平行线的证明测试题

合集下载

北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

北师大版八年级上册数学第七章平行线的证明单元测试(含答案)

八年级上册数学第七章单元测试一、选择题(每题3分,共30分)1.命题“负数没有平方根”的条件是()A.如果一个数是正数B.如果一个数没有平方根C.如果一个数是负数D.如果一个数是非负数2.如图,下列能判定AB∥CD的条件有()(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1个B.2个C.3个D.4个3.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG的度数是()A.70°B.20°C.35°D.40°4.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′5.如图,下列选项中,不可以得到l1∥l2的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.如图,把△ABC纸片沿DE折叠,则()A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)7.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210°D.270°8.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE为()A.80°B.60°C.50°D.40°9.如图,在△ABC中,∠B=38°,∠C=54°,AD是BC边上的高,AE是∠BAC 的平分线,则∠DAE的度数为()A.8°B.10°C.12°D.14°10.在三角板拼角活动中,小明将一副三角板按如图方式叠放,则拼出的∠α度数为()A.65°B.75°C.105°D.115°二、填空题(每题3分,共15分)11.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则∠A为________度.12.如图,AB∥CD,∠1=58°,FG平分∠EFD交AB于G,则∠FGB的度数为________.13.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是________.14.如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于________.15.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC =________度.三、解答题(16题10分,17题7分,第18~21题每题8分,第22~23题每题13分,共75分)16.如图,点A、B、C、D在同一条直线上,EC∥FD,∠F=∠E,求证:AE ∥BF.将证明过程补充完整,并在括号内填写推理依据.证明:∵EC∥FD,()∴∠________=∠1.()∵∠F=∠E,(已知)∴∠________=∠________,()∴AE∥BF.()17.如图,D、E、F分别在△ABC的三条边上,DE∥AB,∠1+∠2=180°.(1)试说明:DF∥AC;(2)若∠1=100°,DF平分∠BDE,求∠C的度数.18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.19.如图,已知BE∥CF,BE、CF分别平分∠ABC和∠BCD,求证:AB∥CD.20.如图,已知:DE⊥AO于点E,BO⊥AO于点O,∠CFB=∠EDO,证明:CF∥DO.21.如图,AD为△ABC的角平分线,DE∥AB,DE交AC于点E.若∠B=57°,∠C=65°,求∠ADE的度数.22.已知如图,点E在△ABC的边BC上,AD∥BC,∠DAE=∠BAC,∠1=∠2.(1)求证AB∥DE;(2)若已知AE平分∠BAC,∠C=35°,求∠2的度数.23.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,则∠ACB=________;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求出∠E的度数;如果会,请说明理由.答案一、1.C 2.C 3.C 4.D 5.C 6.B7.B8.D9.A10.C二、11.3012.151°13.51°或93°14.230°15.122.5三、16.已知;F;两直线平行,内错角相等;E;1;等量代换;内错角相等,两直线平行17.解:(1)∵DE∥AB,∴∠A=∠2.∵∠1+∠2=180°,∴∠A+∠1=180°,∴DF∥AC.(2)∵∠1=100°,∠1+∠2=180°,∴∠2=80°.∵AC∥DF,∴∠FDE=∠2=80°,∠C=∠BDF.∵DF平分∠BDE,∴∠BDF=80°,∴∠C=∠BDF=80°.18.解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3.∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE.(2)∵BF⊥AC,∴∠BF A=90°.∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°-35°=55°.19.证明:∵BE∥CF,∴∠1=∠2.∵BE、CF分别平分∠ABC和∠BCD,∴∠ABC=2∠1,∠BCD=2∠2,∴∠ABC=∠BCD,∴AB∥CD.20.证明:∵DE⊥AO,BO⊥AO,∴∠AED=∠AOB=90°,∴DE∥BO,∴∠EDO=∠BOD.又∵∠EDO=∠CFB,∴∠BOD=∠CFB,∴CF∥DO.21.解:∵∠B=57°,∠C=65°,∴∠BAC=180°-57°-65°=58°.∵AD为△ABC的角平分线,∴∠BAD=∠DAC=29°.∵DE∥AB,∴∠ADE=∠BAD=29°.22. (1)证明:∵AD∥BC,∴∠DAE=∠2,∵∠1=∠2,∴∠DAE=∠1.∵∠DAE=∠BAC,∴∠BAC=∠1,∴AB∥DE.(2)解:∵∠DAE=∠BAC,∴∠BAE=∠DAC.∵AE平分∠BAC,∴∠EAC=∠BAE=∠DAC.∵AD∥BC,∴∠C=∠DAC=35°,∴∠EAC=∠DAC=35°,∴∠AEC=180°-∠EAC-∠C=110°,∴∠2=180°-∠AEC=70°.23.解:(1)135°(2)90°+12n°(3)∵BC、BD分别是∠OBA和∠NBA的平分线,∴∠ABC=12∠OBA,∠ABD=12∠NBA,∴∠ABC+∠ABD=12∠OBA+12∠NBA=12(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°.∵四边形内角和等于360°,∴∠ACB+∠ADB=360°-90°-90°=180°,由(2)知:∠ACB=90°+12n°,∴∠ADB=180°-(90°+12n°)=90°-12n°,∴∠ACB+∠ADB=180°,∠ADB=90°-12n°.(4)∠E的度数不会变,∠E=40°.求解如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA-∠AOB.∵AE、BC分别是∠OAB和∠NBA的平分线,∴∠BAE=12∠OAB,∠CBA=12∠NBA,∵∠CBA=∠E+∠BAE,∴12∠NBA=∠E+12∠OAB,∵12∠NBA=∠E+12(∠NBA-80°),即12∠NBA=∠E+12∠NBA-40°,∴∠E=40°.。

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)

一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 3.下列命题的逆命题是真命题的是( ). A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等4.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4B .3C .2D .1 5.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°6.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解D .方差是刻画数据离散程度的量7.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .48.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A .80︒B .90︒C .100︒D .110︒9.下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .3个B .4个C .5个D .6个10.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个11.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒12.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.15.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.16.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.17.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.18.如图,木工师傅用角尺画平行线的依据是_________________________.19.如图,12∠=∠,4120︒∠=,则3∠=____.20.如图,在ΔABC 中,E 、F 分别是AB 、AC 上的两点,∠1+∠2=235°,则∠A=____度.三、解答题21.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .22.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.23.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=.其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.24.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.25.已知:如图,180BAE AED ∠+∠=︒,12∠=∠,那么M N ∠=∠.下面是推理过程,请你填空:解:180BAE AED ∠+∠=︒(已知),∴______//______.( )BAE ∴∠=______(两直线平行内错角相等)又12∠=∠(已知)1BAE ∴∠-∠=______2-∠,即MAE ∠=______.∴______//______( ).M N ∴∠=∠( ) 26.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.3.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A 3的逆命题是:3的平方根,是假命题;BC 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题; 故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.4.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误; ②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.5.D解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.6.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键. 7.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.C解析:C【分析】已知GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,根据平行线的性质可得98B GEC ∠=∠=︒,62D GFC ∠=∠=︒;因CEF △沿EF 翻折得到GEF △,由折叠的性质可得1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒;在△EFC 中,由三角形的内角和定理即可求得∠C=00°.【详解】∵GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,∴98B GEC ∠=∠=︒,62D GFC ∠=∠=︒,∵CEF △沿EF 翻折得到GEF △, ∴1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒, 在△EFC 中,由三角形的内角和定理可得,∠C=180°-∠FEC-∠CFE=180°-49°-31°=100°.故选C.【点睛】本题考查了平行线的性质、折叠的性质及三角形的内角和定理,熟练运用相关知识是解决问题的关键.9.C解析:C【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【详解】①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题; ④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C .【点睛】此题主要考查了命题与定理,熟练掌握相关的定理与性质是解题关键.10.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.11.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 12.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全 解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误; 逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论.15.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.16.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键.17.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.18.在同一平面内垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【分析】在同一平面内垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【详解】解:在同一平面内垂直于同一条直线的两条直线平行解析:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【分析】在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【详解】解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.故答案为在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【点睛】本题考查的是平行线的判定,熟知平行线的判定方法是解答此题的关键19.60°【分析】本题首先利用证明直线与平行继而利用对顶角性质以及两直线平行同旁内角互补求解【详解】如下图所示:∵∠1=∠5∠2=∠6又∵∠1=∠2∴∠5=∠6∴∥∵∠4=120°∴∠7=∠4=120°解析:60°【分析】本题首先利用12∠=∠证明直线1l 与2l 平行,继而利用对顶角性质以及两直线平行,同旁内角互补求解3∠.【详解】如下图所示:∵∠1=∠5,∠2=∠6,又∵∠1=∠2,∴∠5=∠6,∴1l ∥2l .∵∠4=120°,∴∠7=∠4=120°,又∵∠3+∠7=180°,∴∠3=60°.故填:60°.【点睛】本题考查平行线的判定与性质,需要灵活运用两直线平行,内错角、同位角相等、同旁内角互补.20.55【分析】根据三角形内角和定理可知要求∠A 只要求出∠AEF +∠AFE 的度数即可【详解】∵∠1+∠AEF =180°∠2+∠AFE =180°∴∠1+∠AEF +∠2+∠AFE =360°∵∠1+∠2=23解析:55【分析】根据三角形内角和定理可知,要求∠A 只要求出∠AEF +∠AFE 的度数即可.【详解】∵∠1+∠AEF =180°,∠2+∠AFE =180°,∴∠1+∠AEF +∠2+∠AFE =360°,∵∠1+∠2=235°,∴∠AEF +∠AFE =360°−235°=125°,∵在△AEF 中:∠A +∠AEF +∠AFE =180°(三角形内角和定理)∴∠A =180°−125°=55°,故答案为:55°【点睛】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A 所在的三角形是关键.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ==== GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P ∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.23.解:(1)①②④⑤;(2)18DAE ∠=︒【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线, ∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24° ∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.24.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 25.见解析【分析】先根据平行线的判定,得到AB ∥CD ,再根据平行线的性质,得出∠MAE=∠NEA ,进而得出AM ∥NE ,最后根据平行线的性质即可得到结论.【详解】解:∵∠BAE+∠AED=180°,(已知)∴AB ∥CD ,(同旁内角互补,两直线平行)∴∠BAE=∠CEA ,(两直线平行,内错角相等 )又∵∠1=∠2,∴∠BAE-∠1=∠AEC-∠2,即∠MAE=∠NEA ,∴AM ∥NE ,(内错角相等,两直线平行)∴∠M=∠N .(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.26.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠ ()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠,AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.。

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(有答案解析)

(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(有答案解析)

一、选择题1.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =2.如图,△ABC 中,∠BAC =58°,∠C =82°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .29°B .39°C .42°D .52° 3.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒ 4.下列四个命题中,假命题有( )(1)两条直线被第三条直线所截,内错角相等.(2)如果1∠和2∠是对顶角,那么12∠=∠.(3)一个锐角的余角一定小于这个锐角的补角.(4)如果1∠和3∠互余,2∠与3∠的余角互补,那么1∠和2∠互补.A .1个B .2个C .3个D .4个5.下列命题是假命题的是( )A .同旁内角互补,两直线平行B .直角三角形的两个锐角互余C .三角形的一个外角等于它的两个内角之和D .有一个角是60°的等腰三角形是等边三角形6.如图,在△ABC 中,D 为BC 上一点,∠1=∠2,∠3=∠4,∠BAC =105°,则∠DAC 的度数为( )A .80°B .82°C .84°D .86°7.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23° 8.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 9.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .410.如图,下列条件中,不能判断AD ∥BC 的是( )A .∠1=∠3B .∠2=∠4C .∠EAD=∠BD .∠D=∠DCF 11.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒12.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确二、填空题13.如图,已知CD ⊥DA ,DA ⊥AB ,∠1=∠4.试说明DF ∥AE .请你完成下列填空,把证明过程补充完整.证明:∵_________(___________)∴∠CDA=90°,∠DAB=90°(_________).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴_____(_____),∴DF ∥AE (______).14.如图,在Rt ACB ∆中,90ACB ∠=︒,25A ∠=︒,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于_______.15.如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).16.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.17.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.18.以下四个命题:①在同一平面内,过一点有且只有一条直线与已知直线垂直;②两条直线被第三条直线所截,同旁内角互补;③数轴上的每一个点都表示一个实数;④如果点()P x,y 的坐标满足xy 0<,那么点 P 一定在第二象限.其中正确命题的序号为 ___.19.如图,已知△ABC ,∠B 的角平分线与∠C 的外角角平分线交于点 D ,∠B 的外角角平分线与∠C 的外角角平分线交于点 E ,则∠E+∠D=_____.20.如图,C 是线段AB 上一点,∠DAC =∠D ,∠EBC =∠E ,AO 平分∠DAC ,BO 平分∠EBC .若∠DCE =40°,则∠O =______°.三、解答题21.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).22.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.23.如图,在ABC 中,D 是AB 上一点,E 是AC 上一点,BE 、CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒.求:(1)BDC ∠的度数;(2)BFD ∠的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学公式)解:(1)∵BDC A ACD ∠=∠+∠( )∴623597BDC ∠=︒+︒=︒(等量代换)(2)∵BFD BDC ABE ∠+∠+∠=______( )∴180BFD BDC ABE ∠=︒-∠-∠(等式的性质)1809720=︒-︒-︒(等量代换)63=︒24.如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=50°,∠C=70°,求:∠DAC 和∠BOA 的度数.25.如图,在四边形ABCD 中,E 、F 分别是CD 、AB 延长线上的点,连接EF ,分别交AD 、BC 于点G 、H .若12∠=∠,A C ∠=∠,试判断AB 与CD 的位置关系,并说明理由.补全解答过程.猜想:AB 与CD 的位置关系是 ① .证明:∵12∠=∠(已知),1AGH ∠=∠(②),∴2AGH ∠=∠(③).∴ ④ (同位角相等,两直线平行).∴ADE C ∠=∠(⑤),∵A C ∠=∠(已知),∴ ⑥ (等量代换).∴ ⑦ (⑧).26.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B【点睛】本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.2.A解析:A【分析】根据三角形的内角和得到∠B =180︒-∠BAC -∠C =40︒,根据角平分线的定义得到∠BAD=12∠BAC=29︒,根据三角形的外角的性质即可得到结论. 【详解】解:∵在△ABC 中,∠BAC =58︒,∠C =82︒,∴∠B =180︒-∠BAC -∠C =180︒-58︒-82︒=40︒,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =29︒, ∴∠ADC =∠B +∠BAD =69︒,∵∠ADE =∠B =40︒,∴∠CDE =29︒,故选:A .【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键. 3.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键. 4.A解析:A【分析】按照命题的条件,结论,进行推理计算,或与定理,定义,法则对照,进行判断即可.【详解】∵两条平行直线被第三条直线所截,内错角相等,∴(1)是假命题;∵对顶角相等,∴(2)是真命题;设锐角为x ,则其余角为90°-x ,补角为180°-x ,∴(90-x )-(180-x )=90°-x-180°+x=-90<0,∴(3)是真命题;∵1∠和3∠互余,2∠与3∠的余角互补,∴1∠+3∠=90,2∠+(90-3∠)=180,∴2∠+1∠=180,∴(4)是真命题;故选A.【点睛】本题考查了对命题的真伪的甄别,解答时,熟练掌握数学的基本概念,基本定理,基本法则,基本性质是解题的关键.5.C解析:C【分析】根据平行线的判定定理,直角三角形互余性质,三角形的外角性质,等边三角形的判定去分别判断即可.【详解】解:∵同旁内角互补,两直线平行,∴选项A 选项为真命题,不符合题意;根据三角形内角和定理,得直角三角形的两个锐角互余,∴选项B选项为真命题,不符合题意;∵三角形的一个外角等于和它不相邻的两个内角之和,∴选项C选项为假命题,符合题意;根据等角对等边,有一个角是60°的等腰三角形是等边三角形,∴选项D选项为真命题,不符合题意;故选C.【点睛】本题考查了对数学基础知识的掌握,全面规范掌握数学基础知识是解题的关键.6.A解析:A【分析】根据三角形的内角和定理和三角形的外角性质即可解决.【详解】解:∵∠BAC=105°,∴∠2+∠3=75°①∵∠1=∠2,∴∠4=∠3=∠1+∠2=2∠2②把②代入①得:3∠2=75°,∴∠2=25°.∴∠DAC=105°−25°=80°.故选A.【点睛】此题主要考查了三角形的外角性质以及三角形内角和定理,熟记三角形的内角和定理,三角形的外角性质是解题的关键.7.C解析:C【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∠BAC=31°,∴∠DAC=12∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C .【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识. 8.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 9.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.10.B解析:B【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD 、BC 是否平行即可.【详解】解:A 、∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B 、∵∠2=∠4,∴AB ∥CD (内错角相等,两直线平行),但不能判定AD ∥BC ; C 、∵∠EAD=∠B ,∴AD ∥BC (同位角相等,两直线平行);D、∵∠D=∠DCF,∴AD∥BC(内错角相等,两直线平行);故选:B.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求 的度数.出C【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.12.A解析:A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】解:①若a∥b,b∥c,则a∥c,说法正确;②若a⊥b,b⊥c,则a⊥c,说法错误,应为同一平面内,若a⊥b,b⊥c,则a∥c;故选:A.【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.二、填空题13.CD ⊥DADA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等两直线平行【分析】先根据垂直的定义得到再根据等角的余角相等得出最后根据内错角相等两直线平行进行判定即可【详解】证明:∵CD解析:CD ⊥DA ,DA ⊥AB ;已知;垂直定义;∠2=∠3;等角的余角相等;内错角相等,两直线平行【分析】先根据垂直的定义,得到1290∠+∠=︒,3490∠+∠=°,再根据等角的余角相等,得出23∠∠=,最后根据内错角相等,两直线平行进行判定即可.【详解】证明:∵ CD ⊥DA ,DA ⊥AB (已知)∴∠CDA=90°,∠DAB=90° ( 垂直定义 ).∴∠4+∠3=90°,∠2+∠1=90°.又∵∠1=∠4,∴∠2=∠3 ( 等角的余角相等 ),∴DF ∥AE ( 内错角相等,两直线平行 ).故答案为:.CD ⊥DA ,DA ⊥AB , 已知;垂直定义;∠2=∠3 ,等角的余角相等;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行. 14.【分析】根据翻折变换的性质得出∠ACD=∠BCD ∠CDB=∠CDB′进而利用三角形内角和定理得出∠BDC=∠B′DC 再利用平角的定义即可得出答案【详解】解:∵将Rt △ABC 沿CD 折叠使点B 落在AC 边解析:40︒【分析】根据翻折变换的性质得出∠ACD=∠BCD ,∠CDB=∠CDB′,进而利用三角形内角和定理得出∠BDC=∠B′DC ,再利用平角的定义,即可得出答案.【详解】解:∵将Rt △ABC 沿CD 折叠,使点B 落在AC 边上的B′处,∴∠ACD=∠BCD ,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°-25°=65°,∴∠BDC=∠B′DC=180°-45°-65°=70°,∴∠ADB′=180°-70°-70°=40°.故答案为:40°.【点睛】此题主要考查了翻折变换的性质以及三角形内角和定理,得出∠BDC 和∠B′DC 的度数是解题关键.15.【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=∠A2=∠A3=据此找规律可求解【详解】解:在△ABC 中∠A =∠ACD ﹣∠ABC =α∵∠ABC 的平分线与∠ACD 的平分线交于点A1 解析:202012α【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键. 16.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE 和BC 被AB 所截∴当时AD ∥BC (内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B ∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.∵DE和BC被AB所截,∠=∠时,AD∥BC(内错角相等,两直线平行).∴当DAB B∠=∠故答案为DAB B【点睛】此题考查平行线的性质,难度不大17.500【分析】连接BB由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF是△BDB'的外角,∠CEG是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.18.①③【分析】依次分析判断即可得到答案【详解】①在同一平面内过一点有且只有一条直线与已知直线垂直故该项正确;②两条平行线被第三条直线所截同旁内角互补故该项错误;③数轴上的每一个点都表示一个实数故该项正解析:①③【分析】依次分析判断即可得到答案.①在同一平面内,过一点有且只有一条直线与已知直线垂直,故该项正确;②两条平行线被第三条直线所截,同旁内角互补,故该项错误;③数轴上的每一个点都表示一个实数,故该项正确;④如果点()P x,y 的坐标满足xy 0<,则x 与y 异号,那么点P 在第二或第四象限,故该项错误;故答案为:①③.【点睛】此题考查命题的正确与否,正确掌握各知识点并熟练运用解题是关键.19.90°【分析】利用角平分线的性质和三角形的内角和定理解答即可【详解】解:∵BDBE 分别是∠B 的角平分线和外角平分线∴∠DBE=×180°=90°∴∠D+∠E=180°-∠DBE=180°-90°=9解析:90°.【分析】利用角平分线的性质和三角形的内角和定理解答即可.【详解】解:∵BD ,BE 分别是∠B 的角平分线和外角平分线,∴∠DBE=12×180°=90°, ∴∠D+∠E=180°-∠DBE=180°-90°=90°.故答案为:90°.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练掌握定理是解答此题的关键.20.125【分析】利用平角的定义可得由角平分线的性质易得由三角形的内角和定理可得结果【详解】解:平分平分故答案为:125【点睛】本题主要考查了角平分线的性质和三角形的内角和定理熟练运用定理是解答此题的关键 解析:125【分析】利用平角的定义可得180********ACDBCE DCE ,由角平分线的性质易得11()1105522OABOBA DAC CBE ,由三角形的内角和定理可得结果. 【详解】解:40DCE , 180********ACDBCE DCE , DACD ,EBCE ∠=∠, 221802140220DACCBE , 110DAC CBE ,AO平分DAC∠,BO平分EBC∠,∴11()1105522OAB OBA DAC CBE,180()18055125O OAB OBA,故答案为:125.【点睛】本题主要考查了角平分线的性质和三角形的内角和定理,熟练运用定理是解答此题的关键.三、解答题21.(1)130°;(2)125°;(3)135°;(4)1902A ︒+∠.【分析】(1)依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC的度数;(2)依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC的度数;(3)依据∠A=90°,可得∠ABC+∠ACB的度数,依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC的度数;(4)根据三角形的内角和定理可得∠ABC+∠ACB的度数,依据∠ABC和∠ACB的平分线相交于点P,可得∠2+∠4的度数,依据三角形内角和定理,即可得到∠BPC=90°+12∠A.【详解】解:如下图所示,(1)∵∠ABC=40°,∠ACB=60°,∠ABC和∠ACB的平分线相交于点P,∴∠2+∠4=20°+30°=50°,∴△BCP中,∠P=180°-50°=130°,故答案为:130°;(2)∵∠ABC+∠ACB=110°,∠ABC和∠ACB的平分线相交于点P,∴∠2+∠4=12×110°=55°,∴△BCP中,∠P=180°-55°=125°,故答案为:125°;(3)∵∠A=90°,∴∠ABC+∠ACB=90°,∠ABC 和∠ACB 的平分线相交于点P ,∴∠2+∠4=12×90°=45°, ∴△BCP 中,∠P=180°-45°=135°,故答案为:135°;(4)∵∠ABC+∠ACB=180°-∠A ,∠ABC 和∠ACB 的平分线相交于点P , ∴124(180)2A ∠+∠=⨯︒-∠, ∴△BCP 中,11180(180)9022P A A =︒-⨯︒-∠=︒+∠∠. 故答案为:1902A ︒+∠. 【点睛】 本题主要考查了三角形内角和定理以及角平分线的定义的运用,解题时注意:三角形内角和是180°.22.110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.23.(1)三角形的外角性质;(2)180,三角形内角和定理【分析】(1)在△ACD 中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;(2)在△BFD 中,利用三角形的内角和定理计算即可.【详解】(1)∵∠BDC=∠A+∠ACD (三角形的外角性质),∴∠BDC=62°+35°=97°(等量代换),故答案为:三角形的外角性质;(2)∵∠BFD+∠BDC+∠ABE=180°(三角形内角和定理),∴∠BFD=180°-∠BDC-∠ABE (等式的性质),=180°-97°-20°(等量代换)=63°;故答案为:180°,三角形内角和定理.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.24.∠DAC =20°,∠BOA =125°.【分析】在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,继而根据AE ,BF 是角平分线可得∠BAO 、∠ABO ,最后在△ABO 中根据内角和定理可得答案.【详解】∵AD 是BC 上的高,∴∠ADC =90°,又∵∠C =70°,∴∠DAC =90°﹣∠C =20°,∵∠BAC =50°,AE 平分∠BAC ,∴∠ABC =180°﹣∠BAC ﹣∠C =60°,∠BAO =12∠BAC =25°, ∵BF 平分∠ABC ,∴∠ABO =12∠ABC =30°, ∴∠AOB =180°﹣∠ABO ﹣∠BAO =180°﹣30°﹣25°=125°.【点睛】本题主要考查三角形内角和定理,熟练掌握三角形内角和是180°和三角形高线、角平分线的定义是解题的关键.25.①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE=∠C ,再根据内错角相等,两直线平行,即可得到AB ∥CD .【详解】猜想:AB 与CD 的位置关系是AB ∥CD .证明:∵∠1=∠2(已知)∠1=∠AGH (对顶角相等)∴∠2=∠AGH (等量代换)∴AD ∥BC (同位角相等,两直线平行)∴∠ADE=∠C (两直线平行,同位角相等)∵∠A=∠C (已知)∴∠ADE=∠A (等量代换)∴AB ∥CD (内错角相等,两直线平行)故答案为:①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.26.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键.。

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)(2)

(必考题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)(2)

一、选择题1.如图,已知//AB CD ,120AFC ∠=︒,13EAF EAB ∠=∠,1 3ECF ECD ∠=∠,则 AEC ∠=( )A .60°B .80°C .90°D .100°2.下列四个命题中为真命题的是( )A .两条直线被第三条直线所截,内错角相等B .若1∠和2∠是对顶角,则12∠=∠C .三角形的一个外角大于任何一个内角D .22a b =,则a b =3.如图,将直尺与30角的三角尺叠放在一起,若270,则1∠的大小是( )A .45︒B .50︒C .55︒D .40︒4.如图,BE ,CF 都是△ABC 的角平分线,且∠BDC =110°,则∠A 的度数为( )A .40°B .50°C .60°D .70°5.将一副学生用三角板(一个锐角为30°的直角三角形,一个锐角为45°的直角三角形)如图叠放,则下列4个结论中正确的个数有( )①OE 平分AOD ∠;②AOC BOD ∠=∠;③15AOC CEA ∠-∠=︒;④180COB AOD ∠+∠=︒A .0B .1C .2D .3 6.如图,直线AB 、CD 被BC 所截,若//AB CD ,150∠=︒,240∠=︒,则3∠的大小是( )A .80︒B .70︒C .90︒D .100︒7.下列命题是真命题的个数为( )①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A .2B .3C .4D .58.下列命题是假命题的是( )A .三角形的内角和是180°B .两直线平行,内错角相等C .三角形的外角大于任何一个内角D .同旁内角互补,两直线平行 9.下列命题中,逆命题是真命题的是( )A .全等三角形的对应角相等;B .同旁内角互补,两直线平行;C .对顶角相等;D .如果0,0a b >>,那么0a b +> 10.若AD ∥BE ,且∠ACB=90°,∠CBE=30°,则∠CAD 的度数为( )A .30°B .40°C .50°D .60°11.已知下列命题 (1)等边三角形的三个内角都相等;(2)平行四边形相邻的两个角都相等;(3)线段垂直平分线上的点到这条线段两个端点距离相等;(4)底角相等的两个等腰三角形全等.其中原命题和逆命题均为真命题的有( )A .1个B .2个C .3个D .4个 12.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .68二、填空题13.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).14.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.15.如图,AB ∥CD ,EF 交AB 、CD 于点G 、H ,GM 、HM 分别平分∠BGH 、∠GHD ,GM 、HM 交于点M ,则∠GMH =_________.16.如图,△ABC 中,∠B=60°,∠C=80°,点D,E 分别在线段AB ,BC 上, 将△BDE 沿直线DE 翻折,使B 落在B′ 处, B′ D, B′E 分别交AC 于F,G. 若∠ADF=70°,则∠CGE 的度数为______.17.命题“面积相等的三角形全等”的逆命题是__________.18.如图,已知//DE FG ,则12A ∠+∠-∠=________________19.在四边形ABCD 中,ADC ∠与BCD ∠的角平分线交于点E ,115DEC ∠=︒,过点B 作//BF AD 交CE 于点F ,2CE BF =,54CBF BCE ∠=∠,连接BE ,254BCE S ∆=,则CE =___.20.如图, AM 、CM 分别平分∠BAD 和∠BCD ,且∠B=31°,∠D=39°,则∠M=______.三、解答题21.如图,已知CF 是ACB ∠的平分线,交AB 于点F ,D 、E 、G 分别是AC 、AB 、BC 上的点,且3ACB ,45180︒∠+∠=.(1)图中1∠与3∠是一对_______,2∠与5∠是一对________,3∠与4∠是一对_______.(填“同位角”或“内错角”或“同旁内角”)(2)判断CF 与DE 是什么位置关系?说明理由;(3)若CF AB ⊥,垂足为F ,58A ︒∠=,求ACB ∠的度数.22.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .23.阅读下面内容,并解答问题在学习了平行线的性质后,老师请学们证明命题:两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.小颖根据命题画出图形并写出如下的已知条件.已知:如图1,//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线交于点G .(1)直线EG ,FG 有何关系?请补充结论:求证:“__________”,并写出证明过程; (2)请从下列A 、B 两题中任选一题作答,我选择__________题,并写出解答过程. A .在图1的基础上,分别作BEG ∠的平分线与DFG ∠的平分线交于点M ,得到图2,求EMF ∠的度数.B .如图3,//AB CD ,直线EF 分别交AB ,CD 于点E ,F .点O 在直线AB ,CD 之间,且在直线EF 右侧,BEO ∠的平分线与DFO ∠的平分线交于点P ,请猜想EOF ∠与EPF ∠满足的数量关系,并证明它.24.如图所示,已知,A F ∠=∠,C D ∠=∠.(1)求证: //BD CE ;(2)已知:2:3ABD DEC ∠∠=,求DEC ∠的度数.25.如图已知12B C ∠=∠∠=∠,,求证://AB CD .证明:∵12∠=∠(已知),且14∠=∠(__________),∴24∠∠=(__________).∴//BF _____(__________). ∴∠____3=∠(__________).又∵B C ∠=∠(已知),∴_____________(等量代换).∴//AB CD (__________).26.已知:如图,//AB CD ,BD 平分ABC ∠,CE 平分DCF ∠,90ACE ︒∠=.(1)请问BD 和CE 是否平行?请你说明理由;(2)AC 和BD 的位置关系怎样?请说明判断的理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C连接AC ,设∠EAF=x ,∠ECF=y ,得到∠FAB=4x ,∠FCD=4x ,根据平行线性质得出∠CAB+∠ACD=180°,从而得到x+y=30°,再根据∠AEC=180°-(∠EAF+∠ECF+∠FCA+∠FAC )得到结果.【详解】解:连接AC ,设∠EAF=x ,∠ECF=y ,∴∠EAB=3x ,∠ECD=3x ,∴∠FAB=4x ,∠FCD=4x ,∵AB ∥CD ,∴∠CAB+∠ACD=180°,∵∠AFC=120°,∴∠FAC+∠FCA=180°-120°=60°,∴∠FAC+∠FCA+∠FAB+∠FCD=180°,即60+4x+4y=180°,解得:x+y=30°,∴∠AEC=180°-(∠EAC+∠ECA )=180°-(∠EAF+∠ECF+∠FCA+∠FAC )=180°-(x+y+60°)=90°故选C .【点睛】本题考查了平行线性质和三角形内角和定理的应用,解题的关键是注意整体思想的运用. 2.B解析:B【分析】根据平行线的性质、对顶角相等、三角形外角定理、乘方的性质逐项判断即可求解.【详解】解:A. “两条直线被第三条直线所截,内错角相等”,缺少两直线平行这一条件,判断错误,是假命题,不合题意;B. “若1∠和2∠是对顶角,则12∠=∠”,是真命题,符合题意;C. “三角形的一个外角大于任何一个内角”,应为“三角形的一个外角大于任何一个和它不相邻的内角”,判断错误,是假命题,不合题意;D. “22a b =,则a b =,”是假命题,a 和b 也可以互为相反数,不合题意.故选:B本题考查了平行线的性质、对顶角相等、三角形外角定理、乘方的性质、真假命题等知识,熟知相关知识是解题关键.3.B解析:B【分析】根据平角的定义和平行线的性质即可得到结论.【详解】解:如图:由题意得:∠4=180°−90°−30°=60°,∵AB∥CD,∴∠3=∠2=70°,∴∠1=180°−∠3-∠4=180°−70°−60°=50°.故选:B.【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.4.A解析:A【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∵BE、CF都是△ABC的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+1∠A,2∴∠A=2(110°-90°)=40°.故答案为:A.【点睛】本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.5.D解析:D【分析】根据同角的余角相等可得∠AOC=∠BOD ;根据角的和差关系可得∠COB+∠AOD=180;根据三角形的内角和即可得出∠AOC-∠CEA=15°.【详解】解:∵∠DOC=∠AOB=90°,∴∠DOC-∠BOC=∠AOB-∠COB ,即∠AOC=∠BOD ,故②正确;∵∠AOB=∠COD=90°,∴∠COB+∠AOD=∠AOB+∠COD=180°,故④正确;如图,AB 与OC 交于点P ,∵∠CPE=∠APO ,∠C=45°,∠A=30°,∠CEA+∠CPE+∠C=∠AOC+∠APO+∠A=180°, ∴∠AOC-∠CEA=15°.故③正确;没有条件能证明OE 平分∠AOD ,故①错误.综上,②③④正确,共3个,故选:D .【点睛】本题考查了余角与补角以及三角形内角和定理,熟知余角与补角的性质以及三角形内角和是180°是解答此题的关键.6.C解析:C【分析】先根据平行线的性质求出C ∠,再由三角形外角性质即可得解;【详解】∵//AB CD ,150∠=︒,∴150∠=∠=︒C ,∵240∠=︒,∴3290C ∠=∠+∠=︒;故答案选C .【点睛】本题主要考查了平行线的性质和三角形的外角性质,准确计算是解题的关键. 7.B解析:B【分析】首先判断所给命题的真假,再选出正确的选项.【详解】解:∵两条直线被第三条直线所截,两直线平行,内错角相等,∴①错误;∵三角形的内角和是180°,∴②正确;∵在同一平面内平行于同一条直线的两条直线平行,∴③正确;∵相等的角可以是对顶角,也可以是内错角、同位角等等,∴④错误;∵连接两点的所有连线中,线段最短,∴⑤正确;∴真命题为②③⑤,故选B .【点睛】本题考查命题的真假判断,根据所学知识判断一个命题条件成立的情况下,结论是否一定成立来判断命题是真命题还是假命题是解题关键.8.C解析:C【分析】根据三角形内角和定理、外角性质、平行线的性质与判定进行判断即可.【详解】解:A 选项,三角形的内角和是180°,是真命题,不符合题意;B 选项,两直线平行,内错角相等,是真命题,不符合题意;C 选项,三角形的外角大于任何一个内角,是假命题,符合题意;D 选项,同旁内角互补,两直线平行,是真命题,不符合题意;故选:C .【点睛】本题考查了三角形内角和定理和外角的性质,平行的性质与判定,解题关键是熟练准确掌握基础知识.9.B解析:B【分析】先分别写出各命题的逆命题,再分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A.全等三角形的对应角相等的逆命题为对应角相等的三角形全等是假命题,所以A 选项不符合题意;B.同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补是真命题,所以B 选项符合题意;C.“对顶角相等”的逆命题是“相等的角是对顶角”是假命题,所以C 选项不符合题意;D. 如果0,0a b >>,那么0a b +>的逆命题为如果0a b +>,那么0,0a b >>是假命题,所以D 选项不符合题意.故选:B .【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.10.D解析:D【解析】延长AC 交BE 于F.90,306060ACB CBE AFB AD BECAD AFB ∠=︒∠=︒∴∠=︒∴∠=∠=︒故选D.11.B解析:B【分析】根据逆命题的概念分别写出各个命题的逆命题,根据等边三角形的判定和直线定理、平行四边形的判定和性质定理、线段垂直平分线的判定和性质、全等三角形的判定和性质定理判断即可.【详解】解:(1)等边三角形的三个内角都相等,是真命题,逆命题为:三个角相等的三角形是等边三角形,是真命题;(2)平行四边形相邻的两个角互补,但不一定相等,本说法是假命题,逆命题为:相邻的两个角都相等的四边形是平行四边形,是真命题;(3)线段垂直平分线上的点到这条线段两个端点距离相等,是真命题,逆命题为:到线段两个端点距离相等的点在线段垂直平分线上,是真命题;(4)底角相等的两个等腰三角形不一定全等,本说法是假命题,逆命题为:两个全等的等腰三角形的底角相等,是真命题;故选:B .【点睛】本题考查的是命题的真假判断、逆命题的概念,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.二、填空题13.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.14.30【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴∠PBC解析:30【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.15.90°【分析】由平行线性质可得到再由角平分线定义可得到【详解】解:∵AB ∥CD ∴∠BGH+∠GHD=180(两直线平行同旁内角互补)又GMHM 分别平分∠BGH ∠GHD ∴∠MGH+∠GHM=90(角平解析:90°【分析】由平行线性质可得到180BGH GHD ∠+∠=︒,再由角平分线定义可得到90GMH ∠=︒.【详解】解:∵AB ∥CD∴∠BGH+∠GHD=180︒(两直线平行,同旁内角互补)又GM 、HM 分别平分∠BGH 、∠GHD ,∴∠MGH+∠GHM=90︒(角平分线的定义)∴ ∠GMH=180︒-(∠MGH+∠GHM )=180︒-90︒=90︒(三角形内角和定理). 故答案为 90°.【点睛】本题考查三角形内角和、角平分线及平行线的综合应用,熟练掌握有关性质、定义和定理是解题关键.16.500【分析】连接BB 由翻折变换的性质得:∠ABC=∠DBE=60°再根据三角形外角性质即可得到∠ADF+∠CEG=60°+60°=120°进而得出∠CEG=50°再根据三角形内角和定理即可得到△C解析:500【分析】连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,再根据三角形外角性质,即可得到∠ADF+∠CEG=60°+60°=120°,进而得出∠CEG=50°,再根据三角形内角和定理,即可得到△CEG 中,∠CGE=180°-50°-80°=50°.【详解】如图,连接BB',由翻折变换的性质得:∠ABC=∠DB'E=60°,∵∠ADF 是△BDB'的外角,∠CEG 是△BEB'的外角,∴∠ADF+∠CEG=60°+60°=120°,又∵∠ADF=70°,∴∠CEG=50°,又∵∠C=80°,∴△CEG 中,∠CGE=180°-50°-80°=50°,故答案为50°.【点睛】本题考查了翻折变换的性质、三角形外角的性质以及三角形内角和定理的运用;熟练掌握翻折变换的性质,并能进行推理计算是解决问题的关键.17.全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题【详解】解:∵原命题的条件是:三角形的面积相等结论是:该三角形是全等三角形∴其逆命题是:全等三角形的面积相等故答案为:全等三角形的 解析:全等三角形的面积相等【分析】将原命题的条件与结论互换即可得到其逆命题.【详解】解:∵原命题的条件是:三角形的面积相等,结论是:该三角形是全等三角形. ∴其逆命题是:全等三角形的面积相等.故答案为:全等三角形的面积相等.【点睛】本题考查了命题与定理的知识,解题的关键是了解如何写出一个命题的逆命题. 18.180【分析】根据平行线的性质得到根据平角的性质得到然后根据三角形内角和定理即可求解【详解】∵∴∵又∵∴∴故答案为180【点睛】本题考查了平行线的性质—两直线平行同位角相等三角形的内角和解题过程中注 解析:180【分析】根据平行线的性质,得到2AHF ∠=∠,根据平角的性质得到180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒,然后根据三角形内角和定理即可求解.【详解】∵//DE FG∴2AHF ∠=∠∵180AHF AHC ∠+∠=︒,1180ACH ∠+∠=︒又∵180AHC ACH A ∠+∠+∠=︒∴180********A ︒-∠+︒-∠+∠=︒∴12180A ∠+∠-∠=︒故答案为180.【点睛】本题考查了平行线的性质—两直线平行同位角相等,三角形的内角和,解题过程中注意等量代换是本题的关键.19.5【分析】设∠BCE=4x ∠CBF=5x 设∠ADE=∠EDC=y 构建方程组求出xy 证明∠CFB=90°再利用三角形的面积公式构建方程即可解决问题【详解】解:∵∴可以假设∠BCE=4x 则∠CBF=5x解析:5【分析】设∠BCE=4x ,∠CBF=5x ,设∠ADE=∠EDC=y ,构建方程组求出x ,y ,证明∠CFB=90°,再利用三角形的面积公式构建方程即可解决问题.【详解】解:∵54CBF BCE ∠=∠, ∴可以假设∠BCE=4x ,则∠CBF=5x ,∵DE 平分∠ADC ,CE 平分∠DCB ,∴∠ADE=∠EDC ,∠ECD=∠ECB=4x ,设∠ADE=∠EDC=y ,∵AD ∥BF ,∴∠A+∠ABF=180°,∴∠ADC+∠DCB+∠CBF=180°,∴2y+13x=180°①,∵∠DEC=115°,∴∠EDC+∠ECD=65°,即y+4x=65° ②,联立①②解得x=10°,y=25°,∴∠BCF=40°,∠CBF=50°,∴∠CFB=90°,∴BF ⊥EC ,∴CE=2BF ,设BF=m ,则CE=2m ,12524∆=⨯⨯=BCE S EC BF , ∴125224⨯⨯=m m , 解得52m =(负值舍去),∴CE=2m=5,故答案为5.【点睛】本题考查了角平分线的性质,平行线的性质,三角形内角和定理,二元一次方程组等知识,解题的关键是学会利用参数构建方程或方程组组解决问题.20.35°【分析】根据三角形内角和定理用∠B∠M表示出∠BAM-∠BCM再用∠B∠M表示出∠MAD-∠MCD再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD然后求出∠M与∠B∠D关系代入数解析:35°【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=12(∠B+∠D)=12(31°+39°)=35°;故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.三、解答题21.(1)同位角,同旁内角,内错角;(2)平行,理由见解析;(3)64°【分析】(1)根据同位角,同旁内角,内错角的定义分别判断;(2)根据∠3=∠ACB得到FG∥AC,得到∠2=∠4,结合∠4+∠5=180°,可得结论;(3)根据FG∥AC得到∠BFG=∠A=58°,结合CF⊥AB得到∠4,可得∠2,最后根据角平分线的定义得到∠ACB.【详解】解:(1)∵∠1和∠3分别在CF,GF的同侧,并且在第三条直线BC的同旁,∴∠1与∠3是一对同位角,∵∠2和∠5夹在CF,DE两条直线之间,并且在第三条直线AC的同旁,∴∠2与∠5是一对同旁内角,∵∠3和∠4夹在CF ,CB 两条直线之间,并且在第三条直线FG 的同旁,∴∠3与∠4是一对内错角;故答案为:同位角,同旁内角,内错角;(2)CF ∥DE ,∵∠3=∠ACB ,∴FG ∥AC ,∴∠2=∠4,又∵∠4+∠5=180°,∴∠2+∠5=180°,∴CF ∥DE ;(3)由(2)知:FG ∥AC ,∴∠BFG=∠A=58°,∵CF ⊥AB ,∴∠BFC=∠BFG+∠4=90°,∴∠4=90°-58°=32°,∴∠2=∠4=32°,∵CF 是∠ACB 的平分线,∴∠ACB=2∠2=64°.【点睛】本题考查了平行线的判定和性质,角平分线的定义,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.22.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 23.(1)EG ⊥FG ,证明见解析;(2)A .45;B .2EOF EPF ∠=∠(在A 、B 两题中任选一题即可)【分析】(1)由AB ∥CD ,可知∠BEF 与∠DFE 互补,由角平分线的定义可得90GEF GFE ∠+∠=︒,由三角形内角和定理可得∠G =90︒,则EG FG ⊥; (2)A .由(1)可知90BEG DFG ∠+∠=︒,根据角平分线的定义可得45MEG MFG ∠+∠=︒,故135MEF MFE ∠+∠=︒,根据三角形的内角和即可求出EMF ∠=45︒;B .设OEF α∠=,OFE β∠=,故EOF ∠=180αβ︒--,再得到180BEO DFO αβ∠+∠=--︒,根据角平分线的定义可得190122PEO PFO αβ︒-∠+∠=-,则119022PEF PFE αβ∠+∠=︒++,再求出EPF ∠,即可比较得到结论.【详解】解:(1)由题意可得,求证:“EG ⊥FG”,证明过程如下∵//AB CD∴∠BEF +∠EFD=180° EG 平分BEF ∠,FG 平分DFE ∠,12GEF BEF ∴∠=∠,12GFE DFE ∠=∠, 1111()180902222GEF GFE BEF DFE BEF DFE ∴∠+∠=∠+∠=∠+⨯︒∠==︒. 在EFG 中,180GEF GFE G ∠+∠+∠=︒,180()1809090G GEF GFE ∴∠=-∠+∠=-︒=︒︒︒,EG FG ∴⊥.(2)A .由(1)可知=90BEG DFG GEF GFE ∠+∠=∠+∠︒,∵BEG ∠的平分线与DFG ∠的平分线交于点M∴∠MEG=12∠BEG ,∠MFG=12∠DFG ∴()111190452222MEG MFG BEG DFG BEG DFG ∠+∠=∠+∠=∠+∠=⨯︒=︒ 则4591350MEF MFE ︒+∠︒=+∠=︒, ∴EMF ∠=180135︒-︒=45︒故答案为:A ,45;B.设OEF α∠=,OFE β∠=,∴EOF ∠=180αβ︒--,∵//AB CD∴∠BEF +∠EFD=180°则180BEO DFO αβ∠+∠=--︒∵BEO ∠的平分线与DFO ∠的平分线交于点P ∴190122PEO PFO αβ︒-∠+∠=-, ∴111190902222PEF PFE αβαβαβ∠+∠=︒--++=︒++,∴EPF ∠=111809022αβ⎛⎫︒-︒++ ⎪⎝⎭=121902αβ︒--, ∵EOF ∠=1118029022αβαβ⎛⎫︒--=︒-- ⎪⎝⎭, 故2EOF EPF ∠=∠故答案为:B ,2EOF EPF ∠=∠.(在A 、B 两题中任选一题即可)【点睛】本题考查了平行线的性质、角平分线的定义、三角形内角和定理,熟练掌握平行线的性质和角平分线的定义是解题的关键.24.(1)见解析;(2)∠D EC =108°【分析】(1)由AC //DE 可得∠D=∠ABD ,根据等量代换得到∠C=∠ABD ,从而可证BD//C E ; (2)设∠ABD=2x , ∠D EC=3x ,根据两直线平行,同旁内角互补求解即可.【详解】(1)证明∵∠A=∠F ,∴AC //DE ,∴∠D=∠ABD ,∵∠D=∠C ,∴∠C=∠ABD ,∴BD//C E ;(2)∵BD//C E ,DF//BC ,∴∠ABD =∠C ,∠D EC +∠C=180°,∵∠ABD :∠DEC=2:3,∴设∠ABD=2x ,∠D EC=3x ,则2x+3x=180°,∴x=36°,∴∠D EC =3x=108°.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.见解析【分析】根据平行线的判定和性质解答.【详解】解:证明:∵∠1=∠2(已知),且∠1=∠4(对顶角相等),∴∠2=∠4(等量代换),∴BF ∥EC (同位角相等,两直线平行),∴∠C=∠3(两直线平行,同位角相等).又∵∠B=∠C (已知),∴∠3=∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 26.(1)平行,理由见解析;(2)垂直,理由见解析【分析】(1)根据平行线性质得出ABC DCF ∠=∠,根据角平分线定义求出24∠∠=,根据平行线的判定推出即可;(2)根据平行线性质得出180DGC ACE ∠+∠=︒,根据90ACE ∠=︒,求出90DGC ∠=︒,根据垂直定义推出即可.【详解】解:(1)//BD CE .理由://AB CD ,ABC DCF ∴∠=∠,BD ∴平分ABC ∠,CE 平分DCF ∠,122ABC ∴∠=∠,142DCF ∠=∠, 24∴∠=∠,//BD CE ∴(同位角相等,两直线平行);(2)AC BD ⊥,理由://BD CE ,180DGC ACE ∴∠+∠=︒,90ACE ∠=︒,1809090DGC ∴∠=︒-︒=︒,即AC BD ⊥.【点睛】本题考查了角平分线定义,平行线的性质和判定,垂直定义等知识点,注意:①同位角相等,两直线平行,②两直线平行,同旁内角互补.。

初中数学:平行线的证明测试题

初中数学:平行线的证明测试题

初中数学:平行线的证明测试题一、选择题(共14小题)1.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°4.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°5.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形6.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°8.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°9.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°10.如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°11.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.15°B.25°C.35°D.45°14.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个二、填空题(共16小题)15.如图,∠1=∠2,∠A=60°,则∠ADC= 度.16.如图,∠1=∠2=40°,MN平分∠EMB,则∠3= °.17.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .18.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 度.19.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 度.20.如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= .21.如图,已知∠1=∠2,∠3=73°,则∠4的度数为度.22.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.23.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= .24.如图,一束平行太阳光线照射到正五边形上,则∠1= .25.如图,a∥b,∠1=70°,∠2=50°,∠3= °.26.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.27.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为°.28.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD= 度.29.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN ∥DC,则∠B= °.30.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .平行线的证明参考答案与试题解析一、选择题(共14小题)1.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.【点评】此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角相等.2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°【考点】平行线的判定与性质.【分析】首先根据∠1=∠2,可根据同位角相等,两直线平行判断出a∥b,可得∠3=∠5,再根据邻补角互补可以计算出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=70°,∴∠5=70°,∴∠4=180°﹣70°=110°,故选:D.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°【考点】平行线的判定与性质.【分析】先根据对顶角相等得出∠3,然后判断a∥b,再由平行线的性质,可得出∠2的度数.【解答】解:∵∠1和∠3是对顶角,∴∠1=∠3=50°,∵c⊥a,c⊥b,∴a∥b,∵∠2=∠3=50°.故选:B.【点评】本题考查了平行线的判定与性质,解答本题的关键是掌握两直线平行内错角相等,对顶角相等.4.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°【考点】平行线的判定与性质.【分析】首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【解答】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.【点评】此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.5.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形【考点】三角形内角和定理.【分析】根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,、∴△ABC是直角三角形.故选:C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.(2013•扬州)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选C.【点评】本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.8.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.【点评】此题考查了平行线的性质和判定定理.此题难度不大,注意掌握数形结合思想的应用.9.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选A.【点评】本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.10.如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,利用同位角相等两直线平行得到a与b平行,再由两直线平行同位角相等得到∠3=∠5,求出∠5的度数,即可求出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5=∠3=30°,∴∠4=180°﹣∠5,=150°,故选D【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.11.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.15°B.25°C.35°D.45°【考点】平行线的性质.【专题】压轴题.【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选C.【点评】本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.14.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】两角互余,则两角之和为90°,此题的目的在于找出与∠CAB的和为90°的角,根据平行线的性质及对顶角相等作答.【解答】解:∵AB∥CD,∴∠ABC=∠BCD,设∠ABC的对顶角为∠1,则∠ABC=∠1,又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.【点评】此题考查的知识点为:平行线的性质,两角互余和为90°,对顶角相等.二、填空题(共16小题)15.如图,∠1=∠2,∠A=60°,则∠ADC= 120 度.【考点】平行线的判定与性质.【分析】由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.【解答】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.16.如图,∠1=∠2=40°,MN平分∠EMB,则∠3= 110 °.【考点】平行线的判定与性质.【分析】根据对顶角相等得出∠2=∠MEN,利用同位角相等,两直线平行得出AB∥CD,再利用平行线的性质解答即可.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.17.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= 63°30′.【考点】平行线的判定与性质.【分析】根据∠1=∠2可以判定a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得答案.【解答】解:∵∠1=40°,∠2=40°,∴a∥b,∴∠3=∠5=116°30′,∴∠4=180°﹣116°30′=63°30′,故答案为:63°30′.【点评】此题主要考查了平行线的判定与性质,关键是掌握同位角相等,两直线平行.18.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 30 度.【考点】平行线的性质;角平分线的定义.【分析】根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.【解答】解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.【点评】本题主要考查了两直线平行,同位角相等.19.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 36 度.【考点】平行线的性质;三角形内角和定理.【分析】根据两直线平行,同位角相等可得∠DCE=∠B,∠DEC=∠F,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AB∥DC,DE∥GF,∠B=∠F=72°,∴∠DCE=∠B=72°,∠DEC=∠F=72°,在△CDE中,∠D=180°﹣∠DCE﹣∠DEC=180°﹣72°﹣72°=36°.故答案为:36.【点评】本题考查了两直线平行,同位角相等的性质,三角形的内角和定理,是基础题,熟记性质与定理是解题的关键.20.如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= 55°.【考点】平行线的性质.【专题】计算题.【分析】由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.【解答】解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°【点评】此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.21.如图,已知∠1=∠2,∠3=73°,则∠4的度数为107 度.【考点】平行线的判定与性质.【专题】计算题.【分析】根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.【考点】平行线的性质;直角三角形的性质.【专题】探究型.【分析】先根据平角的定义求出∠EDC的度数,再由平行线的性质得出∠C的度数,根据三角形内角和定理即可求出∠B的度数.【解答】解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.23.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= 115°.【考点】平行线的性质.【分析】将各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEG=∠1+∠FEG=115°.故答案为:115°.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行内错角相等.24.如图,一束平行太阳光线照射到正五边形上,则∠1= 30°.【考点】平行线的性质;多边形内角与外角.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.【解答】解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.【点评】本题考查了平行线的性质,注意掌握两直线平行:内错角相等、同位角相等.25.如图,a∥b,∠1=70°,∠2=50°,∠3= 60 °.【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠4的度数,再由平角的性质求出∠3的度数即可.【解答】解:∵a∥b,∠1=70°,∴∠4=∠1=70°,∴∠3=180°﹣∠4﹣∠2=180°﹣70°﹣50°=60°.故答案为:60.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= 50 °.【考点】平行线的性质.【分析】由∠BAC=80°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.【点评】本题考查了平行线的性质,解答本题的关键是掌握角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.27.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65 °.【考点】平行线的性质.【分析】先根据平角的定义求出∠BAC的度数,再根据平行线的性质即可得出结论.【解答】解:∵∠BAF=115°,∴∠BAC=180°﹣115°=65°,∵AB∥CD,∴∠ECF=∠BAC=65°.故答案为:65.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.28.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD= 60 度.【考点】平行线的性质.【专题】压轴题.【分析】根据AB∥CD,可得∠BCD=∠B=30°,然后根据CB平分∠ACD,可得∠ACD=2∠BCD=60°.【解答】解:∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.故答案为:60.【点评】本题考查了平行线的性质和角平分线的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.29.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN ∥DC,则∠B= 95 °.【考点】平行线的性质;三角形内角和定理;翻折变换(折叠问题).【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.30.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 70°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.。

第七章平行线的证明单元测试卷20222023学年北师大版八年级数学上册1

第七章平行线的证明单元测试卷20222023学年北师大版八年级数学上册1

第七章 平行线的证明 单元测试卷一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.如图,直线a,b被直线c,d所截.下列条件能判定a/¿b的是( )A. ∠1=∠3B. ∠2+∠4=180∘C. ∠4=∠5D. ∠1=∠22.如图所示,过点P画直线a的平行线b的作法的依据是( )A. 两直线平行,同位角相等B. 同位角相等,两直线平行C. 两直线平行,内错角相等D. 内错角相等,两直线平行3.如图,在下列给出的条件中,不能判定AB/¿DF的是( )A. ∠A+∠2=180°B. ∠A=∠3C. ∠1=∠4D. ∠1=∠34.如图,点E在BC的延长线上,下列条件中能判断AB/¿CD的是( )A. ∠DBC=∠DACB. ∠ABC=∠DCEC. ∠ADC=∠DCED. ∠ADC+∠BCD=180°5.将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为( )A. 10°B. 15°C. 20°D. 25°6.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=37∘时,∠1的度数为( )A. 37∘B. 43∘C. 53∘D. 54∘7.如下图,BF是∠ABD的平分线,CE是∠ACD的平分线,BF与CE交于点G,若∠BDC=130∘,∠BGC=100∘,则∠A的度数为( )A. 60∘B. 70∘C. 80∘D. 90∘8.等腰三角形的一个内角是100°,它的另外两个角的度数是( )A. 50°和50°B. 40°和40°C. 35°和35°D. 60°和20°9.如图要判断一块纸带的两边a,b相互平行,甲、乙、丙三人的折叠与测量方案如下:下列判断正确的是( )A. 甲、乙能得到a ¿/¿ b,丙不能B. 甲、丙能得到a ¿/¿ b,乙不能C. 乙、丙能得到a ¿/¿ b,甲不能D. 甲、乙、丙均能得到a ¿/¿ b10.如图:①②③中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2+∠O3=¿度.( )A. 84B. 111C. 225D. 201二、填空题(本大题共8小题,共24分)11.如图,a,b,c三根木条相交,∠1=50°,固定木条b,c,转动木条a,当木条a转到与b所成的∠2为__________时,a ¿/¿ c,理由是_____________________________________.12.将一副三角板(∠A=30∘)按如图所示方式摆放,使得AB/¿EF,则∠1 .13.如图,在△ABD和△ACE中,有下列四个论断:①AB=AC;②AD=AE;③∠B=∠C;④BD=CE.请以其中三个论断作为条件,余下的一个论断作为结论,写出一个正确的命题 .¿用序号⊗⊗⊗⇒⊗的形式写出¿14.如图,点E在AD的延长线上.若添加一个条件,使BC/¿AD,则可添加的条件为 .¿任意添加一个符合题意的条件即可¿15.如图,在△ABC中,∠A=60∘,BM,CM分别是∠ABC,∠ACB的平分线,BN,CN是外角的平分线,则∠M−∠N=¿ .16.如图,AB/¿CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=¿______.17.如图所示,AB/¿CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为______.18.如图,已知直线EF⊥MN,垂足为F,且∠1=140°,则当∠2=¿ (1) 时,AB/¿CD.三、解答题(本大题共8小题,共66分。

2022年北师大版第七章平行线的证明单元检测题含答案

2022年北师大版第七章平行线的证明单元检测题含答案

北师大版八年级上册第七章平行线的证明单元检测题一、选择题(每小题3分,共30分)1.下列语句中,是命题的是()A.直线AB和CD垂直吗B.过线段AB的中点C画AB的垂线C.同旁内角不互补,两直线不平行D.连接A,B两点2.如图,AB∥CD,CB⊥DB,∠D=65°,则∠ABC的大小是()A.25°B.35°C.50°D.65°,第2题图),第3题图),第4题图),第5题图)3.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2等于() A.90°B.100°C.130°D.180°4.如图,已知△ABC中,点D在AC上,延长BC至E,连接DE,则下列结论不成立的是() A.∠DCE>∠ADB B.∠ADB>∠DBC C.∠ADB>∠ACB D.∠ADB>∠DEC5.如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,则∠2等于()A.50°B.60°C.65°D.90°6.如图,已知直线AB∥CD,BE平分∠ABC,且BE交CD于点D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°7.如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°,第6题图),第7题图),第9题图),第10题图)8.适合条件∠A=12∠B=13∠C的三角形ABC是()A.锐角三角形 B. 直角三角形C.钝角三角形D.都有可能9.如图,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合.若∠A=75°,则∠1+∠2等于() A.150° B. 210°C.105°D.75°10.已知直线l1∥l2,一块含30°角的直角三角板如图所示放置,∠1=25°,则∠2等于() A.30° B. 35°C.40°D.45°二、填空题(每小题3分,共24分)11.命题“对顶角相等”的条件是____,结论是___.12.如图,DAE是一条直线,DE∥BC,则x=____.,第12题图),第13题图),第14题图)13.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是____.14.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=____,∠CED=____.15.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=____.,第15题图),第16题图),第18题图)16.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为____.17.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为____.18.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=___度.三、解答题(共66分)19.(8分)如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.20.(8分)一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.21.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.22.(10分)如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度数.23.(10分)如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.24.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明.25.(12分)【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC=__130°__;若∠A=n°,则∠BEC=__90°+12n°__.【探究】(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC=____;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)答案:一、选择题(每小题3分,共30分)1---5 CABAC 6—10 CCBAB二、填空题(每小题3分,共24分)11.命题“对顶角相等”的条件是__两个角是对顶角__,结论是__相等__.12.如图,DAE是一条直线,DE∥BC,则x=__64°__.,第12题图),第13题图),第14题图)13.如图,已知AB∥CD,∠DEF=50°,∠D=80°,∠B的度数是__50°__.14.如图,已知∠A=∠F=40°,∠C=∠D=70°,则∠ABD=__70°__,∠CED=__110°__.15.已知如图,在△ABC中,D为BC上一点,∠1=∠2,∠3=∠4,∠DAC=100°,则∠BAC=__120°__.,第15题图),第16题图),第18题图)16.用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22°__.17.已知等腰三角形的一腰上的高与另一腰的夹角为40°,则这个等腰三角形的顶角为__50°或130°__.18.如图所示,AB=BC=CD=DE=EF=FG,∠1=130°,则∠A=__10__度.三、解答题(共66分)19.(8分)如图,∠C=∠1,∠2和∠D互余,BE⊥FD,求证:AB∥CD.解:∵∠C=∠1,∴CF∥BE,又BE⊥FD,∴CF⊥FD,∴∠CFD=90°,则∠2+∠BFD =90°,又∠2+∠D=90°,∴∠D=∠BFD,则AB∥CD20.(8分)一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说:“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.解:50°,因为∠1=130°,所以与∠1相邻的内角为50°,所以∠3-∠2=50°21.(8分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.解:∵BE∥DF,∴∠ABE=∠D,又AB=FD,∠A=∠F,∴△ABE≌△FDC(ASA),∴AE=FC22.(10分)如图,△ABC中,∠BAC=90°,∠ABC=∠ACB,又∠BDC=∠BCD,且∠1=∠2,求∠3的度数.解:由∠BAC=90°,∠ABC=∠ACB易求∠ACB=45°,设∠1=x,可得∠BCD=∠2+45°=x+45°=∠3,∴x+(x+45°)+(x+45°)=180°,x=30,则∠3=x+45°=75°23.(10分)如图,△ABC中,D,E,F分别为三边BC,BA,AC上的点,∠B=∠DEB,∠C=∠DFC.若∠A=70°,求∠EDF的度数.解:∵∠A+∠B+∠C=180°,∴∠B+∠C=110°,∵∠B=∠DEB,∠C=∠DFC,∴∠B+∠DEB+∠C+∠DFC=220°,∵∠B+∠DEB+∠C+∠DFC+∠EDB+∠FDC=360°,∴∠EDB+∠FDC=140°,即∠EDF=180°-140°=40°24.(10分)如图,已知∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并对结论进行证明.解:∠AED=∠C.∵∠1+∠2=180°,∠1+∠EFD=180°,∴∠2=∠EFD,∴AB∥EF,∴∠3=∠ADE,又∵∠3=∠B,∴∠ADE=∠B,∴DE∥BC,∴∠AED=∠C25.(12分)【问题】如图①,在△ABC中,BE平分∠ABC,CE平分∠ACB,若∠A=80°,则∠BEC=__130°__;若∠A=n°,则∠BEC=__90°+12n°__.【探究】(1)如图②,在△ABC中,BD,BE三等分∠ABC,CD,CE三等分∠ACB.若∠A=n°,则∠BEC=__60°+23n°__;(2)如图③,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC和∠A有怎样的关系?请说明理由;(3)如图④,O是外角∠DBC与外角∠BCE的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)解:(2)∠BOC=12∠A.理由:∠BOC=∠2-∠1=12∠ACD-12∠ABC=12(∠ACD-∠ABC)=12∠A(3)∠BOC=90°-12∠A第一章勾股定理章末测试卷一、选择题(每题3分,共36分)1.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1942.(3分)分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.53.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形4.(3分)下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3),2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.45.(3分)已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.206.(3分)若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形8.(3分)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.9.(3分)下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余10.(3分)放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米11.(3分)下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长12.(3分)在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对二、填空题(每空3分,共12分)13.(3分)一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是m.14.(3分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=.15.(3分)一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高米.16.(3分)如果直角三角形的三条边分别为4、5、a,那么a2的值等于.三、解答题(共52分)17.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?18.(8分)求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.19.(8分)某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?20.(10分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?21.(10分)如图,将边长为8cm的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,求线段CN长.22.(8分)如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?参考答案一、选择题(每题3分,共36分)1.(3分)如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.194【考点】勾股定理.【专题】换元法.【分析】由图可知在直角三角形中,已知斜边和一直角边,求另一直角边的平方,用勾股定理即可解答.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选C.【点评】此题比较简单,关键是熟知勾股定理:在直角三角形中两条直角边的平方和等于斜边的平方.2.(3分)分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3,4,5.其中能构成直角三角形的有()组.A.2 B.3 C.4 D.5【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.(3分)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形【考点】勾股定理的逆定理;三角形内角和定理.【分析】直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【解答】解:A、根据三角形内角和定理,可求出角C为90度,故正确;B、解得应为∠B=90度,故错误;C、化简后有c2=a2+b2,根据勾股定理,则△ABC是直角三角形,故正确;D、设三角分别为5x,3x,2x,根据三角形内角和定理可求得三外角分别为:90度,36度,54度,则△ABC是直角三角形,故正确.故选B.【点评】本题考查了直角三角形的判定.4.(3分)下列数据中是勾股数的有()组(1)3,5,7 (2)5,15,17 (3),2,2.5 (4)7,24,25 (5)10,24,26.A.1 B.2 C.3 D.4【考点】勾股数.【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【解答】解:(1)3,5,7 不是勾股数,因为32+52≠72;(2)5,15,17 不是勾股数,因为52+152≠172;(3),2,不是勾股数,因为,2,不是正整数;(4)7,24,25 是勾股数,因为72+242=252,且7、24、25是正整数;(5)10,24,26是勾股数,因为102+242=262,且10,24,26是正整数.故选B.【点评】本题考查了勾股数的概念:满足a2+b2=c2的三个正整数,称为勾股数.说明:①三个数必须是正整数,例如:、6、满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…5.(3分)已知直角三角形的两直角边之比是3:4,周长是36,则斜边是()A.5 B.10 C.15 D.20【考点】勾股定理.【分析】设直角三角形的两直角边分别为3k,4k,则斜边为5k,列出方程求出k,即可解决问题.【解答】解:设直角三角形的两直角边分别为3k,4k,则斜边为5k.由题意3k+4k+5k=36,解得k=3,所以斜边为5k=15.故选C.【点评】本题考查勾股定理、一元一次方程等知识,解题的关键是灵活于勾股定理解决问题,学会设未知数列方程解决问题,属于中考常考题型.6.(3分)若等腰三角形的腰长为10cm,底边长为16cm,那么底边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】可以先作出BC边上的高AD,根据等腰三角爱哦形的性质可得BD的长,在Rt△ADB中,利用勾股定理就可以求出高AD.【解答】解:作AD⊥BC于D,∴BD=BC=8cm,∴AD==6cm,故选:D.【点评】本题主要考查了勾股定理及等腰三角形的性质,关键是掌握勾股定理和等腰三角形三线合一的性质.7.(3分)三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形【考点】勾股定理的逆定理.【分析】对等式进行整理,再判断其形状.【解答】解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,故选:C.【点评】本题考查了直角三角形的判定:可用勾股定理的逆定理判定.8.(3分)直角三角形两直角边长度为5,12,则斜边上的高()A.6 B.8 C.D.【考点】勾股定理.【分析】首先根据勾股定理,得:斜边==13.再根据直角三角形的面积公式,求出斜边上的高.【解答】解:由题意得,斜边为=13.所以斜边上的高=12×5÷13=.故选D.【点评】运用了勾股定理.注意:直角三角形斜边上的高等于两条直角边的乘积9.(3分)下列三角形一定不是直角三角形的是()A.三角形的三边长分别为5,12,13B.三角形的三个内角比为1:2:3C.三角形的三边长之比为1:2:3D.三角形的两内角互余【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据勾股定理的逆定理以及直角三角形的定义一一判断即可.【解答】解:A、正确.∵52+122=132,∴三角形为直角三角形.B、正确.∵三角形的三个内角比为1:2:3,∴三个内角分别为30°,60°,90°,∴三角形是直角三角形.C、错误.∵12+22≠32,∴三角形不是直角三角形.D、正确.∵三角形的两内角互余,∴第三个角是90°,∴三角形是直角三角形.故选C.【点评】本题考查勾股定理的逆定理、三角形的内角和等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.10.(3分)放学以后,小明和小华从学校分开,分别向北和东走回家,若小明和小华行走的速度都是50米/分,小明用10分到家,小华用24分到家,小明和小华家的距离为()A.600米B.800米C.1000米D.1300米【考点】勾股定理的应用.【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,∵小明用10分到家,小华用24分到家,∴OA=10×50=500(米),OB=24×50=1200(米),∴AB==1300(米).答:小明和小华家的距离为1300米.故选:D.【点评】本题考查的是勾股定理的应用,熟知在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.11.(3分)下面说法正确的是()A.在Rt△ABC中,a2+b2=c2B.在Rt△ABC中,a=3,b=4,那么c=5C.直角三角形两直角边都是5,那么斜边长为10D.直角三角形中,斜边最长【考点】勾股定理.【分析】利用直角三角形勾股定理进行解题.【解答】解:A,B:直角三角形直角是哪个,未知,故不能得出a2+b2=c2,c=5 C:斜边长为5;D:由勾股定理知显然正确.故选D.【点评】考查了直角三角形相关知识以及勾股定理的应用.12.(3分)在△ABC中,AB=12cm,AC=9cm,BC=15cm,下列关系成立的是()A.∠B+∠C>∠A B.∠B+∠C=∠A C.∠B+∠C<∠A D.以上都不对【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到三角形的形状,则不难求得其各角的关系.【解答】解:因为122+92=152,所以三角形是直角三角形,则∠B+∠C=∠A.故选B.【点评】本题考查了直角三角形的判定及勾股定理逆定理的应用.二、填空题(每空3分,共12分)13.(3分)一长为13m的木梯,架在高为12m的墙上,这时梯脚与墙的距离是5m.【考点】勾股定理的应用.【分析】根据题意可知,梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解答】解:∵梯子、地面、墙刚好形成一直角三角形,∴梯脚与墙角的距离==5(m).故答案为:5.【点评】本题考查的是勾股定理在实际生活中的应用,正确应用勾股定理是解题关键.14.(3分)如图,∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,则OD2=7.【考点】勾股定理.【分析】连续运用勾股定理即可解答.【解答】解:由勾股定理可知OB=,OC=,OD=∴OD2=7.【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.15.(3分)一根电线杆在一次台风中于地面3米处折断倒下,杆顶端落在离杆底端4米处,电线杆在折断之前高8米.【考点】勾股定理的应用.【分析】先根据勾股定理求出大树折断部分的高度,再根据大树的高度等于折断部分的长与未断部分的和即可得出结论.【解答】解:由勾股定理得斜边为=5米,则原来的高度为3+5=8米.即电线杆在折断之前高8米.故答案为8.【点评】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术的算法求解.16.(3分)如果直角三角形的三条边分别为4、5、a,那么a2的值等于9或41.【考点】勾股定理.【分析】此题有两种情况,一是当这个直角三角形的斜边的长为5时;二是当这个直角三角形两条直角边的长分别为4和5时,由勾股定理分别求出此时的a2值即可.【解答】解:当这个直角三角形的斜边的长为5时,a2=52﹣42=9;当这个直角三角形两条直角边的长分别为4和5时,a2=52+42=41.故a的值为9或41.故答案为:9或41.【点评】本题考查勾股定理的知识,解答此题的关键是直角三角形的斜边没有确定,所以要进行分类讨论,注意不要漏解,难度一般.三、解答题(共52分)17.(8分)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B200m,结果他在水中实际游了520m,该河流的宽度为多少?【考点】勾股定理的应用.【分析】从实际问题中找出直角三角形,利用勾股定理解答.【解答】解:根据图中数据,运用勾股定理求得AB===480m,答:该河流的宽度为480m.【点评】本题考查了勾股定理的应用,是实际问题但比较简单.18.(8分)求下列图形中阴影部分的面积.(1)如图1,AB=8,AC=6;(2)如图2,AB=13,AD=14,CD=2.【考点】勾股定理.【分析】(1)首先利用勾股定理计算出BC的长,进而得到圆的半径BO长,再利用半圆的面积减去直角三角形面积即可;(2)首先计算出AC的长,再利用勾股定理计算出BC的长,然后利用矩形的面积公式计算即可.【解答】解:(1)∵AB=8,AC=6,∴BC===10,∴BO=5,∵S=AB×AC=×8×6=24,△ABCS半圆=π×52=,=﹣24;∴S阴影(2)∵AD=14,CD=2,∴AC=12,∵AB=13,∴CB===5,=2×5=10.∴S阴影【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.19.(8分)某校校庆,在校门AB的上方A处到教学楼C的楼顶E处拉彩带,已知AB高5m,EC高29m,校门口到大楼之间的距离BC为10m,求彩带AE的长是多少?【考点】勾股定理的应用.【专题】探究型.【分析】过点A作AF⊥CE于点F,由AB=5m,EC=29m可求出EF的长,再由BC=10m 可知AE=BC=10m,在Rt△AEF中利用勾股定理即可求出AE的长.【解答】解:过点A作AF⊥CE于点F,∵AB⊥BC,EC⊥BC,∴四边形ABCF是矩形,∵AB=5m,EC=29m,∴EF29﹣5=24m,∵BC=10m,∴AE=BC=10m,在Rt△AEF中,∵AF=10m,EF=24m,∴AE===26m.答:彩带AE的长是23米.【点评】本题考查的是勾股定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(10分)一个零件的形状如图所示,工人师傅按规定做得AB=3,BC=4,AC=5,CD=12,AD=13,假如这是一块钢板,你能帮工人师傅计算一下这块钢板的面积吗?【考点】勾股定理的逆定理.【分析】由勾股定理逆定理可得△ACD与△ABC均为直角三角形,进而可求解其面积.【解答】解:∵42+32=52,52+122=132,即AB2+BC2=AC2,故∠B=90°,同理,∠ACD=90°∴S 四边形ABCD =S △ABC +S △ACD =×3×4+×5×12=6+30=36.【点评】熟练掌握勾股定理逆定理的运用,会求解三角形的面积问题.21.(10分)如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,求线段CN 长.【考点】翻折变换(折叠问题).【分析】根据折叠的性质,只要求出DN 就可以求出NE ,在直角△CEN 中,若设CN=x ,则DN=NE=8﹣x ,CE=4cm ,根据勾股定理就可以列出方程,从而解出CN 的长.【解答】解:设CN=xcm ,则DN=(8﹣x )cm ,由折叠的性质知EN=DN=(8﹣x )cm ,而EC=BC=4cm ,在Rt △ECN 中,由勾股定理可知EN 2=EC 2+CN 2,即(8﹣x )2=16+x 2,整理得16x=48,解得:x=3.即线段CN 长为3.【点评】此题主要考查了翻折变换的性质,折叠问题其实质是轴对称,对应线段相等,对应角相等,通常用勾股定理解决折叠问题.22.(8分)如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?【考点】轴对称-最短路线问题.【专题】计算题;作图题.【分析】此题的关键是确定点M的位置,需要首先作点A的对称点A′,连接点B和点A′,交l于点M,M即所求作的点.根据轴对称的性质,知:MA+MB=A′B.根据勾股定理即可求解.【解答】解:作A关于CD的对称点A′,连接A′B与CD,交点CD于M,点M即为所求作的点,则可得:DK=A′C=AC=10千米,∴BK=BD+DK=40千米,∴AM+BM=A′B==50千米,总费用为50×3=150万元.【点评】此类题的重点在于能够确定点M的位置,再运用勾股定理即可求解.。

2021八年级数学上册 第七章 平行线的证明 章末检测卷 北师版

2021八年级数学上册 第七章 平行线的证明 章末检测卷  北师版

第七章平行线的证明章末检测卷(北师大版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·山东海阳·七年级期末)下列语句是命题的是()A.同旁内角相等,两直线平行B.等于同一个角的两个角相等吗?C.延长线段AB到点C,使BC ABD.连接A,B两点2.(2021·全国·八年级专题练习)下列真命题的个数是()(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个B.2个C.3个D.4个3.(2020·陕西陈仓初二期末)已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°4.(2021·重庆巴南·八年级期中)如图,AB⊥AF,∠B、∠C、∠D、∠E、∠F的关系为()A.∠B+∠C+∠D+∠E+∠F=270°B.∠B+∠C﹣∠D+∠E+∠F=270°C.∠B+∠C+∠D+∠E+∠F=360°D.∠B+∠C﹣∠D+∠E+∠F=360°5.(2021·浙江越城·八年级期末)最近网上一个烧脑问题的关注度很高(如图所示),通过仔细观察、分析图形,你认为打开水龙头,哪个标号的杯子会先装满水( )A .3号杯子B .5号杯子C .6号杯子D .7号杯子 6.(2021·山东省莘县俎店中学八年级月考)将一副三角板按如图放置,则下列结论①13∠=∠;②如果230∠=,则有//AC DE ;③如果245∠=,则有//BC AD ;④如果4C ∠=∠,必有230∠=,其中正确的有( )A .①②③B .①②④C .③④D .①②③④ 7.(2020·宜兴市北郊中学初二期中)如图a 是长方形纸带,∠DEF =26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .102°B .108°C .124°D .128°8.(2020•泰兴市校级期中)如图,直线AE ∥DF ,若∠ABC =120°,∠DCB =95°,则∠1+∠2的度数为( )A .45°B .55°C .35°D .不能确定9.(2020·河北孟村初二期中)如图,AF ∥CD ,CB 平分∠ACD ,BD 平分∠EBF ,且BC ⊥BD ,下列结论:① BC 平分∠ABE ;② AC ∥BE ;③ ∠CBE +∠D =90°;④ ∠DEB =2∠ABC .其中正确结论的个数有( )A .1个B .2个C .3个D .4个10.(2021·江苏·泰州市第二中学附属初中八年级月考)如图,点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,若∠AOB=40°,则∠MPN 的度数是( )A .90°B .100°C .120°D .140°11.(2021·山东青岛·八年级单元测试)如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒ 12.(2021·江苏盐城·七年级月考)如图,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC 的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论:①//AD BC :②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④BD 平分ADC ∠;⑤12BDC BAC ∠=∠.其中错误的结论有( )A .0个B .1个C .2个D .3个二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2021·浙江嵊州·七年级期中)甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有1、2、3、4、5五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.假设甲、乙所作出的推理都是正确的,那么乙手中的数是____.14.(2021·广东·珠海市第九中学八年级期中)已知Rt △ABC 中,∠C =90°,将∠C 沿DE 向三角形内折叠,使点C 落在△ABC 的内部,如图,则∠1+∠2=___度.15.(2021·山东岱岳·七年级期中)如图,在ABC 中,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=______.16.(2021·湖南岳阳·七年级期末)如图,将一副三角板按如图所示放置,90CAB DAE ∠=∠=︒,45C ∠=︒,30E ∠=︒,且AD AC <,则下列结论中:①1345∠=∠=︒;②若AD 平分CAB ∠,则有//BC AE ;③将三角形ADE 绕点A 旋转,使得点D 落在线段AC 上,则此时415∠=︒;④若322∠=∠,则4C ∠=∠.其中结论正确的选项有______.(写出所有正确结论的序号)17.(2021·四川乐山·八年级期末)如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为()0,8,点B 的坐标为()4,0-,点P 是直线l :4x y +=上的一个动点,若PAB ABO ∠=∠,则点P 的坐标是__________.18.(2021·广东广州·八年级期中)如图,在ABC ∆中,BAC ∠和ABC ∠的平分线AE 、BF 相交于点O ,AE 交BC 于点E ,BF 交AC 于点F ,过点O 作OD BC 于点D ,则下列三个结论:①1902AOB C ∠=+∠;②当60C ∠=时,AF BE AB +=;③若OD a =,2AB BC CA b ++=,则12ABC S ab ∆=.其中正确的是______.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021·河南襄城·七年级月考)(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).20.(2021·山东乐陵·八年级期中)如图所示,点B ,E ,C ,F 在同一条直线上,能否由AC DE =,BE FC =来证明AC ∥DE ?如果能,请给出证明;如果不能,请从下列四个条件中再选择一个合适的条件,使AC ∥DE 成立,并说明理由.供选择的四个条件:①A D ∠=∠;②AB DF =;③AB ∥DF ;④90A D ∠=∠=︒.21.(2021·湖北黄冈·八年级月考)已知:如图,点E 在线段CD 上,EA 、EB 分别平分∠DAB 和∠ABC ,∠AEB =90°,设AD =x ,BC =y ,且(x ﹣2)2+|y ﹣5|=0.(1)求AD 和BC 的长.(2)试说线段AD 与BC 有怎样的位置关系?并证明你的结论. (3)你能求出AB 的长吗?若能,请写出推理过程,若不能,说明理由.22.(2020•南昌期中)如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD .(1)求证:∠A +∠C =∠B +∠D ;(2)如图2,∠CAB 与∠BD 的平分线AP 、DP 相交于点P ,求证:∠B +∠C =2∠P .23.(2021·黑龙江·哈尔滨德强学校七年级期中)如图,直线AB ∥直线CD ,线段EF ∥CD ,连接BF 、CF .(1)求证:∠ABF +∠DCF =∠BFC ;(2)连接BE 、CE 、BC ,若BE 平分∠ABC ,BE ⊥CE ,求证:CE 平分∠BCD ;(3)在(2)的条件下,G 为EF 上一点,连接BG ,若∠BFC =∠BCF ,∠FBG =2∠ECF ,∠CBG =70°,求∠FBE 的度数.24.(2021·山西·七年级期末)综合与探究:小新在学习过程中,发现课本有一道习题,他在思考过程中,对习题做了一定变式,让我们来一起看一下吧.在ABC 中,ABC ∠与ACB ∠的平分线相交于点P .(1)如图1,如果80A ∠=︒,求BPC ∠的度数.(2)在(1)的条件下,如图2,作ABC 的外角MBC ∠,NCB ∠的平分线交于点Q ,求Q ∠的度数.(3)如图3,作ABC 的外角MBC ∠,NCB ∠的平分线交于点Q ,延长线段BP ,QC 交于点E ,在BQE △中,是否存在一个内角等于另一个内角的2倍,若存在,请直接写出A ∠的度数;若不存在,请说明理由.25.(2021·黑龙江·哈尔滨德强学校七年级期中)点E 在射线DA 上,点F 、G 为射线BC .上两个动点,满足∠DBF =∠DEF ,∠BDG =∠BGD ,DG 平分∠BDE .(1)如图,当点G 在F 右侧时,求证:BD EF ∥;(2)如图,当点G 在BF 左侧时,求证:DGE BDG FEG ∠=∠+∠;(3)如图,在(2)的条件下,P 为BD 延长线上一点,DM 平分∠BDG ,交BC 于点M ,DN 平分∠PDM ,交EF 于点N ,连接NG ,若DG ⊥NG ,B DNG EDN ∠-∠=∠,求∠B 的度数.m,为x轴26.(2021·湖北·武汉六中上智中学八年级月考)如图,在平面直角坐标系中,A()0上的一动点,B(0,3),∠BAC=90︒,AB=AC.m=-,点C在第二象限,求C点坐标;(1)如图1,若2(2)如图2,当点C在第四象限时,点F与点B关于x轴对称,连接CF并延长交x轴于点E,求点E坐标;(3)如图3,P(),2t为第二象限的点,点H(),m n在线段PF上,且=︒,当点E在x轴负半轴上,点F在y轴负半轴上运动时,且OE=OF,EPF OHF∠=∠90求m、n之间的数量关系.第七章平行线的证明章末检测卷(北师大版)姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·山东海阳·七年级期末)下列语句是命题的是()A.同旁内角相等,两直线平行B.等于同一个角的两个角相等吗?C.延长线段AB到点C,使BC AB=D.连接A,B两点【答案】A【分析】根据判断一件事情的语句叫做命题,即可得出结果.【详解】A、同旁内角相等,两直线平行,是命题,符合题意;B、等于同一个角的两个角相等吗?是疑问句,没有对一件事情做出判断,不是命题,不符合题意;C、延长线段AB到点C,使BC = AB,没有对一件事做出判断,不是命题,不符合题意;D、连接A,B两点,没有对一件事情做出判断,不是命题,不符合题意;故选:A.【点睛】本题考查的是命题的概念,掌握判断一件事情的语句叫做命题是解题的关键.2.(2021·全国·八年级专题练习)下列真命题的个数是()(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行.A.1个B.2个C.3个D.4个【答案】B【分析】根据平行公理的推论,平行线的判定定理与性质定理,即可判断命题是真命题还是假命题.【详解】解:(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d,此说法正确,是真命题;(2)两条直线被第三条直线所截,同旁内角不一定互补,所以同旁内角的平分线不一定互相垂直,此说法错误,是假命题;(3)两条直线被第三条直线所截,同位角不一定相等,此说法错误,是假命题;(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行,此说法正确,是真命题;所以真命题有2个.故选:B.【点睛】此题主要考查了命题与定理,正确把握平行线的判定与性质是解题关键.3.(2020·陕西陈仓初二期末)已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【解析】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.4.(2021·重庆巴南·八年级期中)如图,AB⊥AF,∠B、∠C、∠D、∠E、∠F的关系为()A.∠B+∠C+∠D+∠E+∠F=270°B.∠B+∠C﹣∠D+∠E+∠F=270°C.∠B+∠C+∠D+∠E+∠F=360°D.∠B+∠C﹣∠D+∠E+∠F=360°【答案】B【分析】分析题意∠DMA=∠1,∠DNA=∠2,然后利用三角形的内角和、等量代换求解即可.【详解】解:连接AD,在△DMA中,∠DMA+∠MDA+∠MAD=180°,在△DNA中,∠DNA+∠NDA+∠NAD=180°,∴∠DMA+∠MDA+∠MAD+∠DMA+∠NDA+∠NAD=360°,∵∠MAD+∠NAD=360°﹣∠BAF,∴∠DMA+∠DNA+∠MDN+360°﹣∠BAF=360°,∵AB⊥AF,∴∠BAF=90°,∴∠DMA+∠DNA=90°﹣∠MDN,∵∠DMA=∠1,∠DNA=∠2,∵∠1=180°﹣∠B﹣∠C,∠2=180°﹣∠E﹣∠F,∴∠1+∠2=360°﹣(∠B+∠C+∠E+∠F),∴90°﹣∠MDN=360°﹣(∠B+∠C+∠E+∠F),∴∠B+∠C+∠E+∠F﹣∠MDN=270°.故选:B.【点睛】本题主要考查了三角形的内角和定理的应用,将图形中角的关系利用三角形的内角和等于180°进行转化,再运用等量代换是解题的关键.5.(2021·浙江越城·八年级期末)最近网上一个烧脑问题的关注度很高(如图所示),通过仔细观察、分析图形,你认为打开水龙头,哪个标号的杯子会先装满水( )A .3号杯子B .5号杯子C .6号杯子D .7号杯子【答案】A 【分析】根据水先从位置低的出口可判断先灌满1号杯子左侧几个杯子,再观察3号杯子的两个出口即可得出答案.【详解】解:1号杯子左侧出口比右侧高,∴水先从左侧流出,进入3号杯子, 3杯子左侧封闭,只有右侧流出,而右侧流入5号杯子,但5号杯子的出口端封闭 ∴水最终会先灌满3号杯子,故选:A .【点睛】本题考查推理与论证,解题的关键是掌握水先从位置低的出口流出,并仔细观察各出口闭合状态即可.6.(2021·山东省莘县俎店中学八年级月考)将一副三角板按如图放置,则下列结论①13∠=∠;②如果230∠=,则有//AC DE ;③如果245∠=,则有//BC AD ;④如果4C ∠=∠,必有230∠=,其中正确的有( )A .①②③B .①②④C .③④D .①②③④【答案】D 【分析】根据∠1+∠2=∠3+∠2即可证得①;根据230∠=求出∠1与∠E 的度数大小即可判断②;利用∠2求出∠3,与∠B 的度数大小即可判断③;利用4C ∠=∠求出∠1,即可得到∠2的度数,即可判断④.【详解】∵∠1+∠2=∠3+∠2=90︒,∴∠1=∠3,故①正确;∵230∠=,∴190260∠=-∠=∠E=60︒,∴∠1=∠E ,∴AC ∥DE ,故②正确; ∵245∠=,∴345∠=,∵45B ∠=,∴∠3=∠B,∴//BC AD ,故③正确;∵4C ∠=∠45=,∴∠CFE=∠C 45=,∵∠CFE+∠E=∠C+∠1,∴∠1=∠E=60, ∴∠2=90︒-∠1=30,故④正确,故选:D.【点睛】此题考查互余角的性质,平行线的判定及性质,熟练运用解题是关键.7.(2020·宜兴市北郊中学初二期中)如图a 是长方形纸带,∠DEF =26°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .102°B .108°C .124°D .128°【答案】A 【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE ,∠CFE=∠CFG -∠EFG 即可.【解析】∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG -∠EFG=180°-2∠BFE -∠EFG=180°-3×26°=102°,故选:A .【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.8.(2020•泰兴市校级期中)如图,直线AE ∥DF ,若∠ABC =120°,∠DCB =95°,则∠1+∠2的度数为( )A .45°B .55°C .35°D .不能确定【分析】利用平行线的性质以及三角形的外角的性质解决问题即可.【答案】解:∵AE∥DF,∴∠3+∠4=180°,∵∠ABC=∠1+∠3=120°,∠DCB=∠2+∠4=95°,∴∠1+∠3+∠2+∠4=120°+95°,∴∠1+∠2=215°﹣180°=35°,故选:C.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.(2020·河北孟村初二期中)如图,AF∥CD,CB平分∠ACD,BD平分∠EBF,且BC⊥BD,下列结论:①BC平分∠ABE;②AC∥BE;③∠CBE+∠D=90°;④∠DEB=2∠ABC.其中正确结论的个数有()A.1个B.2个C.3个D.4个【答案】D【分析】根据平行线的性质和判定,垂直定义,角平分线定义,三角形的内角和定理进行判断即可.【解析】∵AF∥CD,∴∠ABC=∠ECB,∠EDB=∠DBF,∠DEB=∠EBA,∵CB平分∠ACD,BD平分∠EBF,∴∠ECB=∠BCA,∠EBD=∠DBF,∵BC⊥BD,∴∠EDB+∠ECB=90°,∠DBE+∠EBC=90°,∴∠EDB=∠DBE,∴∠ECB=∠EBC=∠ABC=∠BCA,∴①BC平分∠ABE,正确;∴∠EBC=∠BCA,∴②AC∥BE,正确;∴③∠CBE+∠D=90°,正确;∵∠DEB=∠EBA=2∠ABC,故④正确;故选D.【点睛】本题考查了平行线的性质和判定,垂直定义,角平分线定义,三角形的内角和定理的应用,能综合运用性质进行推理是解此题的关键,10.(2021·江苏·泰州市第二中学附属初中八年级月考)如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,若∠AOB=40°,则∠MPN的度数是()A .90°B .100°C .120°D .140°【答案】B 【分析】先根据轴对称的性质、垂直平分线的性质、对顶角相等可求得1PMA PMA NMO ∠=∠=∠、2PNB PNB MNO ∠=∠=∠,再利用平角定义、角的和差以及等量代换求得80PMN PNM ∠+∠=︒,最后根据三角形内角和定理即可求得答案.【详解】解:∵P 与1P 关于OA 对称∴OA 垂直平分1PP ∴MA 平分1PMP ∠∴1PMA PMA∠=∠ ∵1PMA NMO ∠=∠∴1PMA PMA NMO ∠=∠=∠同理可得,2PNB PNB MNO ∠=∠=∠ ∴PMN PNM ∠+∠()()180180PMA NMO PNB MNO =︒-∠-∠+︒-∠-∠()()18021802NMO MNO =︒-∠+︒-∠()3602MNO NMO =︒-∠+∠()3602180AOB =︒-︒-∠()360218040=︒-︒-︒80=︒∴()180100MPN MNO NMO ∠=︒-∠+∠=︒.故选:B【点睛】本题考查了轴对称的性质、垂直平分线的性质、对顶角的性质、平角定义、角的和差、等量代换以及三角形内角和定理,体现了逻辑推理的核心素养.11.(2021·山东青岛·八年级单元测试)如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒【答案】B 【分析】如图,作M 关于OB 的对称点M′,N 关于OA 的对称点N′,连接M′N′交OA 于Q ,交OB 于P ,则MP+PQ+QN 最小易知∠OPM=∠OPM′=∠NPQ ,∠OQP=∠AQN′=∠AQN ,KD ∠OQN=180°-30°-∠ONQ ,∠OPM=∠NPQ=30°+∠OQP ,∠OQP=∠AQN=30°+∠ONQ ,由此即可解决问题.【详解】如图,作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N ''交OA 于Q ,交OB 于P ,则此时MP PQ QN ++的值最小.易知'∠=∠=∠OPM OPM NPQ ,'∠=∠=∠OQP AQN AQN .∵18030∠=︒-︒-∠OQN ONQ ,30∠=∠=︒+∠OPM NPQ OQP30∠=∠=︒+∠OQP AQN ONQ ,∴303018030210+=︒+︒+∠+︒-︒-∠=︒ONQ ONQ αβ.故选:B.【点睛】本题考查轴对称-最短问题、三角形的内角和定理.三角形的外角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12.(2021·江苏盐城·七年级月考)如图,A ABC CB =∠∠,AD 、BD 、CD 分别平分ABC 的外角EAC ∠、内角ABC ∠、外角ACF ∠.以下结论:①//AD BC :②2ACB ADB ∠=∠;③90ADC ABD ∠=︒-∠;④BD 平分ADC ∠;⑤12BDC BAC ∠=∠.其中错误的结论有( )A.0个B.1个C.2个D.3个【答案】B【分析】根据角平分线定义得出∠ABC=2∠ABD=2∠DBC,∠EAC=2∠EAD,∠ACF=2∠DCF,根据三角形的内角和定理得出∠BAC+∠ABC+∠ACB=180°,根据三角形外角性质得出∠ACF=∠ABC+∠BAC,∠EAC=∠ABC+∠ACB,根据已知结论逐步推理,即可判断各项.【详解】解:∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠EAC=∠ABC+∠ACB,∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,∴①正确;∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,∴②正确;在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°-∠ABD,∴③正确;∠ABC,∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∠ADC=90°-12∴∠ADB不等于∠CDB,∴④错误;∵∠ACF=2∠DCF,∠ACF=∠BAC+∠ABC,∠ABC=2∠DBC,∠DCF=∠DBC+∠BDC,∠BAC,∴⑤正确;即错误的有1个,故选:B.∴∠BAC=2∠BDC,即∠BDC=12【点睛】此题考查了三角形外角性质,角平分线定义,平行线的判定,三角形内角和定理的应用,主要考查学生的推理能力,有一定的难度.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2021·浙江嵊州·七年级期中)甲和乙玩一个猜数游戏,规则如下:已知五张纸牌上分别写有1、2、3、4、5五个数字,现甲、乙两人分别从中各自随机抽取一张,然后根据自己手中的数推测谁手上的数更大.甲看了看自己手中的数,想了想说:我不知道谁手中的数更大;乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.假设甲、乙所作出的推理都是正确的,那么乙手中的数是____.【答案】3【分析】先分析甲手中的数,根据甲不知道谁手中的数更大,推出甲手中的数不可能为1和5,再根据乙也不知道谁手中的数更大,即可推出乙手中的数不可能为2和4,即可得出答案.【详解】解析:五张纸牌上分别写有1、2、3、4、5五个数字,∵甲看了看自己手中的数,想了想说:我不知道谁手中的数更大,∴甲手中的数可能为2,3,4,∵乙听了甲的判断后,思索了一下说:我也不知道谁手中的数更大.∴乙手中的数不可能是2,4,只能是3.故答案为:3.【点睛】本题考查逻辑推理,考查简单的合情推理,根据题目意思分析判断是解题的关键.14.(2021·广东·珠海市第九中学八年级期中)已知Rt △ABC 中,∠C =90°,将∠C 沿DE 向三角形内折叠,使点C 落在△ABC 的内部,如图,则∠1+∠2=___度.【答案】180【分析】据折叠的性质得到,CDE C DE CED C ED ''∠=∠∠=∠,再利用邻补角的定义及三角形的内角和定理求解.【详解】解:由折叠得,,CDE C DE CED C ED ''∠=∠∠=∠,∴ ∠1+∠2=18021802CDE CED ︒-∠+︒-∠=3602()CDE CED ︒-∠+∠=360290︒-⨯︒=180︒,故答案为:180.【点睛】此题考查折叠的性质,邻补角的定义,三角形内角和定理,熟记各知识点并熟练应用解决问题是解题的关键.15.(2021·山东岱岳·七年级期中)如图,在ABC 中,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ;;2019A BC ∠与2019A CD ∠的平分线相交于点2020A ,得2020A ∠,则2020A ∠=______.【答案】20202α【分析】结合题意,根据角平分线、三角形外角、三角形内角和的性质,得112A A ∠=∠,同理得212122A A α∠=∠=;再根据数字规律的性质分析,即可得到答案. 【详解】根据题意,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ∴11118022A ABC ACB ACD ∠=︒-∠-∠-∠ ∵ACD A ABC ∠=∠+∠∴111802A ABC ACB A ∠=︒-∠-∠-∠ ∵180A ABC ACB ∠+∠+∠=︒ ∴112A A ∠=∠ 同理,得2121112222A A A α∠=∠=⨯∠=; 323111122222A A A α∠=∠=⨯⨯∠=;43411111222222A A A α∠=∠=⨯⨯⨯∠=; …1122n n n A A α-∠=∠=∴202020202A α∠=故答案为:20202α. 【点睛】本题考查了三角形和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.16.(2021·湖南岳阳·七年级期末)如图,将一副三角板按如图所示放置,90CAB DAE ∠=∠=︒,45C ∠=︒,30E ∠=︒,且AD AC <,则下列结论中:①1345∠=∠=︒;②若AD 平分CAB ∠,则有//BC AE ;③将三角形ADE 绕点A 旋转,使得点D 落在线段AC 上,则此时415∠=︒;④若322∠=∠,则4C ∠=∠.其中结论正确的选项有______.(写出所有正确结论的序号)【答案】②③④【分析】①根据同角的余角相等得∠1=∠3,但不一定得45°;②都是根据角平分线的定义、内错角相等,两条直线平行,可得结论;③根据对顶角相等和三角形的外角等于不相邻的两个内角得和,可得结论;④根据三角形内角和定理及同角的余角相等,可得结论.【详解】解:①如图,∵∠CAB =∠DAE =90°,即∠1+∠2=∠3+∠2+90°,∴∠1=∠3≠45°,故①不正确;②∵AD 平分∠CAB ,∴∠1=∠2=45°,∵∠1=∠3,∴∠3=45°,又∵∠C =∠B =45°,∴∠3=∠B ,∴BC ∥AE ,故②正确;③将三角形ADE 绕点A 旋转,使得点D 落在线段AC 上,则∠4=∠ADE -∠ACB =60°-45°=15°,故③正确;④∵∠3=2∠2,∠1=∠3,∴∠1=2∠2,∠1+∠2=90°,∴3∠2=90°,∴∠2=30°,∴∠3=60°, 又∠E =30°,设DE 与AB 交于点F ,则∠AFE =90°,∵∠B =45°,∴∠4=45°,∴∠C =∠4,故④正确,故答案为:②③④.【点睛】本题主要考查了同角的余角相等、角平分线定义、平行线的判定的运用,解题关键是熟练掌握同角的余角相等及平行线的判定.17.(2021·四川乐山·八年级期末)如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为()0,8,点B 的坐标为()4,0-,点P 是直线l :4x y +=上的一个动点,若PAB ABO ∠=∠,则点P 的坐标是__________.【答案】()12,8-或()4,8-【分析】分两种情况:当点P 在y 轴左侧时,由条件可判定AP ∥BO ,容易求得P 点坐标;当点P 在y 轴右侧时,可设P 点坐标为(a ,−a +4),过AP 作直线交x 轴于点C ,可表示出直线AP 的解析式,可表示出C 点坐标,再根据勾股定理可表示出AC 的长,由条件可得到AC =BC ,可得到关于a 的方程,可求得P 点坐标.【详解】解:当点P 在y 轴左侧时,如图1,连接AP ,∵∠P AB =∠ABO ,∴AP ∥OB ,∵A (0,8),∴P 点纵坐标为8,又P 点在直线x +y =4上,把y =8代入可求得x =−4,∴P 点坐标为(−4,8);当点P 在y 轴右侧时,过A 、P 作直线交x 轴于点C ,如图2,设P 点坐标为(a ,−a +4),设直线AP 的解析式为y =kx +b ,把A 、P 坐标代入可得84b ak b a =⎧⎨+=-+⎩,解得48a k ab --⎧=⎪⎨⎪=⎩,∴直线AP 的解析式为y =4a a -+x +8,令y =0可得4a a-+x +8=0,解得x =84a a +,∴C 点坐标为(84a a +,0), ∴AC 2=OC 2+OA 2,即AC 2=(84a a +)2+82, ∵B (−4,0),∴BC 2=(84a a ++4)2=(84a a +)2+644a a ++16, ∵∠P AB =∠ABO ,∴AC =BC ,∴AC 2=BC 2,即(84a a +)2+82=(84a a +)2+644a a ++16, 解得a =12,则−a +4=−8,∴P 点坐标为(12,−8),综上可知,P 点坐标为(−4,8)或(12,−8).故答案为:(−4,8)或(12,−8).【点睛】本题主要考查一次函数的综合应用,涉及待定系数法、平行线的判定和性质、等腰三角形的性质、分类讨论思想等知识点.确定出P 点的位置,由条件得到AP ∥OB 或AC =BC 是解题的关键.18.(2021·广东广州·八年级期中)如图,在ABC ∆中,BAC ∠和ABC ∠的平分线AE 、BF 相交于点O ,AE 交BC 于点E ,BF 交AC 于点F ,过点O 作OD BC 于点D ,则下列三个结论:①1902AOB C ∠=+∠;②当60C ∠=时,AF BE AB +=;③若OD a =,2AB BC CA b ++=,则12ABC S ab ∆=.其中正确的是______.【答案】①②【分析】由角平分线的定义结合三角形的内角和的可求解∠AOB 与∠C 的关系,进而判定①;在AB 上取一点H ,使BH =BE ,证得△HBO ≌△EBO ,得到∠BOH =∠BOE =60°,再证得△HBO ≌△EBO ,得到AF =AH ,进而判定②;作OH ⊥AC于H ,OM ⊥AB 于M ,根据三角形的面积可判定③.【详解】解:∵∠BAC 和∠ABC 的平分线相交于点O ,∴∠OBA =12∠CBA ,∠OAB =12∠CAB ,∴∠AOB =180°﹣∠OBA ﹣∠OAB =180°﹣12∠CBA ﹣12∠CAB =180°﹣12(180°﹣∠C )=90°+12∠C ,①正确;∵∠C =60°,∴∠BAC +∠ABC =120°,∵AE ,BF 分别是∠BAC 与ABC 的平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC )=60°,∴∠AOB =120°,∴∠AOF =60°,∴∠BOE =60°,如图,在AB 上取一点H ,使BH =BE ,∵BF 是∠ABC 的角平分线,∴∠HBO =∠EBO , 在△HBO 和△EBO 中,BH BE HBO EBO BO BO =⎧⎪∠=∠⎨⎪=⎩,∴△HBO ≌△EBO (SAS ),∴∠BOH =∠BOE =60°,∴∠AOH =180°﹣60°﹣60°=60°,∴∠AOH =∠AOF ,在△HBO 和△EBO 中,HAO FAO AO AO AOH AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△HBO ≌△EBO (ASA ),∴AF =AH ,∴AB =BH +AH =BE +AF ,故②正确;作OH ⊥AC 于H ,OM ⊥AB 于M ,∵∠BAC 和∠ABC 的平分线相交于点O ,∴点O 在∠C 的平分线上,∴OH =OM =OD =a ,∵AB +AC +BC =2b ∴S △ABC =12×AB ×OM +12×AC ×OH +12×BC ×OD =12(AB +AC +BC )•a =ab ,③错误.故答案为:①②.【点睛】本题主要考查了三角形内角和定理,三角形外角的性质,三角形全等的性质和判定,正确作出辅助线证得△HBO ≌△EBO ,得到∠BOH =∠BOE =60°,是解决问题的关键.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021·河南襄城·七年级月考)(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).①请你仿照以上过程,在图2中画出一条直线b ,使直线b 经过点P ,且//b a ,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的 线.(2)已知,如图3,//AB CD ,BE 平分ABC ∠,CF 平分BCD ∠.求证://BE CF (写出每步的依据).【答案】(1)①见解析;②垂;(2)见解析【分析】(1)①过P 点折纸,使痕迹垂直直线a ,然后过P 点折纸使痕迹与前面的痕迹垂直,从而得到直线b ;②步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.(2)先根据平行线的性质得到ABC BCD ∠=∠,再利用角平分线的定义得到23∠∠=,然后根据平行线的判定得到结论.【详解】(1)解:①如图2所示:②在(1)中的步骤(b )中,折纸实际上是在寻找过点P 的直线a 的垂线.故答案为垂; (2)证明:BE 平分ABC ∠,CF 平分BCD ∠(已知),12∠∠∴=,33∠=∠(角平分线的定义),//AB CD (已知),ABC BCD ∴∠=∠(两直线平行,内错角相等),2223∴∠=∠(等量代换),23∴∠=∠(等式性质),//BE CF ∴(内错角相等,两直线平行). 【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.20.(2021·山东乐陵·八年级期中)如图所示,点B ,E ,C ,F 在同一条直线上,能否由AC DE =,BE FC =来证明AC ∥DE ?如果能,请给出证明;如果不能,请从下列四个条件中再选择一个合适的条件,使AC ∥DE 成立,并说明理由.供选择的四个条件:①A D ∠=∠;②AB DF =;③AB ∥DF ;④90A D ∠=∠=︒.【答案】选择②④可以证明AC ∥DE ,理由见解析【分析】选择条件②用SSS 证明△ABC ≌△DFE 得到∠ACB =∠DFE ,即可证明AC DE ∥;选择条件④用HL 证明Rt △ABC ≌Rt △DFE 得到∠ACB =∠DFE ,即可证明AC DE ∥.【详解】解:由AC =DE ,BE =FC 无法证明AC DE ∥,选择条件②AB =DF 进行证明,∵BE =FC ,∴BE +CE =FC +CE ,∴BC =FE ,在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩,∴△ABC ≌△DFE (SSS ),∴∠ACB =∠DFE ,∴AC DE ∥;选择条件④ ==90A D ∠∠,∵==90A D ∠∠,∴三角形ABC 和三角形DFE 都是直角三角形,在Rt △ABC 和Rt △DFE 中AC DE BC FE =⎧⎨=⎩,∴Rt △ABC ≌Rt △DFE (HL ), ∴∠ACB =∠DFE ,∴AC DE ∥.【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.21.(2021·湖北黄冈·八年级月考)已知:如图,点E 在线段CD 上,EA 、EB 分别平分∠DAB 和∠ABC ,∠AEB =90°,设AD =x ,BC =y ,且(x ﹣2)2+|y ﹣5|=0.(1)求AD 和BC 的长.(2)试说线段AD 与BC 有怎样的位置关系?并证明你的结论. (3)你能求出AB 的长吗?若能,请写出推理过程,若不能,说明理由.【答案】(1)2AD =,5BC =;(2)//AD BC ,见解析;(3)能,见解析【分析】(1)根据算术平方根和绝对值的非负性即可得出AD 、BC 的长度;(2)根据题意证明180BAD ABC ∠+∠=︒即可得出结果;(3)延长AE 交直线BC 于F ,先证明△AEB ≌△FEB ,然后证明()ADE FCE ASA ∆≅∆,即可得出结果.【详解】解:(1)2(2)|5|0x y -+-=,20x ∴-=,50y -=,解得2x =,5y =,即2AD =,5BC =;(2)//AD BC .理由如下:EA 、EB 分别平分DAB ∠和ABC ∠,12BAE BAD ∴∠=∠,12ABE ABC ∠=∠,1()2BAE ABE BAD ABC ∴∠+∠=∠+∠, 90AEB ∠=︒,90BAE ABE ∴∠+∠=︒,180BAD ABC ∴∠+∠=︒,//AD BC ∴;(3)能.理由如下:延长AE 交直线BC 于F ,如图,//AD BC ,DAF F ∴∠=∠,而DAF BAF ∠=∠,BAF F ∴∠=∠,在△AEB 和△FEB 中90BAE F BEA BEF BE BE ⎧∠=∠⎪∠=∠=⎨⎪=⎩,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的证明测试题 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】
第七章 平行线的证明本章测试题
一、 填空题(每题4分,共32分)
1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________. 2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分 ∠BEF ,若∠1=72o ,则∠2= ;
3.在△ABC 中,∠BAC =90o ,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________
4.写出“同位角相等,两直线平行”的题设为_______,结论为_______. 第2题 5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________. 6.如图,∠1=27o ,∠2=95o ,∠3=38o ,则∠4=_______
7.如图,写出两个能推出直线AB ∥CD 的条件________________________.
8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、 选择题(每小题4分,共24分) 9.下列语句是命题的是 【 】 (A)延长线段AB (B)你吃过午饭了吗 (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180o ,∠3=75o ,
那么∠4的度数是 【 】 (A)75o (B)45o (C)105o (D)135o
11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角” 是假命题是 【 】
(A)设这个角是30o ,它的余角是60°,但30°<60° (B)设这个角是45°,它的余角是45°,但45°=45°
(C)设这个角是60°,它的余角是30°,但30°<60°
(D)设这个角是50°,它的余角是40°,但40°<50°
12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】 (A )63° (B) 118° (C) 55°
(D )62°
14.三角形的一个外角是锐角,则此三角形的形状是 【 】 (A )锐角三角形
(B)钝角三角形
(C)直角三角形
(D )无法确定
三、 (每小题10分,共20分)
15.如图,AD=CD ,AC 平分∠DAB ,求证DC ∥AB .
16.如图,已知∠1=20°,∠2=25°,∠A =55°,求∠BDC 的度数. C A B D E E
C D B A 1 3 2
4 第5题 第6题
第7题 A
B
C
D
E
F
G
12
A
B
C
E C
A
B
D
1 2
第10题
四、(每小题12分,共24分)
17.如图,BE ,CD 相交于点A ,∠DEA 、∠BCA 的平分线相交于F .
(1)探求:∠F 与∠B 、∠D 有何等量关系 (2)当∠B ︰∠D ︰∠F =2︰4︰x 时,x 为多少
18.如图,已知点A 在直线l 外,点B 、C 在直线l 上. (1)点P 是△ABC 内一点,求证:∠P >∠A ;
(2)试判断:在△ABC 外又和点A 在直线l 同侧, 是否存在一点Q ,使∠BQC >∠A 试证明你的结论.
参考答案
1、120°;
2、54°;
3、相等;
4、同位角相等,两直线平
行;5、180°;6、20°;7、如∠1=∠8或∠1=∠6或∠1+∠5=180o ;8.直角三角形;9、C ;10、C ;11、A ;12、B ;13、D ;14、B ; 15、
AB DC CAB CAB DAB AC CD AD 平行平分⇒∠=∠⇒⎭
⎬⎫
∠=∠⇒∠∠=∠⇒=212
1;16、100o ;
17、(1)连CE ,记∠AEC =∠1,∠ACE =∠2,则∠D +∠2+∠1+∠DEA =180o ,
∠B+∠1+∠2+∠BCA =180o ,∠F +∠1+∠2+
21∠DEA +2
1
∠BCD =180o. ∵∠D+∠2+∠1+∠DEA +∠B +∠1+∠2+∠BCA =360o ,

21(∠D +∠B )+∠1+∠2+21∠BCA +2
1
∠DEA =180o , ∴∠1+∠2+21∠BCA +21∠DEA =180o-21
(∠D +∠B ),
即∠F +180o-21(∠D+∠B )=180o ,∴∠F =2
1
(∠B +∠D );
(2)设∠B =2α,则∠D =4α,∴∠F = 2
1
(∠B +∠D )=3α.
又∠B ︰∠D ︰∠F =2︰4︰x ,∴x =3.
18、(1)延长BP 交AC 于D ,则∠BPC >∠BDC ,∠BDC >∠A 故∠BPC >∠A ;
(2)在直线l 同侧,且在△ABC 外,存在点Q ,使得∠BQC >∠A 成立.此时,只需在AB 外,靠近AB 中点处取点Q ,则∠BQC >∠A (证明略).。

相关文档
最新文档