2015年中考数学试题及答案
2015年江苏省徐州市中考数学试卷及答案解析

°.
(2)求抛物线的函数表达式.
(3)若 P 为抛物线上位于第一象限内的一个动点,以 P、O、A、E 为顶点的四边形面积
记作 S,则 S 取何值时,相应的点 P 有且只有 3 个?
第 6 页 共 25 页
2015 年江苏省徐州市中考数学试卷
参考答案与试题解析
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分) 1.(3 分)﹣2 的倒数是( )
(3)若该校 2014 年共有 1200 名学生,请你统计其中认为数学课“总是”开展小组合作
学习的学生有多少名?
(4)相比 2012 年,2014 年数学课开展小组合作学习的情况有何变化?
23.(8 分)如图,点 A,B,C,D 在同一条直线上,点 E,F 分别在直线 AD 的两侧,且
AE=DF,∠A=∠D,AB=DC.
∴此图形是中心对称图形,它也是轴对称图形,
∴选项 D 不正确.
故选:B.
7.(3 分)如图,菱形中,对角线 AC、BD 交于点 O,E 为 AD 边中点,菱形 ABCD 的周长
为 28,则 OE 的长等于( )
第 8 页 共 25 页
A.3.5
B.4
C.7
【解答】解:∵菱形 ABCD 的周长为 28,
C.至少有 2 个球是黑球
D.至少有 2 个球是白球
6.(3 分)下列图形中,是轴对称图形但不是中心对称图形的是( )
A.直角三角形
B.正三角形
C.平行四边形
D.正六边形
7.(3 分)如图,菱形中,对角线 AC、BD 交于点 O,E 为 AD 边中点,菱形 ABCD 的周长
为 28,则 OE 的长等于( )
(2)点 C 与点 O 的距离的最大值=
2015陕西中考数学试题及答案word版

2015陕西中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 2D. -3答案:C2. 计算下列哪个表达式的结果为负数?A. 3 - (-2)B. -4 - 2C. 5 + (-3)D. 2 × (-3)答案:D3. 哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C4. 以下哪个是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a/x + b5. 计算下列哪个表达式的结果是0?A. 3 × 0B. 0 - 0C. 0 + 0D. 0 ÷ 0答案:A6. 一个圆的半径是5厘米,那么它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 计算下列哪个表达式的结果为1?A. (-1)^2B. (-1)^3C. (-1)^4D. (-1)^5答案:C8. 一个等差数列的首项是3,公差是2,那么它的第五项是多少?A. 11B. 13C. 15D. 17答案:A9. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长度是A. 5B. 6C. 7D. 8答案:A10. 计算下列哪个表达式的结果为-1?A. (-1) × (-1)B. (-1) ÷ (-1)C. (-1) + (-1)D. (-1) - (-1)答案:C二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是________。
答案:712. 一个数的绝对值是5,那么这个数可以是________或________。
答案:5或-513. 一个数的平方是36,那么这个数可以是________或________。
2015年河南省中考数学试题及答案(解析版)

15,∴y2<y1<y3.
[来源 : 中国% ^@教 *育 ~出 版网 ]
方法二:解:设点 A、B、C 三点到抛物线对称轴的距离分别为 d1、d2、d3,∵y= (x 2) 2 1 ∴对称轴为直线 x=2,∴d1=2,d2=2- 2 ,d3=4∵2- 2 <2<4,且 a=1>0,∴y2<y1<y3. 方法三:解:∵y=
( 2, 1) ( 2, 2) ( 3, 1) ( 3, 2)
[ 来 源 : z ^ z s @ * t e p . c ~ o & m ]
或画树状图如解图:
第一次 第二次 1 2
1 23 12
2 2
2
3
[ 来
源
: 中
@ 国
教
^ 育
~ 出
版
* 网
% ]
3 1 2 23 1 2 2 3 第 13 题 解 图 由 列 表 或 树 状 图 可 得 所 有 等 可 能 的 情 况 有 16 种 , 其 中 两次抽出卡片所标数字不同
[ 中 国 教 育 @ 出 ~ ^ 版 * 网 & ]
的 情 况 有 10 种 , 则 P=
10 5 . 16 8
B E
14. 如图,在扇形 AOB 中,∠AOB=90° ,点 C 为 OA 的中点, CE⊥OA 交 AB 于点 E,以点 O 为圆心,OC 的长为半径 作 CD 交 OB 于点 D,若 OA=2,则阴影部分的面积为
(x 2)
2
1 ,∴对称轴为直线 x=2,∴点 A(4, y1)关于 x=2
的对称点是(0,y1).∵-2<0< 2 且 a=1>0,∴y2<y1<y3.
13. 现有四张分别标有数字 1,2,3,4 的卡片,它们除数字外完
2015年河北省中考数学试卷(含详细答案)

绝密★启用前河北省2015年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:32(1)-⨯-=( )A.5B.1C.1-D.62.下列说法正确的是( )A.1的相反数是1-B.1的倒数是1-C.1的立方根是1±D.1-是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是 ( )图1图2 图3AB CD4.下列运算正确的是( )A.111()22-=-B.76106000000⨯=C.22(2)2a a=D.325a a a=5.右图中的三视图所对应的几何体是( )A BC D6.如图,,AC BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )A.ABE△B.ACF△C.ABD△D.ADE△7.在数轴上标注了四段范围,如图,( )A.段①B.段②C.段③D.段④8.如图,AB EF∥,CD EF⊥,50BAC∠=,则ACD∠=( )A.120B.130C.140D.1509.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30和南偏西45方向上.符合条件的示意图是( )A BC D毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共26页)数学试卷第2页(共26页)数学试卷 第3页(共26页) 数学试卷 第4页(共26页)10.一台印刷机每年印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当2x =时,20y =,则y 与x 的函数图象大致是( )AB C D 11.利用加减消元法解方程组2510, 536, x y x y +=-⎧⎨-=⎩①②下列做法正确的是( )A .要消去y ,可以将52⨯+⨯①②B .要消去x ,可以将3(5)⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将(5)2⨯-+⨯①②12.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A .12B .13C .15D .1614.如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限,则a 可能在( )A .12a <<B .20a -<<C .32a --≤≤D .104a --<<15.如图,点A ,B 为定点,定直线l AB ∥,P 是l 上一动点,点M ,N 分别为,PA PB 的中点,对于下列各值: ①线段MN 的长; ②PAB △的周长; ③PMN △的面积;④直线,MN AB 之间的距离; ⑤APB ∠的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A .甲、乙都可以B .甲、乙都不可以C .甲不可以,乙可以D .甲可以,乙不可以第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 17.若0||2015a =,则a = .18.若20a b =≠,则222a b a ab--的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则312∠+∠-∠=.20.如图,9BOC ∠=,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ; 再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ; 再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:2351x x x -=-+.(1)求所捂的二次三项式;(2)若1x ,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD ,并写出了如下不完整的已知和求证. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为 .23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米. (1)只放入大球,且个数为x 大,求y 与x 大的函数关系式(不必写出x 大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x 小. ①求y 与x 小的函数关系式(不必写出x 小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产,A B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:,A B 产品单价变化折线图第三次并求得了产品三次单价的平均数和方差:5.9A x =;2222143[(6 5.9)(5.2 5.9)(6.5 5.9)]3150A S =-+-+-=. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调(0)m m >%,使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.嘉淇毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页) 数学试卷 第8页(共26页)25.(本小题满分11分)如图,已知点)(0,0O ,0()5,A -,()2,1B ,抛物线l :2()1y x h =--+(h 为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;(2)设点C 的纵坐标为C y ,求C y 的最大值,此时l 上有两点11(,)x y ,22(,)x y ,其中120x x >≥,比较1y 与2y 的大小;(3)当线段OA 被l 只分为两部分,且这两部分的比是1:4时,求h 的值.26.(本小题满分14分)平面上,矩形ABCD 与直径为QP 的半圆K 如图1摆放,分别延长DA 和QP 交于点O ,且60DOQ ∠=,3OQ OD ==,2OP =,1OA AB ==.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向开始旋转,设旋转角为(060)αα≤≤.发现 (1)当0α=,即初始位置时,点P 直线AB 上(填“在”或“不在”). 求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中,简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值;(3)如图2,当点P 恰好落在BC 边上时,求α及S 阴影.图2图3图4拓展 如图3,当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设()0BM x x =>,用含x 的代数式表示BN 的长,并求x 的取值范围. 探究 当半圆K 与矩形ABCD 的边相切时,求sin α的值.图15 / 13河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A . 【考点】有理数的运算 2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A . 【考点】相反数、倒数、立方根及无理数的概念 3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C . 【考点】图形的折叠 4.【答案】D【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D .【考点】幂的运算 5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B . 【考点】几何体的三视图 6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△AC F 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B . 【考点】三角形的外心 7.【答案】C2 1.414 2.828=⨯=C .数学试卷 第11页(共26页)数学试卷 第12页(共26页)【考点】数轴与无理数的估算 8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥A B E F ,∴∥C H E F ,∴ 50∠=∠=︒H C A C A B ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。
2015年山东省烟台市中考数学试题及解析

2015年山东省烟台市中考数学试卷一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A 、B、C、D 四个备选答案,其中并且只有一个是正确的1(3分)(2015•烟台)﹣的相反数是()A﹣B C﹣D2(3分)(2015•烟台)剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A B C D3(3分)(2015•烟台)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A B C D4(3分)(2015•烟台)下列等式不一定成立的是()A=(b≠0)B a3•a﹣5=(a≠0)C a2﹣4b2=(a+2b)(a ﹣2b)D (﹣2a3)2=4a65(3分)(2015•烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差85 83 81 015如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A平均数B众数C方差D中位数6(3分)(2015•烟台)如果x 2﹣x﹣1=(x+1)0,那么x的值为()A2或﹣1 B0或1 C 2 D﹣17(3分)(2015•烟台)如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A B 2 C D8(3分)(2015•烟台)如图,正方形ABCD的边长为2,其面积标记为S 1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A()2012B()2013C()2012D()20139(3分)(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A9 B10 C9或10 D8或1010(3分)(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l 1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地其中正确的个数是()A 1B 2C 3D 411(3分)(2015•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A b2>4abB ax2+bx+c≥﹣6C若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣112(3分)(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是()A B C D二、填空题(本大题共6个小题,每小题3分,满分18分)13(3分)(2015•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是14(3分)(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是15(3分)(2015•烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为16(3分)(2015•烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是17(3分)(2015•烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为18(3分)(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为三、解答题(本大题共7小题,满分66分)19(6分)(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值20(8分)(2015•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣15小时;C:15小时﹣﹣2小时;D:2小时以上根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率21(8分)(2015•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的25倍(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要15小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22(9分)(2015•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=18米,∠CDE=60°且根据我市的地理位置设定太阳能板AB的倾斜角为43°AB=15米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于05米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈06820,cos43°≈07314,tan43°≈09325,结果保留两位小数)23(9分)(2015•烟台)如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=(1)试判断△ABC的形状,并说明理由(2)已知半圆的半径为5,BC=12,求sin∠ABD的值24(12分)(2015•烟台)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(﹣1,0),(0,﹣2),点D在x轴上且AD为⊙M的直径点E是⊙M与y轴的另一个交点,过劣弧上的点F作FH⊥AD于点H,且FH=15(1)求点D的坐标及该抛物线的表达式;(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标;(3)在抛物线的对称轴上是否存在点Q,使△QCM是等腰三角形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由25(14分)(2015•烟台)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由2015年山东省烟台市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,满分36分)每小题都给出标号为A、B 、C、D四个备选答案,其中并且只有一个是正确的1(3分)(2015•烟台)﹣的相反数是()A﹣B C﹣D考点:相反数分析:根据只有符号不同的两个数叫做互为相反数解答解答:解:﹣的相反数是故选B点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键2(3分)(2015•烟台)剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A B C D考点:中心对称图形;轴对称图形分析:根据轴对称图形与中心对称图形的概念求解解答:解:A、是轴对称图形,不是中心对称图形故错误;B、是轴对称图形,也是中心对称图形故错误;C、不是轴对称图形,也不是中心对称图形故错误;D、不是轴对称图形,是中心对称图形故正确故选D点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合3(3分)(2015•烟台)如图,将一个圆柱体放置在长方体上,其中圆柱体的底面直径与长方体的宽相平,则该几何体的左视图是()A B C D考点:简单组合体的三视图分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中解答:解:从左面看易得左视图为:故选A点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图4(3分)(2015•烟台)下列等式不一定成立的是()B a3•a﹣5=(a≠0)A=(b≠0)C a2﹣4b2=(a+2b)(a﹣2b)D(﹣2a3)2=4a6考点:二次根式的乘除法;幂的乘方与积的乘方;因式分解-运用公式法;负整数指数幂分析:分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可解答:解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(a+2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意故选:A点评:此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键5(3分)(2015•烟台)丽华根据演讲比赛中九位评委所给的分数作了如下表格平均数中位数众数方差85 83 81 015如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A平均数B众数C方差D中位数考点:统计量的选择分析:根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数解答:解:去掉一个最高分和一个最低分对中位数没有影响,故选D点评:本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大6(3分)(2015•烟台)如果x2﹣x﹣1=(x+1)0,那么x的值为()A2或﹣1 B0或1 C 2 D﹣1考点:解一元二次方程-因式分解法;零指数幂分析:首先利用零指数幂的性质整理一元二次方程,进而利用因式分解法解方程得出即可解答:解:∵x2﹣x﹣1=(x+1)0,∴x2﹣x﹣1=1,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,当x=﹣1时,x+1=0,故x≠﹣1,故选:C点评:此题主要考查了因式分解法解一元二次方程以及零指数幂的性质,注意x+1≠0是解题关键7(3分)(2015•烟台)如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB中点,则tan∠BFE的值是()A B 2 C D考点:菱形的性质;解直角三角形分析:首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案解答:解:∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan∠BFE的值为故选D点评:此题考查菱形的性质,关键是根据含30°的直角三角形的性质和三角函数解答8(3分)(2015•烟台)如图,正方形ABCD的边长为2,其面积标记为S 1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2015的值为()A()2012B()2013C()2012D()2013考点:等腰直角三角形;正方形的性质专题:规律型分析:根据题意可知第2个正方形的边长是,则第3个正方形的边长是,…,进而可找出规律,第n个正方形的边长是,那么易求S 2015的值解答:解:根据题意:第一个正方形的边长为2;第二个正方形的边长为:;第三个正方形的边长为:,…第n个正方形的边长是,所以S2015的值是()2012,故选C点评:本题考查了正方形的性质、等腰直角三角形的性质、勾股定理解题的关键是找出第n 个正方形的边长9(3分)(2015•烟台)等腰直角三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,则n的值为()A9 B10 C9或10 D8或10考点:根的判别式;一元二次方程的解;等腰直角三角形分析:由三角形是等腰直角三角形,得到①a=2,或b=2,②a=b①当a=2,或b=2时,得到方程的根x=2,把x=2代入x2﹣6x+n﹣1=0即可得到结果;②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,由△=(﹣6)2﹣4(n﹣1)=0可的结果解答:解:∵三角形是等腰直角三角形,∴①a=2,或b=2,②a=b两种情况,①当a=2,或b=2时,∵a,b是关于x的一元二次方程x2﹣6x+n﹣1=0的两根,∴x=2,把x=2代入x2﹣6x+n﹣1=0得,22﹣6×2+n﹣1=0,解得:n=9,当n=9,方程的两根是2和4,而2,4,2不能组成三角形,故n=9不合题意,②当a=b时,方程x2﹣6x+n﹣1=0有两个相等的实数根,∴△=(﹣6)2﹣4(n﹣1)=0解得:n=10,故选B点评:本题考查了等腰直角三角形的性质,一元二次方程的根,一元二次方程根的判别式,注意分类讨论思想的应用10(3分)(2015•烟台)A、B两地相距20千米,甲、乙两人都从A地去B地,图中l 1和l2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地其中正确的个数是()A 1B 2C 3D 4考点:一次函数的应用分析:观察函数图象,从图象中获取信息,根据速度,路程,时间三者之间的关系求得结果解答:解:由函数图象可知,乙比甲晚出发1小时,故①正确;乙出发3﹣1=2小时后追上甲,故②错误;甲的速度为:12÷3=4(千米/小时),故③正确;乙的速度为:12÷(3﹣1)=6(千米/小时),则甲到达B地用的时间为:20÷4=5(小时),乙到达B地用的时间为:20÷6=(小时),1+3,∴乙先到达B地,故④正确;正确的有3个故选:C点评:本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息11(3分)(2015•烟台)如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A b2>4abB ax2+bx+c≥﹣6C若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD关于x的一元二次方程ax 2+bx+c=﹣4的两根为﹣5和﹣1考点:二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点;二次函数与不等式(组)分析:由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断解答:解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ab >0所以b2>4ab,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D 选项正确故选C点评:本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,抛物线与x 轴的交点远近二次函数与不等式的关系12(3分)(2015•烟台)如图,Rt△ABC中∠C=90°,∠BAC=30°,AB=8,以2为边长的正方形DEFG的一边CD在直线AB上,且点D与点A重合,现将正方形DEFG沿A﹣B的方向以每秒1个单位的速度匀速运动,当点D与点B重合时停止,则在这个运动过程中,正方形DEFG与△ABC 的重合部分的面积S与运动时间t之间的函数关系图象大致是()A B C D考点:动点问题的函数图象分析:首先根据Rt△ABC中∠C=90°,∠BAC=30°,AB=8,分别求出AC、BC,以及AB 边上的高各是多少;然后根据图示,分三种情况:(1)当0≤t≤2时;(2)当2时;(3)当6<t≤8时;分别求出正方形DEFG与△ABC的重合部分的面积S的表达式,进而判断出正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是哪个即可解答:解:如图1,CH是AB边上的高,与AB相交于点H,,∵∠C=90°,∠BAC=30°,AB=8,∴AC=AB×cos30°=8×=4,BC=AB×sin30°=8×=4,∴CH=AC×,AH=,(1)当0≤t≤2时,S==t2;(2)当2时,S=﹣=t2[t2﹣4t+12]=2t﹣2(3)当6<t≤8时,S=[(t﹣2)•tan30°]×[6﹣(t﹣2)]×[(8﹣t)•tan60°]×(t ﹣6)=[]×[﹣t+2+6]×[﹣t]×(t﹣6)=﹣t2﹣t2﹣30=﹣t2﹣6﹣24综上,可得S=∴正方形DEFG与△ABC的重合部分的面积S与运动时间t之间的函数关系图象大致是A图象故选:A点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图(2)此题还考查了直角三角形的性质和应用,以及三角形、梯形的面积的求法,要熟练掌握二、填空题(本大题共6个小题,每小题3分,满分18分)13(3分)(2015•烟台)如图,数轴上点A、B所表示的两个数的和的绝对值是1考点:数轴;绝对值;有理数的加法分析:首先根据数轴得到表示点A、B的实数,然后求其和绝对值即可解答:解:解:从数轴上可知:表示点A的数为﹣3,表示点B的数是2,则﹣3+2=﹣1,|﹣1|=1,故答案为:1点评:本题考查了数轴和绝对值,解题的关键是从数轴上得到点A、点B表示的数,然后求其和的绝对值14(3分)(2015•烟台)正多边形的一个外角是72°,则这个多边形的内角和的度数是540°考点:多边形内角与外角分析:根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和解答:解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°故答案为:540°点评:考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握15(3分)(2015•烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为考点:概率公式;一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的图象分析:用不经过第四象限的个数除以总个数即可确定答案解答:解:∵4张卡片中只有第2个精光第四象限,∴取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为,故答案为:点评:本题考查的是概率的求法如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=16(3分)(2015•烟台)如图,将弧长为6π,圆心角为120°的圆形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB重合(粘连部分忽略不计)则圆锥形纸帽的高是6考点:圆锥的计算分析:根据弧长求得圆锥的底面半径和扇形的半径,利用勾股定理求得圆锥的高即可解答:解:∵弧长为6π,∴底面半径为6π÷2π=3,∵圆心角为120°,∴=6π,解得:R=9,∴圆锥的高为=6,故答案为:6点评:本题考查了圆锥的计算,解题的关键是能够利用圆锥的底面周长等于侧面展开扇形的弧长求得圆锥的底面半径,难度一般17(3分)(2015•烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y=(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为考点:反比例函数系数k的几何意义分析:由A、C的坐标分别是(4,0)和(0,2),得到P(2,1),求得k=2,得到反比例函数的解析式为:y=,求出D(4,),E(1,2)于是问题可解解答:解:∵四边形OABC是矩形,∴AB=OC,BC=OA,∵A、C的坐标分别是(4,0)和(0,2),∴OA=4,OB=2,∵P是矩形对角线的交点,∴P(2,1),∵反比例函数y=(x>0)的图象过对角线的交点P,∴k=2,∴反比例函数的解析式为:y=,∵D,E两点在反比例函数y=(x>0)的图象的图象上,∴D(4,),E(1,2)∴S 阴影=S矩形﹣S△AOD﹣S△COF﹣S△BDE=4×2﹣×2﹣×2﹣××3=故答案为:点评:本题考查了反比例函数系数k的几何意义,待定系数法求函数的解析式,矩形的性质三角形的面积的求法,掌握反比例函数系数k的几何意义是解题的关键18(3分)(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m的值为2﹣2或2+2考点:直线与圆的位置关系;一次函数的性质分析:根据直线ly=﹣x+1由x轴的交点坐标A(0,1),B(2,0),得到OA=1,OB=2,求出AB=;设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,通过△BMO~△ABO,即可得到结果解答:解:在y=﹣x+1中,令x=0,则y=1,令y=0,则x=2,∴A(0,1),B(2,0),∴AB=;如图,设⊙M与AB相切与C,连接MC,则MC=2,MC⊥AB,∵∠MCB=∠AOB=90°,∠B=∠B,∴△BMO~△ABO,∴,即∴BM=2,∴OM=2﹣2,或OM=2+2∴m=2﹣2或m=2+2故答案为:2﹣2,2+2点评:本题考查了直线与圆的位置关系,一次函数的性质,相似三角形的判定和性质,注意分类讨论是解题的关键三、解答题(本大题共7小题,满分66分)19(6分)(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值考点:分式的化简求值专题:计算题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值解答:解:原式=÷=•=,当x=2时,原式=4点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键20(8分)(2015•烟台)”切实减轻学生课业负担”是我市作业改革的一项重要举措某中学为了解本校学生平均每天的课外作业时间,随机抽取部分学生进行问卷调查,并将调查结果分为A、B、C、D四个等级,A:1小时以内;B:1小时﹣﹣15小时;C:15小时﹣﹣2小时;D:2小时以上根据调查结果绘制了如图所示的两种不完整的统计图,请根据图中信息解答下列问题:(1)该校共调查了200学生;(2)请将条形统计图补充完整;(3)表示等级A的扇形圆心角α的度数是108°;(4)在此次调查问卷中,甲、乙两班各有2人平均每天课外作业量都是2小时以上,从这4人中人选2人去参加座谈,用列表表或画树状图的方法求选出的2人来自不同班级的概率考点:列表法与树状图法;扇形统计图;条形统计图分析:(1)根据B类的人数和所占的百分比即可求出总数;(2)求出C的人数从而补全统计图;(3)用A的人数除以总人数再乘以360°,即可得到圆心角α的度数;(4)先设甲班学生为A1,A2,乙班学生为B1,B2,根据题意画出树形图,再根据概率公式列式计算即可解答:解:(1)共调查的中学生数是:80÷40%=200(人),故答案为:200;(2)C类的人数是:200﹣60﹣80﹣20=40(人),补图如下:(3)根据题意得:α=×360°=108°,故答案为:108°;(4)设甲班学生为A1,A2,乙班学生为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种,∴P(2人来自不同班级)==点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21(8分)(2015•烟台)2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的25倍(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要15小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?考点:分式方程的应用;一元一次不等式的应用分析:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为25千米/小时,根据题意可得,高铁走(1026﹣81)千米比普快走1026千米时间减少了9小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断解答:解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为25x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则25x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=35,则坐车共需要35+15=5(小时),王老师到达会议地点的时间为1点40故他能在开会之前到达点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验22(9分)(2015•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=18米,∠CDE=60°且根据我市的地理位置设定太阳能板AB的倾斜角为43°AB=15米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于05米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈06820,cos43°≈07314,tan43°≈09325,结果保留两位小数)考点:解直角三角形的应用分析:过E作EG⊥地面于G,过D作DH⊥EG于H,在R t△ABC中,求得AC=AB•cos∠CAB=15×07314≈11,由∠CDE=60°,得到EH=DE=09,得出DF=GH=EG﹣EH=6﹣09=51,于是OF=1+05+110+1+51=870m解答:解:过E作EG⊥地面于G,过D作DH⊥EG于H,∴DF=HG,在R t△ABC中,AC=AB•cos∠CAB=15×07314≈110,∵∠CDE=60°,∴∠EDH=30°,∴EH=DE=09,∴DF=GH=EG﹣EH=6﹣09=51,∴OF=1+05+110+1+51=870m答:灯杆OF至少要870m点评:本题考查了解直角三角形,作辅助线构造直角三角形是解题的关键。
2015年中考数学试题及答案(Word版)

2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
2015年广东省汕尾市中考数学试卷(含解析版)

2015年广东省汕尾市中考数学试卷一、选择题(每小题4分,共40分,每小题给出的四个答案,其中只有一个是正确的)1.(4分)(2015•汕尾)的相反数是()A.2 B.﹣2 C. D.﹣2.(4分)(2015•汕尾)如图所示几何体的左视图为()A. B. C. D.3.(4分)(2015•汕尾)下列计算正确的是()A.x+x2=x3 B.x2•x3=x6 C.(x3)2=x6 D.x9÷x3=x34.(4分)(2015•汕尾)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别2=0.4,S乙2=0.6,则甲的射击成绩较稳定是S甲C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式5.(4分)(2015•汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为()A.1.21×106 B.12.1×105 C.0.121×107 D.1.21×1056.(4分)(2015•汕尾)下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形7.(4分)(2015•汕尾)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在8.(4分)(2015•汕尾)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20° B.25° C.40° D.50°9.(4分)(2015•汕尾)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2 B. C. D.10.(4分)(2015•汕尾)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A、1 B 、2 C 、3 D、4二、填空题(每小题5分,共30分)11.(5分)(2015•汕尾)函数中,自变量x的取值范围是.12.(5分)(2015•汕尾)分解因式:m3﹣m=.13.(5分)(2015•汕尾)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.14.(5分)(2015•汕尾)已知:△ABC中,点E是AB边的中点,点F在AC边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是.(写出一个即可)15.(5分)(2015•汕尾)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.16.(5分)(2015•汕尾)若=+,对任意自然数n 都成立,则a=,b;计算:m=+++…+ =.三、解答题(一)(本大题共3小题,每小题7分,共21分)17.(7分)(2015•汕尾)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.18.(7分)(2015•汕尾)计算:+|2﹣3|﹣()﹣1﹣(2015+)0.19.(7分)(2015•汕尾)已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a 的值.四、解答题(二)(本大题共3小题,每小题9分,共27分)20.(9分)(2015•汕尾)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.(9分)(2015•汕尾)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.22.(9分)(2015•汕尾)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是x﹣60元;②月销量是400﹣2x件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?五、解答题(本大题共3小题,第23、24小题各11分,第25小题10分,共32分)23.(11分)(2015•汕尾)如图,已知直线y=﹣x+3分别与x,y轴交于点A 和B.(1)求点A,B的坐标;(2)求原点O到直线l的距离;(3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M 的坐标.24.(11分)(2015•汕尾)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于2,线段CE1的长等于2;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)25.(10分)(2015•汕尾)如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是平行四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由.2015年广东省汕尾市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分,每小题给出的四个答案,其中只有一个是正确的)1.(4分)(2015•汕尾)的相反数是()A.2 B.﹣2 C. D.﹣【考点】相反数..【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:的相反数是﹣.故选D.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(4分)(2015•汕尾)如图所示几何体的左视图为()A. B. C. D.【考点】简单组合体的三视图..【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看看得到的图形是左视图.3.(4分)(2015•汕尾)下列计算正确的是()A.x+x2=x3 B.x2•x3=x6 C.(x3)2=x6 D.x9÷x3=x3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方..【专题】计算题.【分析】A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式不能合并,错误;B、原式=x5,错误;C、原式=x6,正确;D、原式=x6,错误.故选C.【点评】此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键4.(4分)(2015•汕尾)下列说法正确的是()A.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B.甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别2=0.4,S乙2=0.6,则甲的射击成绩较稳定是S甲C.“明天降雨的概率为”,表示明天有半天都在降雨D.了解一批电视机的使用寿命,适合用普查的方式【考点】方差;全面调查与抽样调查;随机事件;概率的意义..【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【解答】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;是S甲C、“明天降雨的概率为”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.【点评】本题主要考查了方差、全面调查与抽样调查、随机事件以及概率的意义等知识,解答本题的关键是熟练掌握方差性质、概率的意义以及抽样调查与普查的特点,此题难度不大5.(4分)(2015•汕尾)今年五月份香港举办“保普选反暴力”大联盟大型签名活动,9天共收集121万个签名,将121万用科学记数法表示为()A.1.21×106 B.12.1×105 C.0.121×107 D.1.21×105【考点】科学记数法—表示较大的数..【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将121万用科学记数法表示为:1.21×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值6.(4分)(2015•汕尾)下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互垂直平分且相等的四边形是正方形【考点】命题与定理..【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【解答】解:A、一组对边相等,另一组对边平行的四边形是平行四边形也可能是等腰梯形,此选项错误;B、对角线相互垂直的四边形是菱形也可能是梯形,此选项错误;C、对角线相等的四边形是矩形也可能是等腰梯形,此选项错误;D、对角线相互垂直平分且相等的四边形是正方形,此选项正确;故选D.【点评】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.7.(4分)(2015•汕尾)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在【考点】一元一次不等式组的整数解..【分析】先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x 的取值范围找出x的整数解即可.【解答】解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.【点评】此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了8.(4分)(2015•汕尾)如图,AB是⊙O的弦,AC是⊙O切线,A为切点,BC经过圆心.若∠B=20°,则∠C的大小等于()A.20° B.25° C.40° D.50°【考点】切线的性质..【分析】连接OA,根据切线的性质,即可求得∠C的度数.【解答】解:如图,连接OA,∵AC是⊙O的切线,∴∠OAC=90°,∵OA=OB,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D.【点评】本题考查了圆的切线性质,以及等腰三角形的性质,掌握已知切线时常用的辅助线是连接圆心与切点是解题的关键.9.(4分)(2015•汕尾)如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2 B. C. D.【考点】翻折变换(折叠问题)..【分析】首先利用勾股定理计算出AC的长,进而得到CO的长,然后证明△DAC∽△OFC,根据相似三角形的性质可得,然后代入具体数值可得FO的长,进而得到答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点A重合,∴AC⊥EF,AO=CO,在矩形ABCD,∠D=90°,∴△ACD是Rt△,由勾股定理得AC==2,∴CO=,∵∠EOC=∠D=90°,∠ECO=∠DCA,∴△DAC∽△OFC,∴,∴,∴EO=,∴EF=2×=.故选:B.【点评】此题主要考查了图形的翻折变换和相似三角形的判定与性质,关键是掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.(4分)(2015•汕尾)对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y >0.其中正确的结论的个数为()A、1 B 、2 C 、3 D、4【考点】二次函数的性质..【分析】利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.【解答】解:y=﹣x2+2x=﹣(x﹣1)2+1,故①它的对称轴是直线x=1,正确;②∵直线x=1两旁部分增减性不一样,∴设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1,错误;③当y=0,则x(﹣x+2)=0,解得:x1=0,x2=2,故它的图象与x轴的两个交点是(0,0)和(2,0),正确;④∵a=﹣1<0,∴抛物线开口向下,∵它的图象与x轴的两个交点是(0,0)和(2,0),∴当0<x<2时,y>0,正确.故选:C.【点评】此题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.二、填空题(每小题5分,共30分)11.(5分)(2015•汕尾)函数中,自变量x的取值范围是x≥0.【考点】函数自变量的取值范围;二次根式有意义的条件..【分析】根据二次根式的意义,被开方数不能为负数,据此求解.【解答】解:根据题意,得x≥0.故答案为:x≥0.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.(5分)(2015•汕尾)分解因式:m3﹣m=m(m+1)(m﹣1).【考点】提公因式法与公式法的综合运用..【专题】压轴题.【分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答】解:m3﹣m,=m(m2﹣1),=m(m+1)(m﹣1).【点评】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.13.(5分)(2015•汕尾)一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.【考点】概率公式..【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.【解答】解:女生当选组长的概率是:4÷10=.故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=0.14.(5分)(2015•汕尾)已知:△ABC中,点E是AB边的中点,点F在AC 边上,若以A,E,F为顶点的三角形与△ABC相似,则需要增加的一个条件是AF=AC或∠AFE=∠ABC.(写出一个即可)【考点】相似三角形的判定..【专题】开放型.【分析】根据相似三角形对应边成比例或相似三角形的对应角相等进行解答;由于没有确定三角形相似的对应角,故应分类讨论.【解答】解:分两种情况:①∵△AEF∽△ABC,∴AE:AB=AF:AC,即1:2=AF:AC,∴AF=AC;②∵△AFE∽△ACB,∴∠AFE=∠ABC.∴要使以A、E、F为顶点的三角形与△ABC相似,则AF=AC或∠AFE=∠ABC.故答案为:AF=AC或∠AFE=∠ABC.【点评】本题很简单,考查了相似三角形的性质,在解答此类题目时要找出对应的角和边15.(5分)(2015•汕尾)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.【考点】平行四边形的性质..【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.16.(5分)(2015•汕尾)若=+,对任意自然数n 都成立,则a=,b﹣;计算:m=+++…+=.【考点】分式的加减法..【专题】计算题.【分析】已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b的值即可;原式利用拆项法变形,计算即可确定出m的值.【解答】解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.三、解答题(一)(本大题共3小题,每小题7分,共21分)17.(7分)(2015•汕尾)在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数..【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(7分)(2015•汕尾)计算:+|2﹣3|﹣()﹣1﹣(2015+)0.【考点】实数的运算;零指数幂;负整数指数幂..【专题】计算题.【分析】原式第一项化为最简二次根式,第二项利用绝对值的代数意义化简,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=2+3﹣2﹣3﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键19.(7分)(2015•汕尾)已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a 的值.【考点】整式的混合运算—化简求值..【专题】计算题.【分析】原式利用完全平方公式及单项式乘以多项式法则计算,将已知等式代入计算即可求出值.【解答】解:原式=a2﹣2a+1+2ab+b2+2a=(a+b)2+1,把a+b=﹣代入得:原式=2+1=3.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键四、解答题(二)(本大题共3小题,每小题9分,共27分)20.(9分)(2015•汕尾)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系..【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(﹣2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.(9分)(2015•汕尾)如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.【考点】全等三角形的判定与性质;作图—复杂作图..【分析】(1)利用SSS定理证得结论;(2)设BE=x,利用特殊角的三角函数易得AE的长,由∠BCA=45°易得CE=BE=x,解得x,得CE的长.【解答】(1)证明:在△ABC与△ADC中,,∴△ABC≌△ADC(SSS);(2)解:设BE=x,∵∠BAC=30°,∴∠ABE=60°,∴AE=tan60°•x=x,∵△ABC≌△ADC,∴CB=CD,∠BCA=∠DCA,∵∠BCA=45°,∴∠BCA=∠DCA=90°,∴∠CBD=∠CDB=45°,∴CE=BE=x,∴x+x=4,∴x=2﹣2,∴BE=2﹣2.【点评】本题主要考查了全等三角形的判定及性质,特殊角的三角函数,利用方程思想,综合运用全等三角形的性质和判定定理是解答此题的关键.22.(9分)(2015•汕尾)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是x﹣60元;②月销量是400﹣2x件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?【考点】二次函数的应用..【分析】(1)根据利润=售价﹣进价求出利润,运用待定系数法求出月销量;(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.【解答】解:(1)①销售该运动服每件的利润是(x﹣60)元;②设月销量W与x的关系式为w=kx+b,由题意得,,解得,,∴W=﹣2x+400;(2)由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元.【点评】本题考查的是二次函数的应用,掌握待定系数法求函数解析式和二次函数的性质以及最值的求法是解题的关键.五、解答题(本大题共3小题,第23、24小题各11分,第25小题10分,共32分)23.(11分)(2015•汕尾)如图,已知直线y=﹣x+3分别与x,y轴交于点A 和B.(1)求点A,B的坐标;(2)求原点O到直线l的距离;(3)若圆M的半径为2,圆心M在y轴上,当圆M与直线l相切时,求点M 的坐标.【考点】一次函数综合题..【专题】综合题.【分析】(1)对于直线解析式,分别令x与y为0,求出y与x的值,即可确定出A与B的坐标;(2)利用点到直线的距离公式求出原点O到直线l的距离即可;(3)设M坐标为(0,m),确定出OM,分两种情况考虑:若M在B点下边时,BM=3﹣m;若M在B点上边时,BM=m﹣3,利用相似三角形对应边成比例求出m的值,即可确定出M的坐标.【解答】解:(1)对于直线y=﹣x+3,令x=0,得到y=3;令y=0,得到x=4,∴A(4,0),B(0,3);(2)直线整理得:3x+4y﹣12=0,∴原点O到直线l的距离d==;(3)设M坐标为(0,m)(m>0),即OM=m,若M在B点下边时,BM=3﹣m,∵∠MBN′=∠ABO,∠MN′B=∠BOA=90°,∴△MBN′∽△ABO,∴=,即=,解得:m=,此时M(0,);若M在B点上边时,BM=m﹣3,同理△BMN∽△BAO,则有=,即=,解得:m=.此时M(0,).【点评】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,一次函数与坐标轴的交点,相似三角形的判定与性质,以及点到直线的距离公式,熟练掌握相似三角形的判定与性质是解本题的关键.24.(11分)(2015•汕尾)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于2,线段CE1的长等于2;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)【考点】几何变换综合题..【分析】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案;(3)首先作PG⊥AB,交AB所在直线于点G,则D1,E1在以A为圆心,AD 为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,进而求出PG的长.【解答】(1)解:∵∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,∴AE=AD=2,∵等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),∴当α=90°时,AE1=2,∠E1AE=90°,∴BD1==2,E1C==2;故答案为:2,2;(2)证明:当α=135°时,如图2,∵Rt△AD1E是由Rt△ADE绕点A逆时针旋转135°得到,∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵,∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BFA=∠CFP,∴∠CPF=∠FAB=90°,∴BD1⊥CE1;(3)解:如图3,作PG⊥AB,交AB所在直线于点G,∵D1,E1在以A为圆心,AD为半径的圆上,当BD1所在直线与⊙A相切时,直线BD1与CE1的交点P到直线AB的距离最大,此时四边形AD1PE1是正方形,PD1=2,则BD1==2,故∠ABP=30°,则PB=2+2,故点P到AB所在直线的距离的最大值为:PG=1+.【点评】此题主要考查了几何变换以及等腰腰直角三角形的性质和勾股定理以及切线的性质等知识,根据题意得出PG的最长时P点的位置是解题关键.25.(10分)(2015•汕尾)如图,过原点的直线y=k1x和y=k2x与反比例函数y=的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是平行四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,a=,b=,试判断a,b的大小关系,并说明理由.【考点】反比例函数综合题..【分析】(1)由直线y=k1x和y=k2x与反比例函数y=的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出=,两边平分得+k1=+k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,得到y1=,y2=,求出a===,得到a﹣b=﹣==>0,即可得到结果.【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y=的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y=的图象在第一象限相交于A,∴k1x=,解得x=(因为交于第一象限,所以负根舍去,只保留正根)将x=带入y=k1x得y=,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴=,两边平分得得+k1=+k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)∵P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y=图象上的任意两点,∴y1=,y2=,∴a===,∴a﹣b=﹣==,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【点评】本题考查了反比例函数的性质,平行四边形的判定,矩形的判定和性质,比较代数式的大小,掌握反比例函数图形上点的坐标的特征是解题的关键.祝福语祝你考试成功!。
2015安徽中考数学试题及答案

2015安徽中考数学试题及答案2015年安徽中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -1B. 0C. 1D. 2答案:C2. 如果一个数的平方等于16,那么这个数可能是:A. 4B. -4C. 4或-4D. 16答案:C3. 一个直角三角形的两直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A4. 以下哪个表达式的结果不是正数?A. 2^2B. (-3)^2C. √9D. -2^3答案:D5. 如果x=2是方程x^2 - 4x + 4 = 0的解,那么另一个解是:A. 0B. 1C. 2D. 4答案:B6. 一个圆的半径为5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B7. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C8. 一个二次方程的判别式为-4,那么这个方程:A. 有两个实数根B. 有两个共轭复数根C. 没有实数根D. 只有一个实数根答案:C9. 下列哪个不是二次根式?A. √3B. -√2C. √(-1)D. √4答案:C10. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第五项是:A. 4B. 5C. 6D. 7答案:A二、填空题(每题2分,共20分)11. 一个数的平方根是3,那么这个数是______。
答案:912. 如果一个三角形的内角和为180°,那么一个四边形的内角和是______。
答案:360°13. 一个数的立方根是2,那么这个数是______。
答案:814. 一个分数的分母是10,分子是3,那么这个分数化简后的结果是______。
答案:\(\frac{3}{10}\)15. 如果一个数的相反数是-5,那么这个数是______。
答案:516. 一个数的绝对值是7,那么这个数可能是______或______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年中考数学试题及答案2015年中考数学数 学 试 题 卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分)1、比-2013小1的数是( ) A 、-2012 B 、2012 C 、-2014 D 、20142、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=( )A 、70°B 、65°C 、60°D 、55°3、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a 的小正方体,得到一个如图所示的零件,则这个零件的左视图是( )A 、B 、C 、D 、4、某红外线遥控器发出的红外线波长为0.00031 2 l l 2 正面00094m ,用科学计数法表示这个数是( )A 、9.4×10-7mB 、9.4×107mC 、9.4×10-8m D 、9.4×108m5、下列计算正确的是( )A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2) 4=-a 4b 6D 、-2a +(2a -1)=-16、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( ) A 、240x +4=160x -10 B 、240x -4=160x -10C 、240x -10 +4=160xD 、240x -10-4=160x 二、填空题(本大题共8小题,每小题3分,共24分)7、因式分解:xy 2-x = 。
8、已知x =1是关于x 的方程x 2的一个根,则它的另一个根是 。
9、已知2x 3y =13 ,则分式x -2y x +2y的值为 。
A F CB G D E10、如图,正五边形ABCDE ,AF ∥CD 交BD的延长线于点F ,则∠DFA = 度。
11、已知x = 5 -12 ,y = 5 +12 ,则x 2+xy +y 2的值为 。
12、分式方程3-x x -4 +14-x=1的解为 。
13、现有一张圆心角为108°,半径为40cm 的扇形纸片,小红剪去圆心角为θ的部分扇形纸片后,将剩下的纸片制作成一个底面半径为10cm 的圆锥形纸帽(接缝处不重叠), 则剪去的扇形纸片的圆心角θ为 。
14、如图,正方形ABCD 与正方形AEFG 起始时互相重合,现将正方形AEFG 绕点A 逆时针旋转,设旋转角∠BAE =α(0°<α<360°),则当α= 时,正方形的θ40cm 10cmB D AC E F G顶点F 会落在正方形的对角线AC 或BD 所在直线上。
三、(本大题共4小题,每小题6分,共24分)15、解不等式组⎩⎨⎧-2x +1≤-1 (1)1+2x 3>x -1……(2) ,并把它的解集在数轴上表示出来。
16、某公园内有一矩形门洞(如图1)和一圆弧形门洞(如图2),在图1中矩形ABCD 的边AB ,DC 上分别有E 、F 两点,且BE =CF ;在图2中上部分是一圆弧,下部分中AB ∥CD ,AB =CD ,AB ⊥BC 。
请仅用无刻度的直尺........分别画出图1,2的一条对称轴l 。
17、如图,在平面直角坐标系xOy 中,点A 的坐标为(a ,0),点B 的坐标为(0,b ),其中图2A OB DC O xy ·E A B CD A B 图1a>0,b>0,以线段AB为一边在第一象限内作菱形ABCD,使其一对角线AC∥y轴。
(1)请求出点C与点D的坐标;(2)若一反比例函数图象经过点C,则它是否一定会经过点D?请说明理由。
18、某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样。
规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出两个小球(每一次摸出后不放回)。
某顾客刚好消费200元。
(1)写出此情境下的一个必然事件;(2)请你用画树形图或列表格的方法,列出该顾客所获得购物券的金额的所有结果;(3)请你求出该顾客所获得购物券的金额不低于30元的概率。
四、(本大题共3小题,每小题8分,共24分)19、如图,这是学校在学生中征集的生物园一侧围栏纹饰部分的设计图案。
其中每个圆的半径均为15cm ,圆心在同一直线上,且每增加一个圆形图案,纹饰长度就增加b cm ,围栏左右两边留有等距离空隙a cm (0≤a <15)(1)若b =25,则纹饰需要201个圆形图案,求纹饰的长度y ;(2)若b =24,则最多需要多少个这样的圆形图案?20、如图1是一把折叠椅子,图2是椅子完全打开支稳后的侧面示意图,其中AD 和BC 表示两根较粗的钢管,EG 表示座板平面,EG 和BC 相交于点F ,MN 表示地面所在的直线,EG ∥MN ,EG 距MN 的高度为42cm ,AB =43cm ,CF =42cm ,∠DBA =60°,∠DAB =80°。
求两根较粗钢管AD 和BC 的长。
(结果精确到60°80°F C D E M G N …y ba a ·O0.1cm 。
参考数据:sin80°≈0.98,cos80°≈0.17,tan80°≈5.67,sin60°≈0.87,cos60°≈0.5,tan60°≈1.73)21、某校团委举办了一次“中国梦,我的梦”绩达6分以上(含6分)为合格,达到9分以上(含9分)为优秀。
这次竞赛中甲、乙两组学生成绩分布的条形统计图如下。
图1 图2135 1 2 3 4 56 2 4 6 0 学生人数/人甲组 乙组(1)补充完成下列的成绩统计分析表: 组别 平均分 中位数 方差 合格率 优秀率甲 6.7 3.41 90% 20%乙 7.5 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组。
但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组。
请你给出两条支持乙组同学观点的理由。
五、(本大题共2小题,每小题9分,共18分)22、如图1,在在Rt △ACB 中,∠ACB =90°,AC =3,BC =4,有一过点C 的动圆⊙O 与斜边AB 相切于动点P ,连接CP 。
(1)当⊙O 与直角边AC 相切时,如图2所示,求此时⊙O 的半径r 的长。
(2)随着切点P 的位置不同,弦CP 的长也会发生变化,试求出弦CP 的长的取值范围。
· A OP C(3)当切点P 在何处时,⊙O 的半径r 有最大值? 试求出这个最大值。
23、(1)抛物线m 1:y 1=a 1x 2+b 1x +c 1中,函数yx … -2 -11 2 4 5 … y 1 … -5 0 4 3 -5 -12… 设抛物线m 1的顶点为P ,与y 轴的交点为C ,则点P 的坐标为 ,点C 的坐标为 。
(2)将设抛物线m 1沿x 轴翻折,得到抛物线m 2:y 2=a 2x 2+b 2x +c 2,则当x =-3时, y 2= 。
(3)在(1)的条件下,将抛物线m 1沿水平方向平移,得到抛物线m 3。
设抛物线m 1与x 轴交于A ,B 两点(点A 在点B 的左侧),抛物线m 3与x 轴交于M ,N 两点(点M 在点N 的左·A BO P C 图1 图2侧)。
过点C 作平行于x 轴的直线,交抛物线m 3于点K 。
问:是否存在以A ,C ,K ,M 为顶点的四边形是菱形的情形?若存在,请求出点K 的坐标;若不存在,请说明理由。
六、(本大题共1小题,共12分)24、数学复习课上,张老师出示了下框中的问题:已知:在Rt △ACB 中,∠C =90°,点D 是斜边AB 上的中点,连接CD 。
求证:CD =12AB 。
问题思考E B C A D C AF ECA B D C A ED B 图1 图2 图3(1)经过独立思考,同学们想出了多种正确的证明思想,其中有位同学的思路如下:如图1,过点B作BE∥AC交CD的延长线于点E。
请你根据这位同学的思路提示证明上述框中的问题。
方法迁移(2)如图2,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC上一动点,连接DE,线段DF始终与DE垂直且交BC于点F。
试猜想线段AE,EF,BF之间的数量关系,并加以证明。
拓展延伸(3)如图3,在Rt△ACB中,∠ACB=90°,点D为AB的中点,点E是线段AC延长线上一动点,连接DE,线段DF始终与DE垂直且交CB延长线于点F。
试问第(2)小题中线段AE,EF,BF之间的数量关系会发生改变吗?若会,请写出关系式;若不会,请说明理由。
2015年数学中考模拟试题答案一、选择题1、C2、B3、C4、A5、D6、A二、填空题7、x (y +1)(y -1); 8、-2 9、-35 10、36 11、4 12、x =313、18° 14、60°或180°或300°(每填对一个给1分,答错不给分)三、15、解集为1≤x <4。
……4分 数轴表示 ……6分 16、如图,直线l 为所求直线。
画对图1中的对称轴给3分,画对图2中的给3分17、(1)点C 坐标为(a ,2b ),点D 坐标为(2a ,·E A B CDA BA B l l或l0 1 2 3 4 5b )…………3分(2)必经过点D ,理由略。
…………6分 18、(1)答案不唯一,叙述合理即可。
如顾客在此活动中一定能获得购物券。
……2分 (2)树形图或列表略。
可能出现的结果共有12种。
分别是10元、20元、30元、10元、30元、40元、20元、30元、50元、30元、40元、50元。
…………5分(3)P(所获购物券金额不低于30元)=812=23。
…………6分 四、19、(1)y =15×2+(201-1)b =30+200×25=5030(cm) …………3分(2)设需要x 个这样的圆形图案,则⎩⎨⎧30+(x -1)×24≥5030 30+(x -1)×24<5030+30解得:20916 ≤x <210712 。