止•在甲车岀发的同时,乙车也从B 地岀发往 A 地匀速行驶,到达 A 地停留1小时后,调头按原速向C 地行驶•若 AB 两地相距 300千米,在两车行驶的过程中,甲、乙两车之间的距离 y (千米)与乙车行驶时间 x (小时)之间的函数图象如图所示,则在两车岀发后经过_小时相遇.15题图16题图17题图18 •我区某校第二课堂活动开展的如火如荼,为了解同学们对体育运动项目的喜好程度,某班对“足球”、“篮球”、“羽毛球”、“乒乓球”喜好进行投票(每人限投- 好“羽毛球”的人数多 8人,喜好“篮球”的人数是喜好“足球” 的人数是喜好“羽毛球”和“乒乓球”的 5倍,喜欢“乒乓球” 和“羽毛球”的人数多 24人,则这个班级共有 ___________ 人. 三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给岀必要的演算过程或推 理步骤,画岀必要的图形,请将解答过程书写在答题卡•• •中对应的位置上.22x1 19•化简(1) (x 3y )(3x y ) 3(x y ) ; (2) (x+1)x 120.如图,在△ ABC 中,/ ACB= 90° AD 平分/ CAB 交BC 于D 点, 过D 点作DE 丄AB 于点E . (1)求证:△ ACD ^^ AED ;⑵ 若AC = 7,AB = 25,求线段 CD 的长.21 •距离中考体考时间越来越近,某校想了解初三年级2400名学生(一)收集数据(单位:分) 男生:60 70 40 45 20 120 80 50 45 4085 90 90 30 9050 90 50 70 100 女生:100 30 80 70 6075904075607575 90 70 80 50 80 100 90 120时间(x )男生 2 8 8 2 女生14a3(表格二)两组数据的极差、平均数、中位数、众数极差平均数 中位数 众数 男生 100 65.75 b c 女生9075.57575和“足球和“篮球° 周末在家体育锻炼的情况,在初三年级随机抽查了20名男生和20名女生周末每天在家锻炼的时间情况“足球”的人数比喜 的整数倍20 喜好“400票)•喜好 欢“足球8J 人数之和比喜(三)分析、应用数据:(1) 请将上面两个表格补充完整:a = _______ , _____ b= ______________ , c = _________ (2) 请根据抽样调查的数据估计该校初三年级周末每天锻炼时间在 大约有多少人?(3) 王老师看了表格数据后认为初三年级的女生周末锻炼坚持得比男生好,请你根据统计数据,写出支 持王老师观点的理由122•某校数学兴趣小组根据学习函数的经验,对函数y =I x l- 1的图像和性质进行了探究,探究过2x-4 -3 -2 -1 0 1 2 3 4y10.5m-0.5-1-0.5n1n= _________ ;在平面直角坐标系 xoy 中,描岀了上表中各对对应值为坐标的点,根据描岀的点画岀该函数的图像;1(2)结合函数图象,请写岀函数y =2I-1的一条性质;15 1(3)直线y = x + 与函数y =I x6 321的图像所围成的三角形的面积.23. 某文具店第一次购进甲、乙两种文 具.购进甲文具花费 3200元,购进 具花费2400元,其中甲文具数量是 具数量的2倍,已知购进一个甲文 购进一个乙文具多花 20元.(1) 求购进一个甲文具和一个乙文具各需多少元?(2) 由于畅销,该店决定第二次购进甲、乙两种文具,恰逢两种文具进价进行调整,甲文具进价比第一次提高a 元(a>0),乙文具按第一次进价 9折购进•如果第二次购进甲文具数量比第一 次少2a 个,第二次购进乙文具比第一次多 个,则第二次购进甲、乙两种文具的总费用比第2一次少320元.求a 的值.324. 菱形ABCD 中,AE 分/DAB 为/DAE 与/BAE 且/BA 匡工Z DAE AE 交对角线BD 于F ,交BC 于E ,过点A7作 AG 丄CD 于 G,交 BD 于 H ,且/BD(=15°.100分钟以上(含100分钟)的同学 I x乙文 乙文 具比(1) 求/ AEC的度数;1(2) 求证:BF= BH+FA..225 •阅读材料:A材料(一):二次根式的运算可充分利用有理数的运算律及乘法公式•例如: (、、a 士 ,b )=a 士 2云 +b ;拓展:(-J a + 7b + I c )=〔 -、a +( -Z b + ; c )〕= a + 2( ■•. b + -. c ) + b + 2 -、be + c= a+ b + c + 2 … ab + 2、、ac + 2 . bc ; 材料(二):法国着名数学家费马在给数学朋友的一封信中提岀关于三角形的一个有趣问题,“在三角形所在平面上求一个点,使该点在到三角形三个顶点的距离之和最小” •具体方法:如图i ,将△ ACP绕着点 C 顺时针旋转 60° 得到△ A CP',贝U △ ACP ^A A ' CP , CF=C P' , AP=A ' P', / PCP =Z PA+PB+PC=A ' P ' +PB+PP' > A ' B .故当 B , P , P' , A四点共线时,PA+PB+PC 有最小值,最小值为 A ' B.内一点•求 PA+PB+PC 的最小值.(2)如图2,将△ AOC 绕点0顺时针旋转至△ A i OC 的位置,点 A , C 的对应点分别为 A i , C i ,且点 A i 落在线段AC 上,再将△ A i OC i 沿y 轴平移得△ A 2O 1C 2,其中直线 O 1C 2与x 轴交于点K ,点T 是抛物 线对称轴上的动点,连接 KT , O i T , △ O i KT 能否成为以O i K 为直角边的等腰直角三角形?若能,请直 接写出所有符合条件的点T 的坐标;若不能,请说明理由.ACA' =60 °,故△ PCP 是等边三角形,由(1)应用材料(一),计算:(1)2 (2)应用材料(一)、(二)解决问题:如图/ ABC=90°, AB=BC=要的图形,请将解答过程书 26 •已知抛物纟三角形PCD 面积最大时,在 PM+MN+的最小值;解答时每小题必须给岀必要的演算过程或推理步骤,画岀必0与x 轴交于A , B 两点(点一点,点D 是x 轴正半轴上一点,且y 轴上取一点 M - x 轴上取一点 N ,求3OD= OC , 当2,已知△ ABC 中,图2A四、解答题:(本大(1)如图1,点P 为线段BC 答题卡中对应的位置上./侧),与y 轴交于点C .。

〖汇总3套试卷〗重庆市2019年中考多校联考数学试题

〖汇总3套试卷〗重庆市2019年中考多校联考数学试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知点A、B、C是直径为6cm的⊙O上的点,且AB=3cm,AC=32cm,则∠BAC的度数为()A.15°B.75°或15°C.105°或15°D.75°或105°【答案】C【解析】解:如图1.∵AD为直径,∴∠ABD=∠ACD=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABD中,AD=6,AC=32,∠CAD=45°,则∠BAC=105°;如图2,.∵AD为直径,∴∠ABD=∠ABC=90°.在Rt△ABD中,AD=6,AB=3,则∠BDA=30°,∠BAD=60°.在Rt△ABC中,AD=6,AC=32,∠CAD=45°,则∠BAC=15°.故选C.点睛:本题考查的是圆周角定理和锐角三角函数的知识,掌握直径所对的圆周角是直径和熟记特殊角的三角函数值是解题的关键,注意分情况讨论思想的运用.2.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.【答案】A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A .3.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .3C .3D .23【答案】C 【解析】连接AE ,OD ,OE .∵AB 是直径, ∴∠AEB=90°.又∵∠BED=120°,∴∠AED=30°.∴∠AOD=2∠AED=60°.∵OA=OD .∴△AOD 是等边三角形.∴∠A=60°.又∵点E 为BC 的中点,∠AED=90°,∴AB=AC .∴△ABC 是等边三角形,∴△EDC 是等边三角形,且边长是△ABC 边长的一半23.∴∠BOE=∠EOD=60°,∴BE 和弦BE 围成的部分的面积=DE 和弦DE 围成的部分的面积.∴阴影部分的面积=EDC 1S =23=32∆⋅C . 4.下列计算正确的是( ) A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 6 【答案】D【解析】根据合并同类项法则判断A 、C ;根据积的乘方法则判断B ;根据幂的乘方法判断D ,由此即可得答案.【详解】A 、2a 2﹣a 2=a 2,故A 错误;B 、(ab)2=a 2b 2,故B 错误;C 、a 2与a 3不是同类项,不能合并,故C 错误;D 、(a 2)3=a 6,故D 正确,故选D .【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键. 5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,3【答案】A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.如图,在Rt △ABC 中,∠ACB=90°,AC=BC=1,将绕点A 逆时针旋转30°后得到Rt △ADE ,点B 经过的路径为弧BD ,则图中阴影部分的面积是( )A .6πB .3πC .2π-12D .12【答案】A【解析】先根据勾股定理得到2,再根据扇形的面积公式计算出S 扇形ABD ,由旋转的性质得到Rt △ADE ≌Rt △ACB ,于是S 阴影部分=S △ADE +S 扇形ABD -S △ABC =S 扇形ABD .【详解】∵∠ACB=90°,AC=BC=1,∴2,∴S 扇形ABD =2302=3606ππ⨯,又∵Rt △ABC 绕A 点逆时针旋转30°后得到Rt △ADE ,∴Rt △ADE ≌Rt △ACB ,∴S 阴影部分=S △ADE +S 扇形ABD −S △ABC =S 扇形ABD =6π, 故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.7.下列说法正确的是( )A .“明天降雨的概率是60%”表示明天有60%的时间都在降雨B .“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近 【答案】D【解析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.【详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A 不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B 不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C 不符合题意;D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D 符合题意; 故选D【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8.中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( )A .3(2)29x x -=+B .3(2)29x x +=-C .9232x x -+=D .9232x x +-= 【答案】A【解析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余1个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x 辆车,则可列方程:3(x-2)=2x+1.故选:A .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示总人数是解题关键.9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .8374y x y x -=⎧⎨-=⎩B .8374y x x y -=⎧⎨-=⎩C .8374x y y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩ 【答案】C【解析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°【答案】C 【解析】分析:如图,延长AB 交CF 于E ,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC ﹣∠1=25°.∵GH ∥EF ,∴∠2=∠AEC=25°.故选C .二、填空题(本题包括8个小题)11.计算:()()5353+-=_________ . 【答案】2【解析】利用平方差公式求解,即可求得答案.【详解】()()5353+-=(5)2-(3)2=5-3=2. 故答案为2.【点睛】此题考查了二次根式的乘除运算.此题难度不大,注意掌握平方差公式的应用.12.如图,扇形的半径为6cm ,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为 ______ .【答案】42cm【解析】求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【详解】扇形的弧长=0208161π⨯=4π, 圆锥的底面半径为4π÷2π=2,故圆锥的高为:2262-=42,故答案为42cm .【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.13.若分式的值为零,则x 的值为________.【答案】1【解析】试题分析:根据题意,得|x|-1=0,且x-1≠0,解得x=-1.考点:分式的值为零的条件.14.如图,在扇形AOB 中,∠AOB=90°,点C 为OA 的中点,CE ⊥OA 交AB 于点E ,以点O 为圆心,OC 的长为半径作CD 交OB 于点D ,若OA=2,则阴影部分的面积为 .【答案】3212π+.【解析】试题解析:连接OE、AE,∵点C为OA的中点,∴∠CEO=30°,∠EOC=60°,∴△AEO为等边三角形,∴S扇形AOE=26022 3603ππ⨯=,∴S阴影=S扇形AOB-S扇形COD-(S扇形AOE-S△COE)=229029012113 36036032πππ⨯⨯---⨯⨯()=323 432ππ-+=3 12π+.15.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.【答案】2753x yx y+=⎧⎨=⎩【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得2753x yx y+=⎧⎨=⎩,故答案是:2753x yx y+=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.16.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.【答案】912,55⎛⎫- ⎪⎝⎭【解析】直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.【详解】过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,由题意可得:∠C1NO=∠A1MO=90°,∠1=∠2=∠1,则△A1OM∽△OC1N,∵OA=5,OC=1,∴OA1=5,A1M=1,∴OM=4,∴设NO=1x,则NC1=4x,OC1=1,则(1x)2+(4x)2=9,解得:x=±35(负数舍去),则NO=95,NC1=125,故点C的对应点C1的坐标为:(﹣95,125).故答案为(﹣95,125).【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.17.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A.B.C.D.【答案】C【解析】分出情况当P点在BC上运动,与P点在CD上运动,得到关系,选出图象即可【详解】由题意可知,P从B开始出发,沿B—C—D向终点D匀速运动,则当0<x≤2,s=1 2 x当2<x≤3,s=1所以刚开始的时候为正比例函数s=12x图像,后面为水平直线,故选C【点睛】本题主要考查实际问题与函数图像,关键在于读懂题意,弄清楚P的运动状态18.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.【答案】1°【解析】根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.【详解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案为1.【点睛】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.三、解答题(本题包括8个小题)19.如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC 的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE=.【答案】(1)见解析;(2)1.【解析】试题分析:根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.试题解析:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考点:作图—复杂作图;平行四边形的性质2023182sin60(1)2-︒⎛⎫+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩,并写出它的所有整数解.【答案】(1)73-(1)0,1,1.【解析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可【详解】解:(1)原式=1﹣3,=73(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【点睛】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键21.如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.求证:△ADE≌△BFE;若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.【答案】(1)见解析;(1)见解析.【解析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.22.如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.求该抛物线的表达式;点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.【答案】(1)y=x2+6x+5;(2)①S△PBC的最大值为278;②存在,点P的坐标为P(﹣32,﹣74)或(0,5).【解析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣52,﹣32),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=12x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣32,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【详解】解:(1)将点A、B坐标代入二次函数表达式得:25550 16453a ba b-+=⎧⎨-+=-⎩,解得:16 ab=⎧⎨=⎩,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=12PG(x C﹣x B)=32(t+1﹣t2﹣6t﹣5)=﹣32t2﹣152t﹣6,∵-32<0,∴S△PBC有最大值,当t=﹣52时,其最大值为278;②设直线BP与CD交于点H,当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的中垂线上,线段BC 的中点坐标为(﹣52,﹣32), 过该点与BC 垂直的直线的k 值为﹣1, 设BC 中垂线的表达式为:y =﹣x+m ,将点(﹣52,﹣32)代入上式并解得: 直线BC 中垂线的表达式为:y =﹣x ﹣4…③,同理直线CD 的表达式为:y =2x+2…④,联立③④并解得:x =﹣2,即点H(﹣2,﹣2),同理可得直线BH 的表达式为:y =12x ﹣1…⑤, 联立①⑤并解得:x =﹣32或﹣4(舍去﹣4), 故点P(﹣32,﹣74); 当点P(P′)在直线BC 上方时,∵∠PBC =∠BCD ,∴BP′∥CD , 则直线BP′的表达式为:y =2x+s ,将点B 坐标代入上式并解得:s =5,即直线BP′的表达式为:y =2x+5…⑥,联立①⑥并解得:x =0或﹣4(舍去﹣4),故点P(0,5);故点P 的坐标为P(﹣32,﹣74)或(0,5). 【点睛】 本题考查的是二次函数,熟练掌握抛物线的性质是解题的关键.23.计算:101()2sin601tan60(2019)2π--+-+-; 解方程:24(3)9x x x +=-【答案】(1)2 (2)123,1x x =-=-【解析】(1)原式第一项利用负指数幂法则计算,第二项利用特殊角的三角函数值化简,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算可得到结果;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式=23311-+=2;(2)24(3)9x x x +=- 4(3)(3)(3)+=+-x x x x()33(3)0++=x x∴123,1x x =-=-【点睛】本题考查了实数运算以及平方根的应用,正确掌握相关运算法则是解题的关键.24.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西55°方向行驶4千米至B 地,再沿北偏东35°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B 、C 两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)【答案】B 、C 两地的距离大约是6千米.【解析】过B 作BD ⊥AC 于点D ,在直角△ABD 中利用三角函数求得BD 的长,然后在直角△BCD 中利用三角函数求得BC 的长.【详解】解:过B 作BD AC ⊥于点D .在Rt ABD 中,BD AB sin BAD 40.8 3.2(∠=⋅=⨯=千米), BCD 中,CBD 903555∠=-=,CD BD tan CBD 4.48(∠∴=⋅=千米),BC CD sin CBD 6(∠∴=÷≈千米).答:B 、C 两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.25.某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?【答案】 (1)35元;(2)30元.【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.【详解】解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x 2+700x-10000=-10(x-35)2+2250∴ 当x=35时,W 取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:210700100002000x x -+-=,解得:130x =,240x =,销售单价不得高于32元,∴ 销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.26.在连接A 、B 两市的公路之间有一个机场C ,机场大巴由A 市驶向机场C ,货车由B 市驶向A 市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C 的路程y (km )与出发时间x (h )之间的函数关系图象.直接写出连接A 、B 两市公路的路程以及货车由B 市到达A 市所需时间.求机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式.求机场大巴与货车相遇地到机场C 的路程.【答案】(1)连接A 、B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h ;(2)y=﹣80x+60(0≤x≤34);(3)机场大巴与货车相遇地到机场C 的路程为1007km . 【解析】(1)根据AB AC BC =+可求出连接A 、B 两市公路的路程,再根据货车13h 行驶20km 可求出货车行驶60km 所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C 的路程y (km )与出发时间x (h )之间的函数关系式;(3)利用待定系数法求出线段ED 对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C 的路程.【详解】解:(1)60+20=80(km),14802033÷⨯=(h) ∴连接A. B 两市公路的路程为80km ,货车由B 市到达A 市所需时间为43h . (2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、3(,0)4代入y=kx+b , 得:6030,4b k b =⎧⎪⎨+=⎪⎩ 解得:8060k b =-⎧⎨=⎩, ∴机场大巴到机场C 的路程y(km)与出发时间x(h)之间的函数关系式为38060(0).4y x x =-+≤≤(3)设线段ED 对应的函数表达式为y=mx+n(m≠0) 将点14(,0)(,60)33、代入y=mx+n , 得:103460,3m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得:6020m n =⎧⎨=-⎩, ∴线段ED 对应的函数表达式为146020().33y x x =-≤≤ 解方程组80606020,y x y x =-+⎧⎨=-⎩得471007x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴机场大巴与货车相遇地到机场C 的路程为1007km .【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是( ) A .60050x -=450x B .60050x +=450x C .600x =45050x + D .600x=45050x - 【答案】B【解析】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x 台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x =+. 故选B .【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.2.如图,数轴上有M 、N 、P 、Q 四个点,其中点P 所表示的数为a ,则数-3a 所对应的点可能是( )A .MB .NC .PD .Q 【答案】A【解析】解:∵点P 所表示的数为a ,点P 在数轴的右边,∴-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍,∴数-3a 所对应的点可能是M ,故选A .点睛:本题考查了数轴,解决本题的关键是判断-3a 一定在原点的左边,且到原点的距离是点P 到原点距离的3倍.3.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A .8374y x y x +=⎧⎨-=⎩B .8374x y x y+=⎧⎨-=⎩ C .8374x y x y -=⎧⎨+=⎩D .8374y x y x -=⎧⎨+=⎩【答案】C 【解析】根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:8374x y x y -=⎧⎨+=⎩,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.4.把多项式x 2+ax+b 分解因式,得(x+1)(x-3),则a 、b 的值分别是( )A .a=2,b=3B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-3【答案】B【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可.详解:(x+1)(x-3)=x 2-3x+x-3=x 2-2x-3所以a=2,b=-3,故选B .点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键. 5.下列大学的校徽图案是轴对称图形的是( ) A . B . C . D .【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 6.已知,两数在数轴上对应的点如图所示,下列结论正确的是( )A .a b 0+>B .ab<0C .a>bD .b a 0->【答案】C【解析】根据各点在数轴上位置即可得出结论.【详解】由图可知,b<a<0,A. ∵b<a<0,∴a+b<0,故本选项错误;B. ∵b<a<0,∴ab>0,故本选项错误;C. ∵b<a<0,∴a>b,故本选项正确;D. ∵b<a<0,∴b−a<0,故本选项错误. 故选C.7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.8.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【答案】B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°. 考点:角度的计算981)A.9 B.±9 C.±3 D.3【答案】D【解析】根据算术平方根的定义求解.【详解】∵81=9,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.即81的算术平方根是1.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.10.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.32 【答案】D【解析】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.二、填空题(本题包括8个小题)11.如图,点A(m,2),B(5,n)在函数kyx=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′.图中阴影部分的面积为8,则k 的值为 .【答案】2.【解析】试题分析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A 、B 的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=2,∴A (2,2),∴k=2×2=2.故答案为2. 考点:2.反比例函数系数k 的几何意义;2.平移的性质;3.综合题.12.正六边形的每个内角等于______________°.【答案】120【解析】试题解析:六边形的内角和为:(6-2)×180°=720°,∴正六边形的每个内角为:=120°.考点:多边形的内角与外角. 13.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 【答案】k>1【解析】根据正比例函数y=(k-1)x 的图象经过第一、三象限得出k 的取值范围即可.【详解】因为正比例函数y=(k-1)x 的图象经过第一、三象限,所以k-1>0,解得:k >1,故答案为:k >1.【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x 的图象经过第一、三象限解答.14.已知菱形的周长为10cm ,一条对角线长为6cm ,则这个菱形的面积是_____cm 1.【答案】14【解析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.【详解】解:如图,在菱形ABCD 中,BD =2.∵菱形的周长为10,BD =2,∴AB =5,BO =3,∴22AO=-=,AC=3.534∴面积16824S=⨯⨯=.2故答案为14.【点睛】此题考查了菱形的性质及面积求法,难度不大.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A= °.【答案】55.【解析】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A =∠A’,.∵∠A’DC=90°,∴∠A’ =55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.1612+3.【答案】31223.【详解】原式3+3=33故答案为33【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式. 17.如图,在网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则∠OAB 的正弦值是_____.【答案】5 【解析】如图,过点O 作OC ⊥AB 的延长线于点C ,则AC=4,OC=2,在Rt △ACO 中,22224225AC OC +=+=, ∴sin ∠OAB=525OC OA ==. 5. 18.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .【答案】8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD ,则AB=AD+CD ,所以,△ACD 的周长=AD+CD+AC=AB+AC ,解答出即可解:∵DE 是BC 的垂直平分线,∴BD=CD ,∴AB=AD+BD=AD+CD ,∴△ACD 的周长=AD+CD+AC=AB+AC=8cm ;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市2019年初中毕业暨高中招生考试数学模拟试卷(一)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1.试题卷上各题的答案用黑色签字笔或钢笔书写在答题卡...上,不得在试题卷 上直接作答; 2.答题前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..的签字笔完成; 4.考试结束,由监考人员将试题卷和答题卡...一并收回. 参考公式 :抛物线2(0)y ax bx c a =++≠的顶点坐标为 24(,)24b ac b a a --,对称轴公式为2b x a=-. 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1. 下列实数中最小的是( ) A .3 B .-2 C .π D .322.剪纸是中国传统文化艺术,下列剪纸中不是轴对称图形的是( )A. B. C. D.3. 据统计2018年末中国人口总数已经达到1390000000人,请用科学计数法表示中国2018年末人口数( ) A .710139⨯B .91039.1⨯C .8109.13⨯D .1010139.0⨯4. 已知a 是整数,满足a <3+2<a +1,求a 2+2a =( ) A . 15 B .16 C .24 D .355.已知x ,y 是方程组⎩⎨⎧-=-=-1241423y x y x ,的解,则x —y 的值是( )A .1B .2C .3D .46.如图四边形ABCD 是圆的内接四边形. 连接AO ,CO ,已知o118=∠AOC ,求=∠ABC ( )A .o118 B .o124C .o121D .o1207.下列命题的逆命题是真命题的个数有( )①如果a =2,则一定有a 2=4; ②两直线平行,内错角相等;③菱形是四条边相等的四边形; ④如果∣m ∣=∣n ∣,那么m =n . A .4B .3C .2D .18.按如图所示的运算程序运算,当输入的x =2时,输出的结果是( ) A .100B .9C .507D .5089.二次函数y =2x 2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) A .抛物线开口向下 B .抛物线经过点(2,3) C .抛物线的对称轴是直线x =1 D .抛物线与x 轴有两个交点10.如图,某校门口有一坡度为1:1.875的破面EF ,破面EF 长为34米,其对面12米处(AE =12米)处有一大楼ABCD ,在破顶F 处测得楼顶D 的仰角为35°,则大楼高AD 约为( )米.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70) A .29.94 B .42.4 C .45.4 D .50.4411.如右图,在平面直角坐标系中,正方形ABCD 的边长为5,A 的坐标为(1,4)与反比例函数xay 2的图象恰好交于CD 中点E ,则a 的值为( ) A. 64 B. 65 C. 68 D. 7011题图 G FD10题图12.若数m 使关于x 的不等式组⎪⎩⎪⎨⎧->-<-43121x x m x 至少有三个整数解,且使关于x 的分式方程4512523=--+--xm x x 有非负数解,则满足条件的整数m 的值之和是( ) A . 28 B . 30 C . 32 D . 34 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题..卡.中对应的横线上. 13.计算:32019-30sin 4270o -+++)( =______________.14.菱形ABCD 的对角线AC 长8,对角线BD 长6,那么菱形ABCD 的面积是______________. 15.一个不透明的盒子里装有四个相同大小的乒乓球,其中每个乒乓球上分别标有1,2,3,4四个不同的数字,每次摸乒乓球前先将盒子里的球摇匀,任意摸出一个乒乓球记下数字后再放回盒子,那么两次摸出的乒乓球上数字之和是4的概率为____________.16.如图,R t △ABC 中,∠ACB =90°,AB =17,BC =8,点EF 分别在AB ,AC 上,将点A 沿EF 折叠,点A 落在△ABC 内的点D 处,且△BCD 为等腰直角三角形,∠BDC =90°,AF = .17. 一天早晨,小明从家出发匀速步行到学校,小明出发一段时间后,他的妈妈发现小明忘带了数学作业,于是立即骑自行车沿小明行进的路线,匀速去追小明.妈妈追上小明将数学作业交给他,小明继续以原速度步行前往学校,妈妈赶着去上班,立即沿原路线返回家里,速度提升为原速度的45倍,妈妈和小明之间的距离为y (米)与小明从家出发后步行的时间x (分)之间的关系如图所示(妈妈交数学作业给小明的时间忽略不计). 当妈妈刚回到家时,小明离学校的距离为______________米.18. 某班主任为了奖励该班评选出来的文明学生、三好学生、优秀干部,决定购买A 、B 、C 三种不同奖品,甲商店给出三种奖品的单价分别为2元、3元、4元,若购买这三种奖品需要花49元,乙商店给出三种奖品的价格分别为2.5元、1.5元、3元,结果只花了40元就买下了这批奖品,那么A 种奖品最多可以买 件.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. DF EC BA16题图800/分17题图19. 计算:(1)(m -2n )2-2n (n -2m ); (2)1421222--÷⎪⎪⎭⎫ ⎝⎛-+-a aa a a a a .20.如图,在△ABC 中,∠ACB =90°,∠ACB 的平分线交AB 于点D ,点E 是边BC 上一点,连接DE ,∠CED =∠CAD . (1)求证:△ACD ≌△ECD ;(2)当∠B =35°时,求∠BDE 的度数.21. 2019年3月15日,我国两会落下帷幕. 13天时间里,来自各地的5000余名代表委员聚于国家政治中心,共议国家发展大计.某校初三、1班张老师为了了解同学们对两会知识的知晓情况,进行了一次小测试,测试满分100分.其中A 组同学的测试成绩分别为:91,91,86,93,85,89,89,88,87,91;B 组同学的测试成绩分别为:88,97,88,85,86,94,84,83,98,87. 根据以上数据,回答下列问题: (1)完成下表:(2)张老师将B 组同学的测试成绩分成四组并绘制成如 下条形统计图,请补全:(3)根据以上分析,你认为 组(填A 或B )的同学 对今年两会知识的知晓情况更好一些,请写出你这样判断 的理由(至少 写两条).人数/人分21题图EDCBA20题图22.王小小同学学习了函数后,想利用学习函数的经验来研究函数y 1=()()⎪⎩⎪⎨⎧>-≤3.233,x x x x 的性质.请你跟王小小一起完成研究任务: (1)完成列表的任务;(2)在图中平面直角坐标系内作出函数图象;(3)观察图象,写出函数的一条性质 ;(4)对于函数y 2=21x +b ,若y 2的图象与y 1的图象有两个不同的交点,由图象可得b 的取值范围是 .23. 2019年2月28日,荣昌国家高新技术产业开发区成立一周年.3月2日,某校老师带数学活动小组到某公司调查一年来该公司甲、乙两种产品的生产经营情况. (1)据了解,该公司生产一件甲产品所需成本比乙少5元,当天上午一个车间生产出的甲、乙产品数量相同,且甲产品共耗成本2700元,乙产品共耗成本3000元.该公司生产甲、乙产品所耗成本每件需多少元?(2)该企业销售主管告诉同学们,甲、乙产品分别按每件70元和80元的价格外销,今年2月分别销售了600件、800件.3月准备重新调价销售,据经验甲产品每涨一元,月销售量少将减少10件,企业准备将甲产品提价m 元/件进行销售;乙产品销售价格准备提高45m %,这样乙的销量将减少85m %.这样一来,3月该公司这两种产品的利润将比2月多7040元.求m 的值.22题图24.平行四边形ABCD中,∠A=45°,连接BD.(1)如图1,若BD=2AD,AD=6.求平行四边形ABCD的面积;(2)如图2,若对角线BD⊥AD,∠BAD的平分线交BD于点E,点F是CD上一点,且CF=BC,连接BF.求证:BE=2DF.D CBA24题图1FED CBA24题图225.阅读材料:将b a 2±化简,使根号内不含根号,如果你能找到两个数m ,n ,使m 2+n2=a 且mn =b ,则将a ±2b 将变成m 2+n 2±2mn ,即变成(m ±n )2开方,从而使得b a 2±化简.例如,5±26=3+2±26=23)(+()22±22×3=()223±,所以625±=()223±=3±2.请仿照上例解下列问题: (1)化简526+;(2)化简361-31.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上. 26.已知抛物线y =93x 2+32x -3与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,连接AC ,并作直线BC .(1)如图1,过点B 作BD ∥AC 交y 轴于点D ,点P 是AC 下方的抛物线上一动点,当△P AD 面积最大时,在直线BC 上有两动点M ,N (点M 在点N 的下方),且MN =2,x 轴上一动点Q ,求PM +MN +NQ +1010QA 的最小值. (2)将△OBC 绕点O 逆时针旋转180°,直线CB 在旋转过程中与x 轴交于点E ,与直线AC 交于点F ,若△EAF 为等腰三角形时,直接写出点E 的坐标..xy D PCBAO 26题图1xyO ABC26题图2xyO ABC26题备用图。

相关文档
最新文档