电磁场公式总结

合集下载

电磁场公式总结

电磁场公式总结

电磁场公式总结
整理了高考物理公式大全,所有公式均按知识点分类整理,有助于帮助大家集中掌握
高中物理公式考点。

1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位t),1t=1n/a m
2.安培力f=bil;(备注:l⊥b) {b:磁感应强度(t),f:安培力(f),i:电流强度(a),l:导线长度(m)}
3.洛仑兹力f=qvb(注v⊥b);质谱仪〔见第二册p〕 {f:洛仑兹力(n),q:带电粒子电
量(c),v:带电粒子速度(m/s)}
4.在重力忽略不计(不考量重力)的情况下,带电粒子步入磁场的运动情况(掌控两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动v=v0
(2)带电粒子沿横向磁场方向步入磁场:搞匀速圆周运动,规律如下a)f向=f洛
=mv2/r=mω2r=mr(2π/t)2=qvb;r=mv/qb;t=2πm/qb;(b)运动周期与圆周运动的半径和线
速度毫无关系,
洛仑兹力对带电粒子不做功(任何情况下);(c)解题关键:画轨迹、找圆心、定半径、
圆心角(=二倍弦切角)。

备注:
(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的`
正负;
(2)磁感线的特点及其常用磁场的磁感线原产必须掌控〔见到图及第二册p〕高中自
学方法;(3)其它有关内容:地磁场/磁电式电表原理〔见到第二册p〕/转盘加速器〔见到
第二册p〕/磁性材料。

电磁场公式总结

电磁场公式总结

电磁场公式表 精简版 名称 电场强度(场强) 电极化强度矢量 磁场感应强度矢量 磁化强度定义 单位电荷在空间某处所受电场力的大小,与电荷在该点所受电场力方向一致的一个矢量. 即:F E q = . 库伦定理:12021F 4q q r rπε= 某点处单位体积内因极化而产生的分子电矩之和.即:i V =∆∑i p P 单位运动正电荷qv在磁场中受到的最大力m F .即:m F B qv = 毕奥-萨法尔定律: 1012212L Idl r B 4r μπ⨯=⎰ 单位体积内所有分子固有磁矩的矢量和m p ∑ 加上附加磁矩的矢量和.用m p ∆∑ 表示. 均匀磁化:m m p p M V +∆=∆∑∑ 不均匀磁化:0limm m V P p M V ∆→+∆=∆∑∑ 电偶极距:e P l =q 力矩:P E ⨯ L= 磁矩:m P ISn =L IS n B =⨯ () 名称电通量 磁通量定义 电通量就是垂直通过某一面积的电力线的条数,用 e Φ表示.即:SSe E dS EdScos θΦ==⎰⎰⎰⎰垂直通过某曲面磁力线的条数叫磁通量,用m Φ表示.即:SSm B dS BdScos θΦ==⎰⎰⎰⎰在介质中求电(磁)场感应强度:方法 利用电介质时电场的高斯定理求电场感应强度利用磁介质中的安培环路定理求磁场感应强度 原理 通过电介质中任一闭合曲面的电位移通量等于该面包围的自由电荷的代数和.0d SS q ⋅=∑⎰D S 内0ε=+D E PP n δ=⋅e 0P E χε=(各向同性介质)e 1r εχ=+ 0r εεε==D E E磁场强度沿任意闭合路径的线积分(环量)等于穿过以该路径为边界的面的所有传导电流的代数和,而与磁化电流无关.d H l I ⋅=∑⎰, 0B H M μ=-M j n =⋅ , m M H χ=(各向同性介质)1r m μχ=+, 0H r B H μμμ==应用: 求介质中束缚电荷在圆柱内外轴线上产生的电场强度。

ap物理2公式表

ap物理2公式表

ap物理2公式表在学习AP物理2的过程中,熟练掌握重要的公式是至关重要的。

这些公式不仅可以帮助我们理解物理原理,还可以用于解决与该主题相关的问题。

本文将为大家提供一份AP物理2公式表,帮助大家更好地学习和掌握这门课程。

1. 电磁场与电磁波:- 库仑定律:F = k⋅(|q1 ⋅ q2|)/r^2- 电场强度:E = F/q- 电势差:V = W/q- 电位能:PE = q⋅V- 等效电容:1/Ceq = 1/C1 + 1/C2 + ...- 感应电动势:ε = -dΦ/dt- 平板电容器电容:C = ε0⋅(A/d)- 波速:v = λ⋅f2. 电路分析:- 电阻定律:V = I⋅R- 串联电阻:Rtotal = R1 + R2 + ...- 并联电阻:1/Rtotal = 1/R1 + 1/R2 + ...- 电流分流定律:I1/I2 = R2/R1- 电功率:P = I⋅V- 等效电阻:1/Req = 1/R1 + 1/R2 + ...- 电容器电荷:Q = C⋅V- 电容器电流:I = C⋅(dV/dt)3. 磁场与电磁感应:- 洛伦兹力:F = q⋅v⋅B⋅sinθ- 动生电动势:ε = B⋅v⋅l⋅sinθ- 法拉第定律:ε = -N⋅(dΦ/dt)- 比奥—萨伐尔定律:B = μ0⋅(N⋅I)/l- 感生电动势:ε = -N⋅(ΔΦ/Δt)4. 物质性质:- 折射率:n = c/v- 焦耳-汤姆逊效应:Q = m⋅c⋅ΔT- 柯西—斯蒂芬定律:n1⋅sinθ1 = n2⋅sinθ2 - 斯特藩-玻尔兹曼定律:R = ρ⋅(L/A)- 平板电容器电容:C = κ⋅ε0⋅(A/d)- 库仑摩擦力:F = μ⋅N5. 原子和核能:- 质能关系:E = mc^2- 洛伦兹变换:L = Lo⋅√(1 - v^2/c^2) - 粒子能量:E = hf- 线性空位:m = mo⋅√(1 - (v^2/c^2)) - 半衰期:N = N0⋅(1/2)^(t/t1/2)- 波长与动量:λ = h/p6. 光学:- 镜方程:1/f = 1/do + 1/di- 放大率:M = hi/ho = -di/do- 温度与颜色:I/I0 = (T/T0)^4- 干涉条纹间距:Δx = λ⋅L/d- 多普勒效应:f' = f⋅(v±vr)/(v±vs)- 扩散:I/I0 = (1/4)⋅(n^2)/(sin^2(θ/2)) - 辐射:P/(A) = σ⋅(T^4)总结:掌握这些公式对于AP物理2的学习至关重要。

电磁场公式梳理

电磁场公式梳理

公式总结注:此文档仅梳理了相关公式,需掌握的概念、知识点请仔细研读课件。

第一章•三种正交坐标系长度元,面积元和体积元表达式•三种正交坐标系坐标单位矢量的转换•标量场图和矢量场图对应的方程•方向导数,梯度•面元矢量:•场量穿过面元的通量:0=⨯r d r A)(le G dldf ⋅=∴zfe yf e x f e f zy x ∂∂+∂∂+∂∂=∇ G f =∇dSeS d n =dSA S d A θcos =⋅AA div ⋅∇=y zx A A A divA A x y z∂∂∂=∇⋅=++∂∂∂⎰⎰⋅∇=⋅VSdVA S d A⎰⎰=⋅CCdlA l d A θcos环量散度高斯散度定理环量面密度n n e A rot A rot ⋅=旋度AA rot ⨯∇=斯托克斯定理Sd A l d A SC⋅⨯∇=⋅⎰⎰)(0=∇⨯∇φ0)(=⨯∇⋅∇AԦe x∂A z ∂y −∂A y ∂z +Ԧe y ∂A x ∂z −∂A z∂x +Ԧe z ∂A y ∂x −∂A x ∂y∇×ԦA =第二章()SI J r dS=⋅⎰v J Vρ=s N lI J e dl=⋅⎰PE D +=0εEP e χε0=0r D E Eεεε===⎰⨯=222C Bl d I F Bv q E q F ⨯+=在线性各向同性介质中在线性各向同性磁介质中m M Hχ=MBH -=μB Hμ=⋅=-=-⎰⎰S V dQ dJ d S dVdtdt ρ∂=+=+∂t d DJ J J J tS d t DJ l d H S l⋅∂∂+=⋅⎰⎰)(Sd B dt d l d E S l ⋅-=⋅⎰⎰0SB d S ⋅=⎰∑⎰⎰==⋅qdV S d D VV Sρt D J H ∂∂+=⨯∇t BE ∂∂-=⨯∇=⋅∇B vD ρ=⋅∇⎪⎪⎩⎪⎪⎨⎧=-=-=-=-ρn n n n t t SN t t D D B B E E J H H 1212121200⎪⎪⎩⎪⎪⎨⎧=-⋅=-⋅=-⨯=-⨯ρ)(0)(0)()(12121212D D e B B e E E e JH H e n n n n第三章22RdS R e S d d R θcos =∙=Ω⎰⋅=PA A ld Eφφ-∇=E⎰∙=-BA B A ld Eφφ⎪⎩⎪⎨⎧==∙∇=⨯∇EDD E ερ0''s n v P e Pρρ⎧=∙⎪⎨=-∇∙⎪⎩束缚面电荷:束缚体电荷:ερφv -=∇212φφ=1212sn nφφεερ∂∂-=∂∂R RV d E v v⎰''=341ρπε⎰=vv Rdvρπεφ041⎩⎨⎧=∙∇=⨯∇00J EJ E=γ1212n nφφγγ∂∂=∂∂12φφ=p J E=∙焦耳定理恒定电场()322121mJ E E D w e ε=∙= ⎰=V e dvW ρφ21⎰=V e dvE W 221ε电场能量密度电场能量H J B ⎧∇⨯=⎨∇⋅=⎩B H μ=B A=∇⨯024RCIdl e B Rμπ⨯=⎰V d RJ A V '=⎰'πμ40Sv n J MJ M e ⎧'=∇⨯⎨'=⨯⎩介质内部束缚体电流密度:介质表面束缚面电流密度:)(H IL 单位:亨ψ=1()2m VW H B dV=∙⎰221Hw m μ=AB⨯∇=φ-∇=∂∂+tA EtA ∂∂-=⋅∇φμε()m e S w w pt∂-∇⋅=++∂⎰⎰⎰++=⋅-V Vm m S pdv dv w w dt dS d S )((,)Re j t E r t E e ω∙⎡⎤=⎢⎥⎣⎦()()()()x xm y ym z zm E r e E r e E r e E r =++复矢量0ωωρH J j DE j B B D ⎧∇⨯=+⎪∇⨯=-⎪⎨∇=⎪⎪∇=⎩1(()())2c S E r H r *=⨯⎪⎪⎪⎩⎪⎪⎪⎨⎧><<<--100101022ωεγωεγωεγ良好导体:有损耗介质:良介质:100()()()()()()c c c j j j γγωγωεεωεωμμωμω'''=-'''=-'''=-()⎪⎪⎪⎩⎪⎪⎪⎨⎧=∙=∙∙-=∙∙+=∙⎰⎰⎰⎰⎰⎰⎰dv S d D S d B Sd B j l d E S d D j J l d H V CSSC SC ρωω 0ρω j J -=∙∇⎰⎰-=∙VSdv j S d J ρω EJ H B E Dγμε===⎥⎦⎤⎢⎣⎡⨯=*)()(Re r H r E S av 21第七章k ωμμηε==1z zH e E E H e ηη=⨯=⨯,k βωμε==22k ππλωμε==1p V fk ωλμε∴===avav e w S v ||=良介质12112,,,p c V j f γμαβωμεεμεμγμληεωεεμε⎧≈≈≈⎪⎪⎨⎛⎫⎪≈=+≈ ⎪⎪⎝⎭⎩良导体222222212,,()p c ff V j f ωμγωωπαβπμγβμγμγππωμλπηβωμγμγγ⎧≈≈==≈=⎪⎪⎨⎪=≈=≈+⎪⎩⎪⎩⎪⎨⎧====⋅-∙⋅-∙∙⋅-∙⋅-∙∙r k j r e jk rk j r e jk e H e H H e E eE E n n 0000沿任意方向传播的均匀平面波c cj K γεεωμεω=-=导电媒质引入复介电常数及复波速E =E 0•e −Γz =E 0•e −αz e −jβzn k e k=波矢量E =ηH ×Ԧe n ,H =1ηԦe n ×E极化的判别方法1、利用E x 和E y 的振幅和相位之间的关系判断x xm x y ym y E e E t kz e E t kz ωϕωϕ=-++-+cos()cos()线极化时,或当→±=-πϕϕ0x y 圆极化时,且当→±=-=2/,πϕϕx y xm xm E E )波传播的波为右旋(左旋,沿若)(z 2/z x y -+-=-πϕϕ椭圆极化其他一般情形,→)波传播的波为左旋(右旋,沿若)(z 2/z x y -++=-πϕϕ)波传播的波为右旋(左旋,沿若)(z z x y -+<-<-0ϕϕπ)波传播的波为左旋(右旋,沿若)(z z x y -+<-<πϕϕ02、利用复数形式判断)()(y x kz j ym y kz j xm x eE e e E e E ϕϕ+-+-∙+= y xj ym y j xm x eE e e E e z E ϕϕ +==∙)0()sin (cos )sin (cos y y ym y x x xm x j E e j E e ϕϕϕϕ+++=)sin sin ()cos cos (y ym y x xm x y ym y x xm x E e E e j E e E e ϕϕϕϕ+++=IR E j E +=线极化或或若:→==00//I R I R E E E E圆极化且若→=⊥||||I R I R E E E EI R I R E E E E 若、与波的传播方向符合右手螺旋关系,则为右旋波;若、与波的传播方向符合左手螺旋关系,则为左旋波。

电磁场公式整理

电磁场公式整理

第一章标量三重积: 矢量三重积方向导:梯度:计算公式:矢量线方程:通量:散度:散度计算公式: 散度定理(高斯定理): 旋度:斯托克斯定理: 拉普拉斯运算:第二章电流连续性方程微分形式:对于恒定电流场: )()()(B A C A C B C B A⨯⋅=⨯⋅=⨯⋅CB A BC A C B A )()()(⋅-⋅=⨯⨯grad nu u en∂=∂zy x x y x∂∂+∂∂+∂∂=∇e e e ),,(d ),,(d ),,(d z y x F zz y x F y z y x F x z y x ==00cos cos cos |lim M l u u u u ul lx y z αβγ∆→∂∆∂∂∂==++∂∆∂∂∂d d d n SSψψF S F e S==⋅=⋅⎰⎰⎰ττ∆⋅=⎰→∆SSd F div F lim 0z F y F x F Sd F div z y x S ⋅∇=∂∂+∂∂+∂∂=∆⋅=⎰→∆ττF lim⎰⎰⋅∇=⋅VSVF S F d dmax ]rot [F e F n n =⨯∇zy x z y xF F F z y xe e e F ∂∂∂∂∂∂=⨯∇=⎰⎰⋅⨯∇=⋅SCS F l F d d )()(2F F F ⨯∇⨯∇-⋅∇∇=∇uu 2)(∇=∇⋅∇0d ⎰=⋅SS J 、0=⋅∇JtJ ∂∂-=⋅∇ρ静电场散度:高斯定理的积分形式: 静电场旋度:毕奥萨法尔定律:任意电流回路 C 产生的磁感应强度恒定磁场散度: 恒定磁场是无散场恒定磁场旋度: 恒定磁场是有旋场,它在任意点的旋度与该点的电流密度成正比,电流是磁 场的旋涡源。

极化强度:----------电介质的电极化率电位移矢量:电介质中高斯定理的积分形式: 磁化强度矢量: 磁化电流体密度: 真空中安培环路定理推广到磁介质中: 磁场强度 :M B H-=0μ麦克斯韦方程组的微分形式传导电流和变化的电场都能产生涡旋磁场。

电磁场公式总结

电磁场公式总结
十二、磁场
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A•m
2.安培力F=BIL;(注:L⊥B) {B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪〔见第二册P155〕 {f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联 串联电路(P、U与R成正比) 并联电路(P、I与R成反比)
电阻关系(串同并反) R串=R1+R2+R3+…1/R并=1/R1+1/R2+1/R3+…
9.电势能:EA=qUA {EA:带电体在A点的电势能(J),q:电量(C),UA:A点的电势(V)}
10.电势能的变化ΔEAB=EB-EA {带电体在电场中从A位置到B位置时电势能的差值}
11.电场力做功与电势能变化ΔEAB=-WAB=-qUAB (电势能的增量等于电场力做功的负值)
12.电容C=Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。

电磁场公式大全

电磁场公式大全

电磁场公式大全电磁场是我们周围最为普遍的自然界现象之一,它会影响到我们大自然生态系统中的每一个角落。

有关电磁场的科学概念及其相关证据已经广泛运用于航空航天、电力技术和通信技术等各类技术领域,无论是工业应用还是实验室研究,都需要掌握一些常用的电磁场公式。

为了更好地了解电磁场的特性和应用,有必要先从“电磁场公式大全”入手,下面将介绍电磁场大全中的几个常用的公式:1、电磁场力:电磁场力F由电荷q、速度V及磁场B给出:F=qvXB;2、电磁势:电通量Φ∖电压U、电流I及磁通量B给出:U=Φ/BI;3、电偶极子:电偶极子表示两个带电粒子构成的电场,其公式:V=kq1q24/r;4、磁通量:磁通量表示电磁场中电流线圈的数量,由公式:B=μo1;5、磁密度:由公式表示,磁密度H=B/u;6、磁力线:磁力线表示一个磁场中的磁性物质的分布,由公式:m=H∕I;7、电磁功率:由公式表示,电磁功率P=UXI;8、电磁能量:磁场中的电磁能量由公式表示,W=U2∕2C;9、电磁感应强度:由公式表示,E=BXv;10、磁矩:磁矩由公式表示,M=BIA;上述九个公式中,前五个是电磁力学,后四个是电磁场的基本公式,它们是电磁理论研究的重要基础。

无论是在哪个领域进行电磁场研究,都要掌握和理解上述公式,这有利于更好地掌握电磁场的性质及运用。

现代电磁场理论的发展也使得上述的公式可以进行更加复杂的分析,包括电磁相位、电磁双极子、多维电磁场、电磁辐射以及强磁场等等,但是其基础公式仍然是上述九条。

由于电磁场是物理学中十分重要的领域,因此,要想真正理解它们,必须熟练掌握和掌握上述电磁场公式,以便在实际应用中正确使用它们。

当然,随着科学技术的发展,电磁场理论也不断发展,它们也将提供更多更强大的公式,以帮助我们更好地理解和使用电磁场的特性和运用。

电磁场与电磁波公式总结

电磁场与电磁波公式总结

标量场的梯度:z y x z y x e e e ∂∂+∂∂+∂∂=∇ϕϕϕϕTip :3'r r 'r r 'r r 1---=-∇方向导数P4库仑定律 q 电荷受力:3020R 4'R 4'F Rqq R q q πεπε==︒高斯定理:⎰=⋅S QdS E 0ε(Q:S 面内电量的代数和)E ερ=⋅∇0E =⨯∇ 设c 为一常数,u 和v 为数量场,很容易证明下面梯度运算法则的成立。

.︒==∇R R R R 31R R R -=∇ R 为空间两点(x,y,z)与(x’,y’,z’)的距离电位: ϕ-∇=E 'r r 4)(0-=πεϕq r (对于位于源点r ′处的点电荷q ,其在r 处产生的电位) ⎰⋅=-00l E )()(P P d P P ϕϕ(Up-p0,看清上下限)⎰⋅=0)(P P dl E P ϕ ⎰∞⋅=P dl E P )(ϕ02ερϕ-=∇ 【泊松方程】 02=∇ϕ【拉普拉斯方程】电偶极子:电偶极矩 l p q =(矢量)⎪⎪⎭⎫ ⎝⎛-=210114r r q πεϕ304r p r πε⋅=(电偶极子在空间任意点P 的电位)p30 极化介质产生的电位:'')'r r ()'(P 41)(30dV r r r r V ⋅--⋅=⎰πεϕ⎰⎰-⋅∇-+-⋅=V S dV r r dS r r '|'|P 41'|'|n P 4100πεπε由上式可以看出等效电荷:nP P ⋅=⋅-∇=SP P ρρ 电位移矢量: P E D 0+=ε0E D =⨯∇=⋅∇ρ (自由电荷)⎰⎰=⋅=⋅lS d Qd 0l E S D ερϕ-=∇2(均匀介质中的泊松方程) 静电场的边界条件: S n n D D ρ=-12t t E E 12=21ϕϕ=S nn ρϕεϕε=∂∂-∂∂2211 tanθ1tanθ2=ε1ε2P36电容相关p36电场能量: dV r r W V e )()(21ϕρ⎰=⎰⋅=V dV D E 21 能量密度: 221D E 21E w e ε=⋅= 电容器静电能:p42第三章n dSdI n S I J S =∆∆=→∆0lim n dl dI n l I J S S =∆∆=→∆0lim 电荷守恒p52:⎰⎰-=-=⋅V S dV dt d dt dq dS J ρ 欧姆定律:E J σ= 焦耳定律:E J p ⋅= 恒定电流场基本方程及边界条件p5500=⨯∇=⋅∇E J ⎰⎰=⋅=⋅l S dl E dS J 00 0)(2=-∇=-∇⋅∇=⋅∇ϕϕE0)(0)(1212=-∙=-⨯J J n E E n 或t t nn E E J J 2121==2121tan tan σσθθ= 当σ1>>σ2,即第一种媒质为良导体时,第二种媒质为不良导体时,只要θ1≠π/2, θ2≈0,即在不良导体中,电力线近似地与界面垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在任何物理过程中电荷的代数和总是守恒的.
人生在搏,不索何获
电位差(电压):单位正电荷的电位能差.即:B AB AB
AB
A W A U Edl q q
===⎰u r r .
人生在搏,不索何获
人生在搏,不索何获
电场和磁场的本质及内在联系:
静电场问题求解
基础问题
1.场的唯一性定理:
①已知V 内的自由电荷分布
②V 的边界面上的φ值或n ∂∂/φ值,
则V 内的电势分布,除了附加的常数外,由泊松方程
ερφ/2
-=∇
及在介质分界面上的边值关系
σφ
φ
ε
εφφ-=∂∂-∂∂=)()(,n
n j
i
j
i
唯一的确定。

两种静电问题的唯一性表述:
⑴给定空间的电荷分布,导体上的电势值及区域边界上的电势或电势梯度值→空间的电势分布和导体上的面电荷分布(将导体表面作为区域边界的一部分)
⑵给定空间的电荷分布,导体上的总电荷及区域边界上的电势或电势梯度值→空间的电势分布和导体上的面电荷分布(泊松方程及介质分界面上的边值关系)
2.静电场问题的分类:
分布性问题:场源分布E ⇔ρ电场分布
边值性问题:场域边界上电位或电位法向导数→电位分布和导体上电荷分布
3.求解边值性问题的三种方法: 分离变量法
①思想:根据泊松方程初步求解φ的表达式,再根据边值条件确定其系数
电像法
①思想:根据电荷与边值条件的等效转化,用镜像电荷代替导体面(或介质面)上的感应电荷(或极化电荷) 格林函数法
①思想:将任意边值条件转化为特定边值条件,根据单位点电荷来等价原来边界情况 静电场,恒流场,稳恒磁场的边界问题:
电荷
电场
磁场
电流
变化 变化
运动
激发
激发
电磁场的认识规律
一.静电场的规律: 1.真空中的静电场; 电场强度E
dv
R R
z y x z y x E v ρ
ϖ
3
)',','(41),,(,
ρπε⎰
=
电场电势V 静电场的力F 静电场的能量
2.介质中的静电场; 电位移矢量D
0ε=+D E P v v v
极化强度P
E p ρρ)(0εε-= e 0P E χε=u r u r (各向同性介质)
二.稳恒磁场与稳恒电流场
1.真空中的磁场强度B
3121211
4R R L d I u B c ϖ
ρϖ⨯=⎰
π
dv R R r J u
r B v 30)'(4)(ϖϖϖ⨯=⎰π
'430
,
dV R R v B ⋅⨯=⎰
Ωϖϖϖρπ
μdq R R v v
304ϖ
ϖ⨯=⎰πμ30
4R R v q πμϖϖ⨯=
2.真空中的电流密度J
t
j ∂∂-
=•∇ρ
荷密度
J ρν=⋅
3.磁场矢位A
')'(140dv r J R A v ϖ
ϖρ⎰=πμ,A B ρρ
⨯∇=
4.介质中的磁场感应强度H
H B μ=
5.磁化强度M
H )1(ρϖ-=r u M (各向m M H χ=r r 同性介质)
6.磁场中的力F
7.磁场中的能量
三.麦克斯韦方程组与介质中的麦克斯韦方程组
实质:反映场与电荷及其运动形式(电流)的联系,揭示电场与磁场的相互转换关系
电荷:(自由电荷,极化电荷)
D ρ∇⋅= P ρρ∇⋅=-
电流:(传导电流,位移电流,磁化电流)
M J M ϖϖ⨯∇=, t E t D J D ∂∂=∂∂=ρρϖε,0=∂∂+⋅∇t J ρϖ
麦克斯韦方程组与介质中的麦克斯韦方程组包含是各种矢量的散度与旋度运算,有微分,积分形式两种
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅⋅=⋅⋅+=⋅-=⋅⎰⎰⎰⎰⎰⎰0s d B Q s d D s d D dt
d I l d H s d B dt d l d E p s s f u s u ϖϖϖ
ϖϖϖϖϖϖρϖϖ(自由电荷) ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⋅∇=⋅∇∂∂+=⨯∇∂∂-=⨯∇0B E t E J B t B
E ϖϖϖϖϖϖ
ϖερεμμ
四.三大定律:
欧姆定律
E J ϖρσ=
焦耳定律 安倍定律
五.守恒定律: 电荷守恒 能量守恒
六.在边界条件下的电磁现象:
⎪⎪⎪⎩⎪⎪⎪⎨⎧=-⨯=-⨯=-⋅=-⋅=-⋅传导电流面密度)
自由电荷面密度),或()(0)(0)()(()(1212201212S S S J H H n E E n
B B n
E E n D D n ϖϖϖϖϖϖϖϖϖ
ϖϖϖϖϖερρ
七.静电场与稳恒磁场的比较:

电磁波在空间的传播
1.亥姆霍兹方程
2.电磁波在介质分界面的反射与折射
菲涅耳公式
布儒斯特角
全反射
垂直入射
3.电磁波在导波结构中传播
导波的分类
矩形波导
传输线理论
4.电磁波传播的边界条件
电磁波的辐射
1.达朗贝尔方程
库伦规范
洛伦兹规范
2.电偶极场和电偶极辐射
近区电磁场
远区电磁场
边界条件。

相关文档
最新文档