动力学基本定律和守恒定律

合集下载

动力学公式

动力学公式

四、动力学(运动和力)1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN<G {加速度方向向下,均失重,加速度方向向上,均超重}6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子五、振动和波(机械振动与机械振动的传播)1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)注:(1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;(2)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式;(3)干涉与衍射是波特有的;1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}3.冲量:I=Ft {I:冲量(N?s),F:恒力(N),t:力的作用时间(s),方向由F决定}4.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}5.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′6.弹性碰撞:Δp=0;ΔEk=0 {即系统的动量和动能均守恒}7.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的最大动能}8.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}9.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)11.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s相对子弹相对长木块的位移}1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角}2.重力做功:Wab=mghab {m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差(hab=ha-hb)}3.电场力做功:Wab=qUab {q:电量(C),Uab:a与b之间电势差(V)即Uab=φa-φb}4.电功:W=UIt(普适式){U:电压(V),I:电流(A),t:通电时间(s)}5.功率:P=W/t(定义式) {P:功率[瓦(W)],W:t时间内所做的功(J),t:做功所用时间(s)}6.汽车牵引力的功率:P=Fv;P平=Fv平{P:瞬时功率,P平:平均功率}7.汽车以恒定功率启动、以恒定加速度启动、汽车最大行驶速度(vmax=P额/f)8.电功率:P=UI(普适式) {U:电路电压(V),I:电路电流(A)}9.焦耳定律:Q=I2Rt {Q:电热(J),I:电流强度(A),R:电阻值(Ω),t:通电时间(s)}10.纯电阻电路中I=U/R;P=UI=U2/R=I2R;Q=W=UIt=U2t/R=I2Rt11.动能:Ek=mv2/2 {Ek:动能(J),m:物体质量(kg),v:物体瞬时速度(m/s)}12.重力势能:EP=mgh {EP :重力势能(J),g:重力加速度,h:竖直高度(m)(从零势能面起)}13.电势能:EA=qφA {EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)(从零势能面起)}14.动能定理(对物体做正功,物体的动能增加):W合=mvt2/2-mvo2/2或W合=ΔEK{W合:外力对物体做的总功,ΔEK:动能变化ΔEK=(mvt2/2-mvo2/2)}15.机械能守恒定律:ΔE=0或EK1+EP1=EK2+EP2也可以是mv12/2+mgh1=mv22/2+mgh216.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG=-ΔEP注:(1)功率大小表示做功快慢,做功多少表示能量转化多少;(2)O0≤α<90O 做正功;90O<α≤180O做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功);(3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少(4)重力做功和电场力做功均与路径无关(见2、3两式);(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化(6) 能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J;(7)弹簧弹性势能E=kx2/2,与劲度系数和形变量有关。

动量定理及动量守恒定律

动量定理及动量守恒定律

20
动量定理及动量守恒定律
oy N1 − m1g = 0 又f1max = N1μ1
以 m2 为隔离体,m2 受重力W = m2 g ;桌面的支持力 N2 ; m1 的压力 N1′ (大小与 N1 相等); m1 作用在 m2 上的最大静摩擦力 f1max′(大小与 f1max 相等) ;桌面作用在 m2 上的
oA y A W3 − TA′ − TB′ = m3a3
(7)
因为不计滑轮及绳的质量,不计轴承摩擦. 且已知绳不可伸长.
∴ TA = TB = TA′ = TB′ = T
f A ,绳的拉力 TA , A 的动力学方程为

动量定理及动量守恒定律
W1 + N A + f A + TA = m1a1 建立如图 3.5.7(1)所示的坐标系 oA − xA y A .
oA xA TA − f A = m1a1
(1)
oA y A W1 − N A = 0
(2)
且 fA = NAμ
动量定理及动量守恒定律
第三章 动量定理及动量守恒定律
(Momentum and Conservation Law of Momentum)
一、内容简介(Abstract) 1.牛顿第一定律(Newton’s first law)
孤立质点静止或作等速直线运动,即质点在不受力或所受力的合力为零时,将保持静 止或匀速直线运动状态不变.(惯性定律) 2.牛顿第三定律(Newton’s third law)
g
y
x o
N
2
α m2
a2
W2
N1′
图3.5.(5 3)
y′
N1 f∗
m1

动力学三大基本公式

动力学三大基本公式

动力学三大基本公式
1动力学三大基本公式
动力学是力学的一个分支,旨在探讨受力系统中物体运动的原理,是现代物理学中很重要的一环。

动力学有三大基本公式,即经典动力学三大定律,即牛顿运动定律、牛顿第二定律和拉普拉斯定律。

2牛顿运动定律
牛顿运动定律,又称牛顿第一定律,是运动学中最基本的定律。

是由英国物理学家、数学家牛顿提出的,也是动力学中三大基本定律中最为重要的定律。

牛顿运动定律包括物体静止定律和物体运动定律,即:物体处于静止状态时,其受力和外力的总和为零;物体处于运动状态时,其受力和外力的总和为物体的质量乘以加速度。

3牛顿第二定律
牛顿第二定律即牛顿定理,也叫受力定律,牛顿第二定律的内容是:物体受外力的作用时,物体产生的力与外力成正比,而力的方向与外力方向相反;物体受外力的作用时,产生的力称为反作用力。

特殊地,当物体在接触面上产生摩擦力时,反作用力与外力并不成正比,而是根据摩擦力大小而有所不同。

4拉普拉斯定律
拉普拉斯定律是法国物理学家、数学家拉普拉斯提出的,又被称为拉普拉斯补偿定律,是力学中的基本定律。

拉普拉斯定律的内容
是:受外力作用的物体,其偶合外力的效果是可以引起物体的动量平衡的趋向的,即物体的动量守恒的原理。

以上就是动力学中三大基本公式的内容,这三大公式对经典运动学的研究有重要的意义,包括受力系统的运动、物体动量的守恒、外力对物体产生力的效果等等都是基于这三条定理来研究的。

动力学三大观点

动力学三大观点

二、力学的知识体系
这里涉及的力有:重力(引力)、弹力、摩擦力、 浮力等;涉及的运动形式有:静止(F=0)、匀 速直线运动(F=0)、匀变速直线运动(F=恒量)、 匀变速曲线运动(F=恒量)、匀速圆周运动(|F|= 恒量)、简谐运动(F=-kx等.
三、三大观点选用的原则
力学中首先考虑使用两个守恒定律.从两个守恒定 律的表达式看出多项都是状态量(如速度、位置),所 以守恒定律能解决状态问题,不能解决过程(如位移 x,时间t)问题,不能解决力(F)的问题. (1)若是多个物体组成的系统,优先考虑使用两个守 恒定律. (2)若物体(或系统)涉及到速度和时间,应考虑使用 动量 定理. (3)若物体(或系统)涉及到位移和时间,且受到恒 力作用,应考虑使用牛顿运动定律.
物体 A 经过圆弧时克服阻力做的功 1 Wf=1×10×(5+1) J- ×1×102 J=10 J 2
答案 (1)100 N (2)1.25 m (3)10 J
例 题 讲 解
例4
如图 4 所示,abc 是光滑的轨道,其中 ab 是水平的,
bc 是位于竖直平面内与 ab 相切的半圆, 半径 R =0.40 m . 质 量 m = 0.30 kg 的小球 A 静止在水平轨道上,另一质量 M =0.50 kg 的小球 B 以 v 0=4 m/s 的初速度与小球 A 发生正 碰.已知碰后小球 A 经过半圆的最高点 c 后落到轨道上距 b 点为 L =1.2 m 处, 重力加速度 g=10 m/s2.求碰撞结束后:
0.2×1×10 μmCg aB= = m/s2=0.5 m/s2 (mA+mB) 1+ 3 由速度公式得木板刚开始运动时的速度 vB1=vB2+aBt=(2+0.5×1)m/s=2.5 m/s vB1+vB2 2+2.5 木板 B 运动的距离 sB= t= ×1 m=2.25 m 2 2 长木板 B 的长度 L=sB-sC=1.25 m (3)物体 A 与长木板 B 碰撞过程中动量守恒 mAvA2=(mA+mB)vB1 (1+3)×2.5 vA2= m/s=10 m/s 1 物体 A 从静止释放到与长木板 B 碰撞前,由动能定理 1 mAg(h+R)-Wf= mAvA22-0 2

质点动力学的三个基本定律

质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。

牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。

第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。

第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。

物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。

该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。

角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。

角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。

动力学知识点

动力学知识点

动力学知识点动力学是研究物体运动、相互作用、改变运动状态的学科,它运用数学和物理原理来描述物体的运动规律。

在日常生活中,各种运动现象都与动力学相关,例如浆棒、自行车、电梯等等。

本文将介绍一些动力学知识点,帮助读者更好地理解运动学的重要性。

一、牛顿第一定律——惯性定律牛顿第一定律也称为惯性定律,指的是物体在没有受到力的作用时,将始终保持静止或匀速运动的状态。

在实际生活中,这个定律可以举出很多例子,例如在一辆自行车刹车时,人仍然会匀速前行;或者是在一个物体上施加力时,物体仅在力的作用下发生运动。

二、牛顿第二定律——动力学定律牛顿第二定律也称为动力学定律,它描述了物体所受合力与物体运动状态之间的关系。

具体而言,物体所受的合力等于物体的质量乘上加速度,即F=ma。

这个定律可以用来计算物体所受的力和加速度,并帮助我们了解物体如何受到力的影响来改变运动状态。

例如,在我们熟知的地球引力的作用下,苹果从树上落下的速度就可以用牛顿第二定律来解释。

三、牛顿第三定律——作用反作用定律牛顿第三定律也称为作用反作用定律,指的是两个物体之间相互作用的力具有同等大小、方向相反的特性。

例如,当一个人在地上跳时,他会将地面向下推一定程度,地面也会向他反推同等力的距离。

在这种情况下,如果人和地面的质量相等,则两个物体以相等的速度和力互相推离。

四、动量守恒定律动量守恒定律描述了在相互作用过程中动量守恒的现象。

其意义在于,当两个物体之间相互作用时,它们的总动量将始终保持不变。

具体而言,在碰撞或爆炸时,动量的总和是相等的,因此一个物体的动量增加,另一个物体的动量必然会减小。

例如,在日常生活中,汽车的碰撞就是不能违反动量守恒定律的经典案例。

五、角动量守恒定律角动量守恒定律描述了在相互作用过程中角动量守恒的现象。

其中“角动量”指的是物体旋转时的动量,是一个向量,并且旋转轴和速度之间的乘积。

在不受外部力矩影响的情况下,一个物体的角动量将始终保持不变。

动力学三大守恒定律

动力学三大守恒定律

动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。

这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。

本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。

2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。

动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。

动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。

2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。

也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。

2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。

在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。

在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。

3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。

角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。

3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。

即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。

3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。

它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。

§1.7 质点动力学的基本定理和守恒定律

§1.7  质点动力学的基本定理和守恒定律

§1、7质点动力学基本定理和守恒定律已讨论,通过求解⇒=a m F可得运动规律,这是研究质点动力学的基本方法!存在问题:由于F形式复杂,求解十分困难;有时并不需要全部解。

⇒关于质点动力学的其他研究及求解方法⇒质点动力学基本定理一、动量定理(theorem of momentum )及动量守恒定律vm P= Fv m dtd P==)( 动量定理具有普遍性 (1)牛二律原始形式 (2)相对论中亦适用dtF P d = 微分形式(又称“冲量定理” theorem of impulse )=-=-1212v m v m P P ⎰21t t dtF 积分形式 力对时间的积累若 0=F 则c v m P==(恒矢量)⇒动量守恒;若 0≠F但0=x F 则1c mv x = 二、动量矩定理(theorem of moment of momentum )及守恒定律1、力矩(torque of force )力F对O 点的矩)()()(x y z x y z zyx yF xF k xF zF j zF yF i F F F z y xkj iF r M -+-+-==⨯=⎪⎩⎪⎨⎧-=-=-=xy zz x y y z x yF xF M xF zF MzF yF M2、动量矩(moment of momentum )(角动量 angular momentum ) 对O点 =⨯=v m r J)()()(x y y x m k z x x z m j y z zy m i zm ym xm z y x k j i-+-+-= ⇒ ⎪⎩⎪⎨⎧-=-=-=)(()(x y y x m J z x xz m J y z zy m J zy x 3、动量矩定理Fr m = Fr r r m ⨯=⨯ =⨯-⨯=⨯r r r r dt dr r)()(v r dtd ⨯∴=⨯)(v m r dt d F r⨯ 动量矩定理M dtJ d= dt M J d = MJ d⎰⎰=若 0=⨯=F r M则 =⨯=v m r Jc P r=⨯(恒矢量) ⇒动量矩守恒虽 0≠⨯=F r M但 0=xM则1c J x =注意 若 0=⨯=F r M则 =J c(恒矢量) Jr⊥ r ∴必定始终处于与c向垂直的平面内,即质点作平面曲线运动,有心运动即为一例,见59p 例题三、动能定理与机械能守恒定律质点受力F 作用,⎰⋅=r d F W,质点速度v随时间而变化,与速度有关的能量发生变化!F vm r m == dtv r d = r d F dt v v m ⋅=⋅ r d F v d v m dt v dtv d m ⋅=⋅=⋅ r d F mv d ⋅=)21(2 〖2v v v =⋅ 2)(dv v v d =⋅ 22dv v d v =⋅ 221(mv d v d v m =⋅ 〗质点动能的微分等于力F对质点做的元功⇒动能定理(微分形式)令质点在0r 处速度为0v ,在r 处速度为v ,则r r⇒0时间内 ⎰⎰++=⋅=-rr zy x z y x z y x dzF dy F dx F r d F mv mv 000,,,,222121 动能定理的积分形式if F 为保守力,V F -∇=则 []⎰⎰⎰--=-=⋅∇-=⋅∇-=-rr r r r r z y x V z y x V dV r d V r d V mv mv),,(),,(212100022=),,(),,(000z y x V z y x V - 即 ),,(21),,(21000202z y x V mv z y x V mv +=+ E V T =+ 机械能守恒※能量转化与守恒定律 物理学基本原理 宇宙的基本定律 ※三个守恒定律为运动方程的初积分(第一积分)c t z y x z y x =);,,;,,( ϕ 为时间t 的一阶微分方程 如E V T =+ 能量积分四、势能曲线例 一维守恒力(保守力) 势垒 势阱 对于一维守恒力(保守力)E x V mv =+)(212 )]([2x V E mx-±=(1)1x x 〈区域 V E 〈 经典禁区 (2)21x x x 〈〈 区域内振动运动 (3)32x x x 〈〈 V E 〈 经典禁区 (4)3x x 〉 区域内 任意点 经典力学 只有V E 〉时质点可越过势垒量子力学 隧道效应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 动力学基本定律一、选择题1.牛顿第一定律告诉我们, [ ] (A) 物体受力后才能运动(B) 物体不受力也能保持本身的运动状态(C) 物体的运动状态不变, 则一定不受力 (D) 物体的运动方向必定和受力方向一致2. 下列说法中正确的是[ ] (A) 运动的物体有惯性, 静止的物体没有惯性 (B) 物体不受外力作用时, 必定静止(C) 物体作圆周运动时, 合外力不可能是恒量(D) 牛顿运动定律只适用于低速、微观物体3. 下列诸说法中, 正确的是[ ] (A) 物体的运动速度等于零时, 合外力一定等于零 (B) 物体的速度愈大, 则所受合外力也愈大(C) 物体所受合外力的方向必定与物体运动速度方向一致 (D) 以上三种说法都不对4. 一个物体受到几个力的作用, 则 [ ] (A) 运动状态一定改变 (B) 运动速率一定改变 (C) 必定产生加速度(D) 必定对另一些物体产生力的作用5. A 、B 两质点m A >m B , 受到相等的冲量作用, 则[ ] (A) A 比B 的动量增量少 (B) A 与B 的动能增量相等(C) A 比B 的动量增量大 (D) A 与B 的动量增量相等6. 物体在力F 作用下作直线运动, 如果力F 的量值逐渐减小, 则该物体的 [ ] (A) 速度逐渐减小, 加速度逐渐减小 (B) 速度逐渐减小, 加速度逐渐增大 (C) 速度继续增大, 加速度逐渐减小(D) 速度继续增大, 加速度逐渐增大7. 对一运动质点施加以恒力, 质点的运动会发生什么变化?[ ] (A) 质点沿着力的方向运动 (B) 质点仍表现出惯性(C) 质点的速率变得越来越大 (D) 质点的速度将不会发生变化T2-1-6图8. 一物体作匀速率曲线运动, 则[ ] (A) 其所受合外力一定总为零 (B) 其加速度一定总为零 (C) 其法向加速度一定总为零 (D) 其切向加速度一定总为零9. 牛顿第二定律的动量表示式为t m F d )d(v =, 即有tmt m F d d d d v v +=.物体作怎样的运动才能使上式中右边的两项都不等于零, 而且方向不在一直线上?[ ] (A) 定质量的加速直线运动 (B) 定质量的加速曲线运动(C) 变质量的直线运动 (D) 变质量的曲线运动10. 质量相同的物块A 、B 用轻质弹簧连结后, 再用细绳悬吊着, 当系统平衡后, 突然将细绳剪断, 则剪断后瞬间 [ ] (A) A 、B 的加速度大小均为g (B) A 、B 的加速度均为零(C) A 的加速度为零, B 的加速度大小为2g (D) A 的加速度大小为2g , B 的加速度为零11. 用细绳系一小球使之在竖直平面内作圆周运动, 小球在任意位置 [ ] (A) 都有切向加速度 (B) 都有法向加速度(C) 绳子的拉力和重力是惯性离心力的反作用力 (D) 绳子的拉力和重力的合力是惯性离心力的反作用力12. 卡车沿一平直轨道以恒定加速度a 运动, 为了测定此加速度, 从卡车的天花板上垂挂一质量为m 的均匀小球, 若悬线与铅直方向的夹角为θ, 则a 与θ 间的关系为 [ ] (A) sin θ=a g (B) cos θ=a g (C) tan θ=a g (D) tan θ=ga13. 一质量为M 的气球用绳系着质量为m 的物体以匀加速度a 上升. 当绳突然断开的瞬间, 气球的加速度为[ ] (A) a (B)M mMa + (C) a mMg + (D) ()M m a mg M ++14. 在电梯内用弹簧秤称量物体的重量, 当电梯静止时称得一物体重量50kg,当电梯T2-1-10图T2-1-12图aa作匀变速运动时称得其重量为40kg, 则该电梯的加速度[ ] (A) 大小为0.2g , 方向向上 (B) 大小为0.8g , 方向向上(C) 大小为0.2g , 方向向下 (D) 大小为0.8g , 方向向下15. 假设质量为70kg 的飞机驾驶员由于动力俯冲得到7g 的净加速度, 问作用于驾驶员上的力(N)最接近于下列的哪一个值[ ] (A) 10 (B) 70 (C) 490 (D) 480016. 升降机内地板上放有物体A , 其上再放另一物体B , 二者的质量分别为A M 、B M .当升降机以加速度a 向下加速运动时(a <g ), 物体A 对升降机地板的压力为[ ] (A) g M A (B) g M M B A )(+(C) ))((a g M M B A ++ (D) ))((a g M M B A -+17. 三艘质量均为M 的小船以相同的速度v 鱼贯而行.今从中间船上同时以速率u (与速度v 在同一直线上)把两个质量均为m 的物体分别抛到前后两船上. 水和空气的阻力均不计, 则抛掷后三船速度分别为 [ ] (A) v , v , v (B) v +u , v , v -u (C) u M m mu M m m +-++v v v ,,(D) u mMm u m M m +-++v v v ,,18. 一质量为60kg 的人静止在一个质量为600kg 且正以2 m.s -1的速率向河岸驶近的木船上, 河水是静止的, 其阻力不计.现人相对于船以一水平速度v 沿船的前进方向向河岸跳去, 该人起跳后, 船速减为原来的一半, 这说明v 值为[ ] (A) 2 m.s -1 (B) 12 m.s -1 (C) 20 m.s -1 (D) 11 m.s -119. 牛顿定律和动量守恒定律的适用范围为 [ ] (A) 仅适用于宏观物体 (B) 仅适用于宏观, 低速物体(C) 牛顿定律适用于宏观低速物体, 动量守恒定律普遍适用 (D) 牛顿定律适用于宏观低速物体, 动量守恒定律适用于宏观物体20. 一炮弹由于特殊原因在飞行中突然炸成两块, 其中一块作自由下落, 则另一块着地点[ ] (A) 比原来更远 (B) 比原来更近(C) 仍和原来一样 (D) 条件不足不能判定T2-1-17图v21. 停在空中的气球的质量和人的质量相等.如果人沿着竖直悬挂在气球上的绳梯向上爬高1米, 不计绳梯的质量, 则气球将[ ] (A) 向上移动1米 (B) 向下移动1米 (C) 向上移动0.5米 (D) 向下移动0.5米22. 质量为m 的铁锤竖直落下, 打在木桩上并停下. 设打击时间为∆t , 打击前铁锤速率为v , 则在打击木桩的时间内, 铁锤所受平均合外力的大小为 [ ] (A)t m ∆v (B) mg t m -∆v (C) mg t m +∆v (D) tm ∆v223. 用锤压钉不易将钉压入木块, 用锤击钉则很容易将钉击入木块, 这是因为[ ] (A) 前者遇到的阻力大, 后者遇到的阻力小 (B) 前者动量守恒, 后者动量不守恒(C) 后者锤的动量变化大, 给钉的作用力就大(D) 后者锤的动量变化率大, 给钉的作用力就大24. 有两个同样的木块, 从同一高度自由下落, 在下落途中, 一木块被水平飞来的子弹击中, 并陷入其中. 子弹的质量不能忽略, 若不计空气阻力, 则 [ ] (A) 两木块同时到达地面 (B) 被击木块先到达地面 (C) 被击木块后到达地面 (D) 不能确定哪块木块先到达地面25. 将一物体提高10m, 下列哪种情形下提升力所作的功最小?[ ] (A) 以5m.s -1的速度匀速上升 (B) 以10m.s -1的速度匀速提升(C) 将物体由静止开始匀加速提升10m, 速度达到5m.s -1(D) 使物体从10m.s -1的初速度匀减速上升10m, 速度减为5m.s -126. 质点系的内力可以改变[ ] (A) 系统的总质量 (B) 系统的总动量 (C) 系统的总动能 (D) 系统的总角动量27. 质点组内部保守力作功量度了[ ] (A) 质点组动能的变化 (B) 质点组机械能的变化(C) 质点组势能的变化 (D) 质点组动能与势能的转化28. 作用在质点组的外力的功与质点组内力作功之和量度了 [ ] (A) 质点组动能的变化 (B) 质点组内能的变化(C) 质点组内部机械能与其它形式能量的转化(D) 质点组动能与势能的转化T2-1-21图T2-1-24图29. 质点组内部非保守内力作功量度了 [ ] (A) 质点组动能的变化 (B) 质点组势能的变化(C) 质点组内动能与势能的转化(D) 质点组内部机械能与其它形式能量的转化31. 一轮船作匀变速航行时所受阻力与速率平方成正比.当轮船的速率加倍时, 轮船发动机的功率是原来的[ ] (A) 2倍 (B) 3倍 (C) 4倍 (D) 8倍32. 一质点由原点从静止出发沿x 轴运动,它在运动过程中还受到指向原点的力的作用,此力的大小正比于它通过的距离x ,比例系数为k .那么,当质点离开原点距离为x 时,它相对于原点的势能值是 [ ] (A) 221kx -(B) 2kx - (C) 2kx (D) 221kx 33. 物体沿一空间作曲线运动,[ ] (A) 如果物体动能不变, 则作用于它的合力必为零 (B) 如果物体动能不变, 则没有任何外力对物体作功 (C) 如果物体动能变化, 则合外力的切向分量一定作了功 (D) 如果物体动能增加, 则势能就一定减少34. 在一般的抛体运动中, 下列说法中正确的是 [ ] (A) 最高点动能恒为零(B) 在升高的过程中, 物体动能的减少等于物体的势能增加和克服重力 所作功之和(C) 抛射物体机械能守恒, 因而同一高度具有相同的速度矢量(D) 在抛体和地球组成的系统中, 物体克服重力作的功等于势能的增加35. 有A 、B 两个相同的物体, 处于同一位置, 其中物体A 水平抛出, 物体B 沿斜面无摩擦地自由滑下, 则[ ] (A) A 先到达地面, 两物体到达地面时的速率不相等 (B) A 先到达地面, 两物体到达地面时的速率相等(C) B 先到达地面, 两物体到达地面时的速率不相等(D) B 先到达地面, 两物体到达地面时的速率相等36. 将一小球系在一端固定的细线(质量不计)上, 使小球在竖直平面内作圆周运动, 作用在小球上的力有重力和细线的拉力.将细线、小球和地球一起看作一个系统, 不考虑空气阻力及一切摩擦, 则[ ] (A) 重力和拉力都不作功, 系统的机械能守恒(B) 因为重力和拉力都是系统的内力, 故系统的机械能守恒 (C) 因为系统不受外力作用,这样的系统机械能守恒 (D) 以上说法都不对37. 重力场是保守力场.在这种场中, 把物体从一点移到另一点重力所作的功 [ ] (A) 只依赖于这两个端点的位置 (B) 依赖于物体移动所通过的路径 (C) 依赖于物体在初始点所具有的能量 (D) 是速度的函数38. 关于保守力, 下面说法正确的是[ ] (A) 只有保守力作用的系统动能和势能之和保持不变 (B) 只有合外力为零的保守内力作用系统机械能守恒 (C) 保守力总是内力(D) 物体沿任一闭合路径运动一周, 作用于它的某种力所作之功为零, 则该力称为保守力39. 下列各物理量中, 是过程函数的是[ ] (A) 动量和冲量 (B) 动能和功(C) 角动量和角冲量 (D) 冲量、功和角冲量40. 在下列叙述中,错误的是[ ] (A) 保守力作正功时相应的势能将减少 (B) 势能是属于物体体系的(C) 势能是个相对量,与参考零点的选择有关 (D) 势能的大小与初、末态有关, 与路径无关41. 劲度系数k =1000N.m -1的轻质弹簧一端固定在天花板上, 另一端悬挂一质量为m = 2kg 的物体, 并用手托着物体使弹簧无伸长.现突然撒手, 取g = 10 m.s -2, 则弹簧的最大伸长量为[ ] (A) 0.01m (B) 0.02m (C) 0.04m (D) 0.08m42. 两根劲度系数分别为k 1和k 2的弹簧, 串联在一起置于水平光滑的桌面上, 并固定其左端, 用以力F 拉其右端, 则两弹簧储存的弹性势能E 1、E 2与两弹簧的劲度系数k 1 、k 2满足的关系为[ ] (A) 2121::k k E E =(B) 1221::k k E E = (C) 222121::k k E E =(D) 212221::k k E E =43. 在弹性范围内, 如果将弹簧的伸长量增加到原来的3倍, 则弹性势能将增加到原来的[ ] (A) 6倍 (B) 8倍 (C) 9倍 (D) 12倍44. 一竖直悬挂的轻弹簧下系一小球, 平衡时弹簧伸长量为d , 现用手将小球托住使弹簧不伸长, 然后放手.不计一切摩擦, 则弹簧的最大伸长量为 [ ] (A) d (B)d 2 (C) 2d (D) 条件不足无法判定T2-1-41图T2-1-42图1k 245. 有两个彼此相距很远的星球A 和B, A 的质量是B 的质量的161, A 的半径是B 的半径的31, 则A 表面的重力加速度与B 表面的重力加速度之比是 [ ] (A) 2 : 9 (B) 16 : 81 (C) 9 : 16 (D) 条件不足不能确定46. 从地面发射人造地球卫星的速度称为发射速度v 0, 卫星绕地球运转的速度称为环绕速度v , 已知rgR 2=v (R 为地球半径, r 为卫星离地心距离), 忽略卫星在运动过程中的阻力, 对于发射速度v 0[ ] (A) v 越小相应的v 0越大 (B) 01v v ∝(C) v 越大相应的v 0越大 (D) 0v v ∝47. 设一子弹穿过厚度为l 的木块其初速度大小至少为v .如果木块的材料不变, 而厚度增为2l , 则要穿过这木块, 子弹的初速度大小至少要增为 [ ] (A) 2v (B)v 2 (C)v 21(D)2v 48. 质量比为1 : 2 : 3的三个小车沿着水平直线轨道滑行后停下来.若三个小车的初始动能相等, 它们与轨道间的摩擦系数相同, 则它们的滑行距离比为[ ] (A) 1 : 2 : 3 (B) 3 : 2 : 1 (C) 2 : 3 : 6 (D) 6 : 3 : 249. 一辆汽车从静止出发在平直公路上加速前进.如果发动机的功率一定, 下面哪一个说法是正确的?[ ] (A) 汽车的加速度是不变的 (B) 汽车的加速度随时间减小(C) 汽车的加速度与它的速度成正比(D) 汽车的速度与它通过的路程成正比50. 用铁锤将一铁钉击入木板, 设铁钉受到的阻力与其进入木块的深度成正比, 铁锤两次击钉的速度相同, 第一次将钉击入木板内1cm, 则第二次能将钉继续击入的深度为 [ ] (A) 0.4cm (B) 0.5cm (C) 1cm (D) 1.4cm51. 一电动小车从静止开始在光滑的直线轨道上行驶. 若小车的电动机的功率恒定, 则它走过的路程s 与时间t 的关系为[ ] (A) t s ∝ (B) 2t s ∝(C) t s ∝2 (D) 32t s ∝T2-1-51图52. 一原长为L 的轻质弹簧竖直悬挂.现将一质量为m 的物体挂在弹簧下端, 并用手托住物体缓慢地放下到达平衡位置而静止.在此过程中, 系统的重力势能减少而弹性势能增加, 且[ ] (A) 减少的重力势能大于增加的弹性势能 (B) 减少的重力势能等于增加的弹性势能(C) 减少的重力势能小于增加的弹性势能(D) 不能确定减少的重力势能与增加的弹性势能间的大小关系53. 若将地球看成半径为R 的均质球体, 则重力加速度只有地球表面处二分之一的地方离地面高度为 [ ] (A) 2R(B)R 2 (C) R )12(- (D) R54. 一被压缩的弹簧, 两端分别联接A 、B 两个不同的物体, 放置在光滑水平桌面上, 设m A = 2m B , 由静止释放. 则物体A 的动能与物体B 的动能之比为[ ] (A) 1 : 1 (B) 2 : 1 (C) 1 : 2 (D) 1 : 455. 关于功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零. 在上述说法中:[ ] (A) (1)、(2)是正确的 (B) (2)、(3)是正确的(C) 只有(2)是正确的 (D) 只有(3)是正确的56. 对于一个物体系统来说,在下列条件中,哪种情况下系统的机械能守恒?[ ] (A) 合外力为0 (B) 合外力不作功(C) 外力和非保守内力都不作功 (D) 外力和保守力都不作功57. 关于机械能守恒条件和动量守恒条件有以下几种说法,其中正确的是[ ] (A) 不受力作用的系统,其动量和机械能必然守恒(B) 所受合外力为零、内力都是保守力的系统,其机械能必然守恒(C) 不受外力,而内力都是保守力的系统,其动量和机械能必然同时守恒 (D) 外力对一个系统做的功为零,则该系统的机械能和动量必然同时守恒58. 一力学系统由两个质点组成,它们之间只有引力作用,若两质点所受外力的矢量和为零,则此系统[ ] (A) 动量、机械能以及对一轴的角动量守恒(B) 动量、机械能守恒,但角动量是否守恒不能断定 (C) 动量守恒,但机械能和角动量守恒与否不能断定 (D) 动量和角动量守恒,但机械能是否守恒不能断定T2-1-52图T2-1-54图59. 质量为m 的平板A ,用竖立的弹簧支持而处在水平位置,如T2-1-59图.从平台上投掷一个质量为m 的球B ,球的初速度为v , 沿水平方向.球由于重力作用下落,与平板发生完全弹性碰撞,且假定平板是平滑的.则球与平板碰撞后的运动方向应为[ ] (A)0A 方向 (B) A 1方向(C) A 2方向 (D) A 3方向60. 一质量为M 的弹簧振子,水平放置静止在平衡位置,如T2-1-60图所示.一质量为m 的子弹以水平速度v射入振子中,并随之一起运动.如果水平面光滑,此后弹簧的最大势能为[ ] (A) 221v m (B) )(222m M m +v (C) 2222)(v Mm m M + (D) 222v M m 61. 已知两个物体A 和B 的质量以及它们的速率都不相同, 若物体A 的动量在数值上比物体B 的动量大, 则物体A 的动能E kA 与物体B 的动能E kB 之间的关系为 [ ] (A) E kB 一定大于E kA (B) E kB 一定小于E kA (C) E kB 等于E kA (D) 不能判定哪个大62. 物体在恒力F 作用下作直线运动, 在∆t 1时间内速度由0增加到v, 在∆t 2时间内速度由v 增加到v2, 设F 在∆t 1时间内作的功是A 1, 冲量是1I , 在∆t 2时间内作的功是A 2, 冲量是2I, 则[ ] (A) A 1=A 2, 21I I > (B) A 1=A 2, 21I I>(C) A 1<A 2, 21I I = (D) A 1>A 2, 21I I=二、填空题1. 如T2-2-1图所示,置于光滑水水平面上的物块受到两个水平力的作用.欲使该物块处于静止状态,需施加一个大小为 、方向向 的力;若要使该物块以1s m 5-⋅的恒定速率向右运动,则需施加一个大小为 、方向向 的力.2. 机枪每分钟可射出质量为20克的子弹900颗, 子弹射出速率为800 m.s -1, 则射击时的平均反冲力为 .3. 将一空盒放在电子秤上,将秤的读数调整到零. 然后在高出盒底1.8m 处将小石子以T2-1-60图T2-2-1图T2-1-59图100个/s 的速率注入盒中. 若每个石子质量为10g, 落下的高度差均相同, 且落到盒内后停止运动, 则开始注入后10s 时秤的读数应为(g=10 m.s -24. 设炮车以仰角θ 发射一炮弹, 炮弹与炮车质量分别为m 和M , 炮弹相对于炮筒出口速度为v , 不计炮车与地面间的摩擦, 则炮车的反冲速度大小为 .5. 一船浮于静水中, 船长 5 m, 质量为M .计水和空气阻力, 则在此过程中船将 .6. 粒子B 的质量是粒子A 的质量的4倍.开始时粒子A 的速度为()j i43+,粒子B的速度为(j i 72-).由于两者的相互作用,粒子A 的速度变为()j i47-,此时粒子B 的速度等于 .7. 质量为10kg 的物体在变力作用下从静止开始作直线运动, 力随时间的变化规律是t F 43+=(式中F 以牛顿、t 以秒计). 由此可知, 3s 后此物体的速率为.8. 如T2-2-8图所示,圆锥摆的摆球质量为m ,速率为v ,圆半径为R .当摆球在轨道上运动半周时,摆球所受重力冲量的大小为 .9. 质量为0.25kg 的质点, 受力i t F =N 的作用, 当t =0时质点以=v -1通过坐标原点, 则该质点任意时刻的位置矢量是 (m)10. 一质量为m 的质点以不变速率v 沿T2-2-10图中正三角形ABC的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为 .11. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动,物体A 的动量是时间的函数,表达式为t b p p A -=0,式中b p 、0t是时间.在下列两种情况下,写出物体B 的动量作为时间的函数表达式:(1) 开始时,若B 静止,则1B p = ;(2) 开始时,若B 的动量为0p -,则2B p = .T2-2-8图12. 一质点受力i x F 23=(SI)作用, 沿x 轴正方向运动. 在从x = 0到x = 2m 的过程中,力F 作功为 .13. 一个质点在几个力同时作用下的位移为:k j i r654+-=∆(SI), 其中一个恒力为: k j i F953+--=(SI).这个力在该位移过程中所作的功为 .14. 一质点在如图所示的坐标平面内作圆周运动,有一力)(0j y i x F F+=作用在质点上.在该质点从坐标原点运动到)2,0(R 位置过程中,力F对它所作的功为 .15. 质量为m = 0.5kg 的质点在xOy 平面内运动,其运动方程为x = 5t ,y = 0.5 t 2 (SI), 从t = 2s 到t = 4s 这段时间内, 外力对质点作的功为 . 16. 一质量为m=5kg 的物体,在0到10秒内,受到如T2-2-16图所示的变力F 的作用,由静止开始沿x 轴正向运动,而力的方向始终为x 轴的正方向,则10秒内变力F 所做的功为 . 17. 质量为m 的质点在外力作用下运动, 其运动方程为x = A cos ω t , y =B sin ω t , 式中A 、B 、ω 都是正常数.则在t = 0到ω2π=t 这段时间内外力所作的功为 . 18. 有一劲度系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球.先使弹簧为原长,而小球恰好与地面接触.再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止.在此过程中外力所作的功为 .19. 一长为l ,质量为m 的匀质链条,放在光滑的桌面上,若其长度的1/5悬挂于桌边下,将其慢慢拉回桌面,需做功 .20. 一质量为m 的质点在指向圆心的平方反比力2/r k F -=的作用下,作半径为r 的圆周运动,此质点的速度=v .若取距圆心无穷远处为势能零点,它的机械能=E .T2-2-14图T2-2-16图三、计算题1. T2-3-1图所示为一物块在光滑水平面上受力运动的俯视图.该物块质量为2.0kg, 以3.0m ⋅s -2的加速度沿图示的a方向加运动.作用在该物体上有三个水平力,图中给出了其中的两个力1F 和2F ,1F 的大小为10N ,2F的大小为20N .试以单位矢量和大小、角度表示第三个力.2. 两小球的质量均为m ,小球1从离地面高为h 处由静止下落,小球2在小球1的正下方地面上以初速0v同时竖直上抛.设空气阻力与小球的速率成正比,比例系数为k (常量).试求两小球相遇的时间、地点以及相遇时两小球的速度.3. 竖直上抛物体至少以多大的初速v 0发射,才不会再回到地球.4. 飞机降落时的着地速度大小10h km 90-⋅=v ,方向与地面平行,飞机与地面间的摩擦系数10.0=μ,迎面空气阻力为2v x C ,升力为2v y C (v 是飞机在跑道上的滑行速度,x C 和y C 均为常数).已知飞机的升阻比K = y C /x C =5,求飞机从着地到停止这段时间所滑行的距离.(设飞机刚着地时对地面无压力)5. 在光滑的水平面上放一质量为M 的楔块,楔块底角为θ,斜边光滑.今在其斜边上放一质量为m 的物块,求物块沿楔块下滑时对楔块和对地面的加速度.6. 如T2-3-6图所示,漏斗匀角速转动,质量为m 的物块与漏斗壁之间的静摩擦系数为μ,若m 相对于漏斗内壁静止不动,求漏斗转动的最大角速度.7. 已知一水桶以匀角速度ω 绕自身轴z 转动,水相对圆筒静止,求水面的形状(z - r 关系).8.一颗子弹在枪筒里前进时所受的合力大小为t F 31044005⨯-=(SI),子弹从枪口射出的速率为3001s m -⋅.假设子弹离开枪口时合力刚好为零,求:(1) 子弹走完枪筒全长所用的时间 t ; (2) 子弹在枪筒中所受的冲量 I ; (3) 子弹的质量 m .T2-3-1图T2-3-2图T2-3-6图T2-3-7图9. 如T2-3-9图所示,砂子从h =0.8m 高处下落到以3 m ⋅s -1的速率水平向右运动的传送带上.取重力加速度g =10 m ⋅s -2,求传送带给予沙子的作用力.10. 矿砂从传送带A 落到另一传送带B (如T2-3-10图),其速度的大小11s m 4-⋅=v ,速度方向与竖直方向成30°角;而传送带B 与水平线成15°角,其速度的大小12s m 2-⋅=v .如果传送带的运送量恒定,设为1h kg 2000-⋅=m q ,求矿砂作用在传送带B 上的力的大小和方向.11. 一架喷气式飞机以210m ⋅s -1的速度飞行,它的发动机每秒钟吸入75kg 空气,在体内与3.0kg 燃料燃烧后以相对于飞机490m ⋅s -1的速度向后喷出.求发动机对飞机的推力.12. 三个物体A 、B 、C ,每个质量都是M ,B 、C 靠在一起,放在光滑水平桌面上,两者间连有一段长为0.4m 的细绳,原先放松着.B 的另一侧用一跨过桌边的定滑轮的细绳与A 相连(如T2-3-12图).滑轮和绳子的质量及轮轴上的摩擦不计,绳子不可伸长.问:(1) A 、B 起动后,经多长时间C 也开始运动? (2) C 开始运动时速度的大小是多少? (取2s m 10-⋅=g ) 13. 如T2-3-13图所示,质量为M 的滑块正沿着光滑水平地面向右滑动,一质量为m 的小球水平向右飞行,以速度1v (对地)与滑块斜面相碰,碰后竖直向上弹起,速率为2v (对地).若碰撞时间为t ∆,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小.14. 高为h 的光滑桌面上,放一质量为M 的木块.质量为m 的子弹以速率v 0沿图示方向( 图中θ 角已知)射入木块并与木块一起运动.求:(1) 木块落地时的速率;(2) 木块给子弹的冲量的大小.15. 一人从10m 深的井中提水,起始时桶中装有10kg 的水,桶的质量为1kg ,由于水桶漏水,每升高1m 要漏去0.2kg 的水.求水桶匀速地从井中提到井口,人所作的功.T2-3-9图T2-3-10图16. 一物体按规律3t cx=在媒质中作直线运动,式中c为常量,t为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k.试求物体由0=x运动到lx=时,阻力所作的功.17. 一链条总长为l,质量为m,放在桌面上,并使其一端下垂,下垂一端的长度为a.设链条与桌面之间的滑动摩擦系数为μ,令链条由静止开始运动,则(1) 到链条离开桌面的过程中,摩擦力对链条作了多少功?(2) 链条离开桌面时的速度是多少?18. 有一水平运动的皮带将砂子从一处运到另一处,砂子经一垂直的静止漏斗落到皮带上,皮带以恒定的速率v水平地运动.忽略机件各部位的摩擦及皮带另一端的其它影响,试问:(1) 若每秒有质量为tMMdd=∆的砂子落到皮带上,要维持皮带以恒定速率v运动,需要多大的功率?(2) 若11sm5.1,skg20--⋅=⋅=∆vM, 水平牵引力多大? 所需功率多大?19. 质量为m的质点在XOY平面上运动,其位置矢量为)I S(sincos j tbi tarωω+=式中ω,,ba是正值常数,且ba>.(1) 求质点在A)0,(a点时和B),0(b点时的动能;(2) 求质点所受的作用力F以及当质点从A点运动到B点的过程中F的分力xF和yF 分别作的功.20. 两物块分别固结在一轻质弹簧两端,使弹簧伸长l为k,求释放后两物块的最大相对速度.21. 水平面上有一质量为M、倾角为θ静止下滑.求m滑到底面的过程中,m对M作的功W及M后退的距离S.(忽略所有摩擦)22. 地球可看作半径R = 6400km的球体,一颗人造地球卫星在地面上空h = 800 km 的圆形轨道上以v1=7.5 km⋅s-1的速度绕地球运行.今在卫星外侧点燃一个小火箭,给卫星附加一个指向地心的分速度v2 = 0.2 km⋅s-1.问此后卫星的椭圆轨道的近地点和远地点离地面各多少公里?T2-3-20图mT2-3-22图。

相关文档
最新文档