2019年数值分析第二学期期末考试试题与答案A

合集下载

数值分析期末考试题

数值分析期末考试题

数值分析期末考试题一、选择题1. 在数值分析中,用于求解线性方程组的雅可比方法属于以下哪种迭代法?A. 直接迭代法B. 间接迭代法C. 外推法D. 松弛法2. 插值法中,拉格朗日插值多项式的主要特点是?A. 适用于多项式插值B. 适用于函数值已知的情况C. 只适用于单点插值D. 适用于分段插值3. 在数值积分中,辛普森法则是一种?A. 单区间求积公式B. 双区间求积公式C. 三区间求积公式D. 多区间求积公式4. 误差分析中,截断误差通常与以下哪个概念相关?A. 舍入误差B. 舍入误差的补偿C. 条件数D. 病态条件5. 非线性方程求解中,牛顿法的收敛速度通常?A. 较慢B. 较快C. 与初始值有关D. 与方程的性质有关二、填空题1. 在求解三对角线性方程组时,托马斯算法是一种________方法。

2. 多项式插值中,牛顿插值多项式可以通过________法来构建。

3. 数值积分中,高斯求积法是一种________方法。

4. 误差传递的估计通常通过________公式来进行。

5. 非线性方程的求解中,二分法是一种________方法。

三、简答题1. 请简述数值分析中的条件数概念及其在解方程中的应用。

2. 描述线性方程组迭代法中的收敛性判断方法,并给出收敛域的计算公式。

3. 解释插值和拟合的区别,并举例说明各自的应用场景。

4. 阐述数值积分中梯形法则的原理及其误差估计方法。

5. 讨论非线性方程求解中不动点理论和收敛性的关系。

四、计算题1. 给定线性方程组如下,请使用高斯消元法求解未知数x、y、z的值: \[\begin{cases}2x + y + z = 6 \\x + 3y + 2z = 11 \\3x + y + 4z = 17\end{cases}\]2. 假设有一个函数f(x) = sin(x),给定插值节点如下,请使用拉格朗日插值法构造一个三次插值多项式,并计算在x=π/4处的插值误差。

《数值分析》A卷期末考试试题及参考答案

《数值分析》A卷期末考试试题及参考答案

一、单项选择题(每小题3分,共15分) 1、用Simpson 公式求积分1401x dx +⎰的近似值为 ( ).A.2924 B.2429C.65D. 562、已知(1)0.401f =,且用梯形公式计算积分2()f x dx ⎰的近似值10.864T =,若将区间[0,2]二等分,则用递推公式计算近似值2T 等于( ). A.0.824 B.0.401 C.0.864 D. 0.8333、设3()32=+f x x ,则差商0123[,,,]f x x x x 等于( ).A.0B.9C.3D. 64的近似值的绝对误差小于0.01%,要取多少位有效数字( ). A.3 B.4 C.5 D. 25、用二分法求方程()0=f x 在区间[1,2]上的一个实根,若要求准确到小数 点后第四位,则至少二分区间多少次( ).A.12B.13C.14D. 15二、填空题(每小题4分,共40分)1、对于迭代函数2()=(3)ϕ+-x x a x ,要使迭代公式1=()ϕ+k k x x则a 的取值范围为 .2、假设按四舍五入的近似值为2.312,则该近似值的绝对误差限为 .3、迭代公式212(3)=,03++>+k k k k x x a x a x a收敛于α= (0)α>. 4、解方程4()530f x x x =+-=的牛顿迭代公式为 . 5、设()f x 在[1,1]-上具有2阶连续导数,[1,1]x ∀∈-,有1()2f x ''≤,则()f x 在[1,1]-上的线性插值函数1()L x 在点0处的误差限1(0)R ≤______.6、求解微分方程初值问题2(0)1'=-⎧⎨=⎩y xy yy ,0x 1≤≤的向前Euler 格式为 .7、设310131013A -⎛⎫⎪=-- ⎪ ⎪-⎝⎭,则A ∞= .8、用梯形公式计算积分112-⎰dx x 的近似值为 . 9、设12A 21+⎡⎤=⎢⎥⎣⎦a 可作Cholesky 分解,则a 的取值范围为 . 10、设(0)1,(0.5) 1.5,(1)2,(1.5) 2.5,(2) 3.4f f f f f =====,若1=h ,则用三点公式计算(1)'≈f .三、解答题(共45分) 1、给定数据用复化Simpson 公式计算1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛. (5分)4、已知数据试对数据用最小二乘法求出形如=+y x b的拟合曲线. (8分) 5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (8分) 6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦一、单项选择题(每小题3分,合计15分) 1、A 2、D 3、C 4、C 5、D 二、填空题(每小题3分,合计30分) 1、0<<a ; 2、31102-⨯; 3;4、4135345++-=-+k k k k k x x x x x ; 5、14; 6、1(2)+=+-n n n n n y y h x y y ; 7、5;8、34-; 9、3>a ;10、1.2;三、计算题(合计55分) 1、给定数据用复化Simpson 公式计算 1.381.30()f x dx ⎰的近似值,并估计误差,小数点后保留3位. (8分)解: 401024S [()4()()]6-=++x x f x f x f x ………… 1分 1.38 1.30(3.624 4.20 5.19)6-=+⨯+ 0.341= ………… 2分20422012234S [()4()()][()4()()]66--=+++++x x x xf x f x f x f x f x f x =0.342 ………… 6分2211[]15-≈-I S S S =-⨯40.6710 ………… 8分 2、用直接三角分解法求线性代数方程组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡432631531321321x x x 的解. (8分) 解:设111213212223313233u u u 123100135l 100u u 136l l 100u ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=*⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦………… 1分 111=u ,212=u ,313=u ,121=l ,131=l 122=u ,223=u ,132=l133=u ,133=l …………6分所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011001L ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100210321U …………7分 由b Ly =得Ty )1,1,2(=;由y Ux =得Tx )1,1,1(-=. ………… 8分3、求()λx ,使得迭代公式1()()λ+=+k k k k f x x x x 求方程2()31=+-f x x x 的根的相应迭代序列{}k x 具有平方收敛.(6分)解:要使迭代序列具有平方收敛,则()0ϕ'*=x ………… 2分 而()()()ϕλ=+f x x x x ,即 ………… 3分 2()()()()10()λλλ''**-**+=*f x x x f x x …………4分 而()0*=f x 则有()1()λ'*=-*f x x ………… 5分所以()()23λ'=-=--x f x x ………… 6分4、已知数据试对数据用最小二乘法求出形如=+ay x b的拟合曲线. (8分) 解:因为11=+b x y a a ,令0111,,,====b a a y x x a a y……2分 则有法方程01461061410⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭a a ……5分解出014,1==-a a ,则1,4=-=-a b ……7分 所以1=4-y x……8分5、已知(2)8f -=,(0)4f =,(2)8=f ,试求二次拉格朗日插值多项式. (7分)解:01()(2)8l x x x =- …………2分 211()(4)4l x x =-- …………4分21()(2)8l x x x =+ …………6分 2012()()(2)()(0)()(2)L x l x f l x f l x f =-++24=+x …………7分6、设矩阵A 如下,根据谱半径判断用Jacobi 迭代法求解方程组Ax b =的敛散性.(8分)1102111221012A ⎡⎤-⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦解:100010001D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,00010021002L ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,10021002000U ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………3分1100211()0221002J B D L U -⎡⎤⎢⎥⎢⎥⎢⎥=+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦…………5分 2102111()0222102J E B λλλλλλ⎡⎤-⎢⎥⎢⎥⎢⎥-=--=-=⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦…………6分()2J B ρ=…………7分 所以用Jacobi 迭代法求解方程组Ax b =收敛 …………8分。

数值分析试题与答案

数值分析试题与答案

一. 填空题(本大题共4小题,每小题4分,共16分)1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。

2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。

3.设110111011A -⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦,233x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则1A = ,1x = 。

4. 1n +个节点的高斯求积公式的代数精确度为 。

二.简答题(本大题共3小题,每小题8分,共24分)1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定?2. 什么是不动点迭代法?()x ϕ满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ϕ的不动点?3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。

三.求一个次数不高于3的多项式()3P x ,满足下列插值条件:i x 1 2 3 i y 2 4 12 i y '3并估计误差。

(10分)四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1011I dx x=+⎰。

(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。

(10分) 六.试用Doolittle 分解法求解方程组:12325610413191963630x x x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦ (10分)七.请写出雅可比迭代法求解线性方程组123123123202324812231530x x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩ 的迭代格式,并判断其是否收敛?(10分)八.就初值问题0(0)y yy y λ'=⎧⎨=⎩考察欧拉显式格式的收敛性。

(10分)《数值分析》(A )卷标准答案(2009-2010-1)一. 填空题(每小题3分,共12分) 1. ()1200102()()()()x x x x l x x x x x --=--; 2.7;3. 3,8;4. 2n+1。

2019学年高二数学下学期期末考试试题 理(含解析)

2019学年高二数学下学期期末考试试题 理(含解析)

2019学年高二数学下学期期末考试试题 理(含解析)考试时间:120分,满分150分一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填在答题卡上)1.已知全集{}1,2,3,4U =,集合{}1,2A =,{}2,3B =,则()U AB ð等于(). A .{}1,2,3,4B .{}3,4C .{}3D .{}4【答案】{}1,2,3AB =∴{}()4U A B =ð. 选D .2.命题“若一个正数,则它的平方是正数”的逆命题是(). A .“若一个数是正数,则它的平方不是正数” B .“若一个数的平方是正数,则它是正数” C .“若一个数不是正数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是正数” 【答案】B【解析】逆命题为条件、结论互换,选B .3.设函数21,()2,1,x x f x x x⎧+⎪=⎨>⎪⎩≤1,,则((3))f f =().A .15B .3C .139D .23【答案】C 【解析】2(3)3f =2413((3))1399f f f ⎛⎫=== ⎪⎝⎭+.选C .4.设0a b <<,则下列不等式中不成立的是(). A .11a b> B .11a b a>-C .a b >-D【答案】不妨令2a =-,1b =-,B :111212=->--+不成立,选B .5.已知函数11,1()2,1x f x xx a x ⎧->⎪⎨⎪-+⎩≤在R 上满足:对任意12x x ≠,都有12()()f x f x ≠,则实数a 的取值范围是(). A .(],2-∞B .(],2-∞-C .[)2,+∞D .[)2,-+∞【答案】C 、【解析】按题意()f x 在R 上单调,而11x-在1x >时为减函数,∴()f x 为减函数, 1x =时,121x a x--≥+,2a -≥0+, ∴2a ≥. 选C . 6.复数2i12i+-的共轭复数是(). A .3i 5-B .3i 5C .i -D .i【答案】C 【解析】2i (2i)(12i)i 12i (12i)(12i)==--++++, ∴共轭复数为i -.选C .7.由直线π3x =-,π3x =,0y =与曲线cos y x =所围成的封闭图形的面积为().AB .1C .12D【答案】A【解析】π3π3π3cos d sin π3S x x x-⎛=⋅==-= ⎝⎭-⎰ 选A .8.函数()y f x =的图象是圆心在原点的单位圆的两段弧(如图),则不等式()()f x f x x <-+的解集为().A .|0x x ⎧⎪<<⎨⎪⎩或1x ⎫⎪<⎬⎪⎭≤B .|1x x ⎧⎪-<<⎨⎪⎩1x ⎫⎪<⎬⎪⎭≤ C .|1x x ⎧⎪-<<⎨⎪⎩0x <<⎪⎭D.|x x ⎧⎪<<⎨⎪⎩}0x ≠ 【答案】A【解析】显然()f x 为奇数, ∴可等价转换为1()2f x x <,当1x =时,1()02f x =<.当01x <<时,()f x ∴22114x x -<,1x <.当10x -<≤时,12x,∴0x <, 综上:|0x x ⎧⎪<<⎨⎪⎩1x ⎫⎪<⎬⎪⎭≤.二、填空题(本大题共6小题,每小题5分,共30分,将答案填在答题卡的横线上) 9.已知等差数列{}n a ,3510a a +=,2621a a =,则n a =__________. 【答案】1n a n =+【解析】设1(1)n a a n d =-+, ∴1111(2)(4)10()(5)21a d a d a d a d =⎧⎨=⎩++++, 解得:12a =1a =, ∴1n a n =+.10.已知二次函数2()4f x x ax =-+,若(1)f x +是偶函数,则实数a 的值为__________. 【答案】2a =【解析】2(1)(1)(1)4f x x a x =-++++ 2(2)5x a x a =--++为偶函数,有22()(2)5(2)5x a x a x a x a ----=--+++,2a =.11.若“1x m <-或1x m >+”是“2230x x -->”的必要不充分条件,则实数m 的取值范围为__________. 【答案】【解析】(1)2230x x -->,得:3x >或1x <-, 若1x m <-或1x m >+为2230x x -->的必要不充分条件. 则1311m m ⎧⎨--⎩≤≥+,即20m m ⎧⎨⎩≤≥, ∴02m ≤≤.12.已知定义在R 上的奇函数()f x 满足(2)()f x f x -=,且当[]1,2x ∈时,2()32f x x x =-+,则(6)f = __________;12f ⎛⎫= ⎪⎝⎭__________.【答案】【解析】(2)()f x f x -=可知周期为2, (6)(2)0f f ==, ()f x 为奇函数, 113122224f f f ⎛⎫⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴答案为0,14.13.直线11x t y t =+⎧⎨=-+⎩(t 为参数)与曲线2cos 2sin x y αα=⎧⎨=⎩(α为参数)的位置关系是__________.【答案】【解析】121x tx y y t =⎧⇒-=⎨=-⎩++, 222cos 42sin x x y y αα=⎧⇒=⎨=⎩+,2x =.∴2d =.14.已知数列{}n a 中,n a =4S =__________.【答案】 【解析】n a12⎡⎤=⋅⎣⎦12n =⋅12⎡=⋅⎣ 12⎡=⋅⎣,∴1234110112a a a a ⎡+=-⎣+++ 1(32=.三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 15.(本小题满分13分)已知数列{}n a 是等比数列,其前n 项和是n S ,1220a a +=,4218S S -=. (Ⅰ)求数列{}n a 的通项公式. (Ⅱ)求满足116n a ≥的n 的值. 【答案】【解析】(1)设11n n a a q -= 1220a a =+,2112a q a ==-, 4218S S -=,41111211112812a a ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦--= ⎪⎛⎫⎝⎭-- ⎪⎝⎭,11a =, ∴112n n a -⎛⎫=- ⎪⎝⎭.(2)116n a ≥, 111216n -⎛⎫- ⎪⎝⎭≥. 当n 为偶数不成立, 当n 为奇数,141122n -⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭≥ ∴5n ≤. 又∵*n ∈N , ∴{}1,3,5n =.16.(本小题满分13分)已知数列32()(,)f x ax x bx a b =++∈R ,g()()()x f x f x '=+是奇函数. (Ⅰ)求()f x 的表达式.(Ⅱ)讨论()g x 的单调性,并求()g x 在区间[]1,2上的最大值与最小值. 【答案】【解析】(1)2()32f x ax x b '=++32()()()(31)(2)g x f x f x ax a x b x b '==++++++.∵()()g x g x -=-,∴对x ∀有3232()(31)()(2)()(31)(2)a x a x b x b ax a x b x b ---=-++++++++++. 解得:13a =-,0b =.17.(本小题满分13分)设m ∈R ,不等式2(31)2(1)0mx m x m -+++>的解集记为集合P . (Ⅰ)若{}|12P x x =-<<,求m 的值. (Ⅱ)当0m >时,求集合P . 【答案】,【解析】(1){}12P x x =-<<,∴1-,2为2(31)2(1)0mx m x m -=+++两根, ∴1x =-代入2(1)(31)2(1)0m m m -=++++, 12m =-.(2)[](2)(1)0x mx m -->+, 两根为2,1m m+, ①12m m=+,1m =时,2x ≠. ②12m m >+,01m <<时2x <或1m x m >+. ③12m m <+,1m >时,1m x m<+或2x >. 综上:01m <<时,{|2P x x =<或1}m x m>+, 1m =时,{},2P x x x =∈≠R , 1m >时,1{|m P x x m=<+或2}m >.18.(本小题满分13分)已知等差数列{}n a 的前n 项和为n S ,且满足32a =-,74S a =.(Ⅰ)1a =__________,d =__________,n a =__________,当n =__________时,n S 取得取小值,最小值为__________.(Ⅱ)若数列{}n a 中相异..的三项6a ,6m a +,6n a +成等比数列,求n 的最小值. 【答案】【解析】(1)1(1)n a a n d =-+, 3122a a d -==+,1711(6)772132a a d S a d a d ===++++,∴11122618030a d a d a d =-⎧⎨=⇒=⎩+++, 解得2d =,16a =-, ∴6(1)228n a n n =--⋅=-+. 1(628)2n S n n =⋅--+27,*n n n =-∈N ,∴min 92112S =-=.(2)[][]22(6)842(6)8m n -=-++ 2(24)24m n =++,21(2)22n m =-+,6060m n +>⎧⎨+>⎩2m =-,2n =-, 13m -=-,n =分数, 04m =,0n =, 15m =-,n =分数, 26m --,6n =. 4 4- 4 6a 8a12a4 816综上,2m =时,n 的最小值6.19.(本小题满分13分)若实数x ,y ,m 满足x m y m -<-,则称x 比y 靠近m . (Ⅰ)若1x +比x -靠近1-,求实数x 有取值范围.(Ⅱ)(i )对0x >,比较ln(1)x +和x 哪一个更靠近0,并说明理由. (ii )已知函数{}n a 的通项公式为112n n a -=+,证明:1232e n a a a a <.【答案】【解析】(1)|1(1)||(1)|x x --<---+ 22|2||1|(2)(1)x x x x <-⇔<-++, ∴12x <-.(2)①∵0x >,∴ln(1)0x >+, ∴|ln(1)0||0|ln(1)x x x x ---=-++, 记()ln(1)f x x x =-+, (0)0f =. 1()1011x f x x x-'=-=<++, ∴()f x 在(0,)∞+单减.∴()2(0)0f x f =,即ln(1)x x <+, ∴ln(1)x +比x 靠近0. ②120n ->, 由①得: 2323ln()ln ln ln n n a a a a a a =+++12111ln(12)ln(12)ln(12)22n n -----=+++<+++++111112(12)211212n ------=<=--,∴23e n a a a <.又∵12a =, ∴1232e n a a a a <.20.(本小题满分14分)已知函数()f x 的图象在[],a b 上连续不断,定义:{}1()min ()|f x f t a t x =≤≤[](,)x a b ∈, {}2()max ()|f x f t a t x =≤≤[](,)x a b ∈,其中,{}min ()|f x x ∈D 表示函数()f x 在D 上的最小值,{}max ()|f x x ∈D 表示函数()f x 在D 上最大值.若存在最小正整数k ,使21()()()f x f x k x a =-≤对任意的[],x a b ∈成立,则称函数()f x 为[],a b 上的“k 阶收缩函数”. (Ⅰ)若()cos f x x =,[]0,πx ∈,试写出1()f x ,2()f x 的表达式.(Ⅱ)已知函数2()f x x =,[]1,4x ∈-,试判断()f x 是否为[]1,4-上的“k 阶收缩函数”,如果是,求出对应的k ,如果不是,请说明理由.(Ⅲ)已知0b >,函数32()3f x x x =-+是[]0,b 上的2阶收缩函数,求b 的取值范围. 【答案】【解析】(1)1()cos f x x =,[]0,πx ∈,2()1f x =,[]0,πx ∈. (2)21,[1,0]()0,[0,4]x x f x x ⎧∈-=⎨∈⎩,221,[1,1)(),[1,4]x f x x x ∈-⎧=⎨∈⎩,22121,[1,0)()()1,[0,1),[1,4]x x f x f x x x x ⎧-∈-⎪-=∈⎨⎪∈⎩,当[1,0)x ∈-,21(1)x k x -≤+,∴12k x -≥≥, (0,1]x ∈,1(1)k x ≤+,∴11k x ≥+, ∴1k ≥,[1,4]x ∈,2(1)x k x ≤+,21x k x ≥+ 综上,165k ≥. 即存在4k =,使()f x 是[1,4]-上4阶收缩函数.(3)2()363(2)f x x x x x '=-=--+,10x =,22x =,令()0f x =,3x =或0.(ⅰ)2b ≤时,()f x 在[]0,b 单调,∴2()()3f x f x x x ==-+, 1()(0)0f x f ==,因32()3f x x x =-+是[]0,b 上2阶收缩函数.①∴21()()2(0)f x f x x --≤对[]0,x b ∈恒成立. ②[]0,x b ∈,使21()()f x f x x ->成立. ①即3232x x x -≤+对[]0,b 恒成立. 解得01x ≤≤或2x ≥, ∴有01b <≤.②即[]0,x b ∃∈使2(31)0x x x -<+ ∴0x <x <, 只需b ,- 11 - (ⅱ)2b >时,显然[]30,2b ∈∴()f x 在[]0,2上单调递增, 232728f ⎛⎫== ⎪⎝⎭,1302f ⎛⎫= ⎪⎝⎭, ∴2133273232282f f ⎛⎫⎛⎫-=>⨯= ⎪ ⎪⎝⎭⎝⎭,此时21()()2(0)f x f x x --≤不成立. 综(ⅰ)1b ≤.。

武汉大学数值分析期末考试题目和答案

武汉大学数值分析期末考试题目和答案

(2 分)
(2 分) (1 分)
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 5 页)
八.证明题(本大题共 2 小题,每小题 7 分,共 14 分) 1. 证:该问题的精确解为 y( x) y0e
六.试用 Doolittle 分解法求解方程组:
5 6 x1 1 0 2 4 1 3 1 9 x 1 9( 10 分) 2 6 3 6 x3 3 0 20 x1 2 x2 3x3 24 七.请写出雅可比迭代法求解线性方程组 x1 8 x2 x3 12 的迭代格式,并 2 x 3x 15 x 30 2 3 1
故有 B 1.25 1 ,因而雅可比迭代法不收敛。 (2)对于方程组,Gauss-Seidel 迭代法迭代矩阵为
0 0.5 0.5 B 0 0.5 0.5 0 0.5 0
其特征值为 1 0, 2 3 0.5 故有 B 0.5 1 ,因而雅可比迭代法收敛。
判断其是否收敛?(10 分)
y y 八.就初值问题 考察欧拉显式格式的收敛性。 (10 分) y (0) y0
注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 生须在试题图上作解答,请另附该试题图。3、请在试卷类型、考试方式后打勾注明。 (第 2 页)
步 6:若 k<N,置 k:=k+1, μ:=mk,转 3;否则输出计算失败 信息,停止 三. 解: (1)利用插值法加待定系数法: 设 p2 x 满足 p2 1 2, p2 2 4, p2 3 12, 则 p2 x 3x 7 x 6, (3 分)

高中高二数学第二学期期末考试卷答案解析

高中高二数学第二学期期末考试卷答案解析

高中2019年高二数学第二学期期末考试卷答案解析高中2019年高二数学第二学期期末考试卷答案解析【】查字典数学网高中频道的编辑就为您准备了高中2019年高二数学第二学期期末考试卷答案解析一、选择题(本大题共有10小题,每小题5分,共50分) BABDB ACDBD二、填空题(共5小题,每小题5分,共25分)11、12、13、35 14、15、三、解答题(4ⅹ12+13+14=75,解答应写出文字说明,证明过程或演算步骤)16.解:(1)当z为实数时,则有,a=6,即a=6时,z为实数. -----6分(2)当z为纯虚数时,有,. 不存在实数a使z为纯虚数. -----12分17、解:试验次数X可取值1、2、3 -----3分P(x=1)= P(x=2)= P(x=3)= -----9分分布列为:X 1 2 3P-----10分,-----12分18.解:(1) ,,.(2)根据计算结果,可以归纳出. 5分①当时,,与已知相符,归纳出的公式成立. 6分②假设当( )时,公式成立,即,8分那么,.所以,当时公式也成立. 11分综上,对于任何都成立. 12分19.解:(1)证一:应用均值不等式,得:故当且仅当,即时上式取等号。

证二:分析法要证即证即证显然它成立,所以原不等式成立且时上式取等号-6分本文导航1、首页2、高二数学第二学期期末考试卷答案-2 (2)由(1) .当且仅当,即时上式取最小值,即-----12分20、解:(1)分别记甲、乙、丙通过审核为事件5分(2)分别记甲、乙、丙获得自主招生入选资格为事件A,B,C,则P(A)=P(B)=P(C)=0.3--7分试验次数X可取值0、1、2、3 -----8分11分的分布列是0 1 2 30.343 0.441 0.189 0.02712分0.63 13分或服从二项分布,0.6321、解:(1)因为,所以. 由,可得,.经检验时,函数在处取得极值,所以. 2分时,4分不等式对任意及恒成立,即,即对恒成立,令,,解得为所求. 7分(2)①∵在上单调递减②由①得令,得即. 14分观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

数值分析报告期末考试复习题及其问题详解

数值分析期末考试复习题及其答案1. 已知325413.0,325413*2*1==X X 都有6位有效数字,求绝对误差限。

(4分)解:由已知可知,n=65.01021,0,6,10325413.0016*1=⨯==-=⨯=ε绝对误差限n k k X 2分 620*21021,6,0,10325413.0-⨯=-=-=⨯=ε绝对误差限n k k X 2分2. 已知⎢⎢⎢⎣⎡=001A 220- ⎥⎥⎥⎦⎤440求21,,A A A ∞ (6分) 解:{},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 ()A A A T max 2λ= 1分⎢⎢⎢⎣⎡=001A A T 420 ⎥⎥⎥⎦⎤-420⎢⎢⎢⎣⎡001 220- ⎥⎥⎥⎦⎤440=⎢⎢⎢⎣⎡001 080 ⎥⎥⎥⎦⎤3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A3. 设32)()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式② 当a 为何值时,)(1k k x x ϕ=+ (k=0,1……)产生的序列{}k x 收敛于2解:①Newton 迭代格式为:xa x x x ax a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(22321+=+=---=-=+ϕ 3分②时迭代收敛即当222,11210)2(',665)('2<<-<-=-=a a x a x ϕϕ 3分4. 给定线性方程组Ax=b ,其中:⎢⎣⎡=13A ⎥⎦⎤22,⎥⎦⎤⎢⎣⎡-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收敛(8分)解:所给迭代公式的迭代矩阵为⎥⎦⎤--⎢⎣⎡--=-=ααααα21231A I B 2分其特征方程为 0)21(2)31(=----=-αλαααλλB I 2分即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(<B ρ,当且仅当5.00<<α 2分5. 设方程Ax=b ,其中⎢⎢⎢⎣⎡=211A 212 ⎥⎥⎥⎦⎤-112,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=765b 试讨论解此方程的Jacobi 迭代法的收敛性,并建立Gauss-Seidel 迭代格式 (9分)解:U D L A ++=⎢⎢⎢⎣⎡--=+-=-210)(1U L D B J 202-- ⎥⎥⎥⎦⎤-012 3分0,03213=====-λλλλλJ B I 2分即10)(<=J B ρ,由此可知Jacobi 迭代收敛 1分 Gauss-Seidel 迭代格式:⎪⎩⎪⎨⎧--=--=+-=++++++)1(2)1(1)1(3)(3)1(1)1(2)(3)(2)1(12276225k k k k k k k k k x x x x x x x x x (k=0,1,2,3……) 3分6. 用Doolittle 分解计算下列3个线性代数方程组:i i b Ax =(i=1,2,3)其中⎢⎢⎢⎣⎡=222A 331 ⎥⎥⎥⎦⎤421,23121,,974x b x b b ==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= (12分)解:①11b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=9741x A=⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211=LU 3分 由Ly=b1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡974 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 1分 由Ux1=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡234 得x1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 2分 ②22b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 由Ly=b2=x1,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 1分 由Ux2=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001 得x2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 2分 ③33b Ax =⎢⎢⎢⎣⎡222 331 ⎥⎥⎥⎦⎤421x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0由Ly=b3=x2,即⎢⎢⎢⎣⎡111 110 ⎥⎥⎥⎦⎤100y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡005.0 得y=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 1分 由Ux3=y ,即⎢⎢⎢⎣⎡002 021 ⎥⎥⎥⎦⎤211x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-05.05.0 得x3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-025.0375.0 2分7. 已知函数y=f(x)有关数据如下:要求一次数不超过3的H 插值多项式,使'11'33)(,)(y x H y x H i i == (6分)解:作重点的差分表,如下:3分21021101011001003))(](,,,[))(](,,[)](,[][)(x x x x x x x x f x x x x x x x f x x x x f x f x H --+--+-+= =-1+(x+1)-x(x+1)+2x.x(x+1)=232x x + 3分8. 有如下函数表:试计算此列表函数的差分表,并利用Newton 前插公式给出它的插值多项式 (7分)解:由已知条件可作差分表,3分i ih x x i =+=0 (i=0,1,2,3)为等距插值节点,则Newton 向前插值公式为: 033210022100003!3))()((!2))((!1)()(f h x x x x x x f h x x x x f h x x f x N ∆---+∆--+∆-+==4+5x+x(x-1)=442++x x 4分9. 求f(x)=x 在[-1,1]上的二次最佳平方逼近多项式)(2x P ,并求出平方误差 (8分)解:令22102)(x a x a a x P ++= 2分取m=1, n=x, k=2x ,计算得: (m,m)=dx ⎰-111=0 (m,n)=dx x ⎰-11=1 (m,k)= dx x ⎰-112=0(n,k)= dx x ⎰-113=0.5 (k,k)= dx x ⎰-114=0 (m,y)= dx x ⎰-11=1(n,y)=dx x⎰-112=0 (k,y)= dx x ⎰-113=0.5得方程组:⎪⎩⎪⎨⎧==+=5.05.005.011201a a a a 3分解之得c a a c a 2,1,210-=== (c 为任意实数,且不为零)即二次最佳平方逼近多项式222)(cx x c x P -+= 1分 平方误差:32),(22222222=-=-=∑=i i i y a fp f ϕδ 2分10. 已知如下数据:用复合梯形公式,复合Simpson 公式计算⎰+=10214dx x π的近似值(保留小数点后三位) (8分)解:用复合梯形公式:)}1()]87()43()85()21()83()41()81([2)0({1618f f f f f f f f f T ++++++++==3.139 4分用复合Simpson 公式: )}1()]43()21()41([2)]87()85()83()81([4)0({2414f f f f f f f f f S ++++++++==3.142 4分11. 计算积分⎰=20sin πxdx I ,若用复合Simpson 公式要使误差不超过51021-⨯,问区间]2,0[π要分为多少等分?若改用复合梯形公式达到同样精确度,区间]2,0[π应分为多少等分? (10分)解: ①由Simpson 公式余项及x x f x x f sin )(,sin )()4(==得544)4(2041021)1()4(360)(max )4(1802)(-≤≤⨯≤=≤n x f n f R x n πππππ 2分即08.5,6654≥≥n n ,取n=6 2分即区间]2,0[π分为12等分可使误差不超过51021-⨯ 1分②对梯形公式同样1)(''max 20≤≤≤x f x π,由余项公式得51021)2(122)(-⨯≤≤n f R n ππ2分即255,2.254=≥n n 取 2分即区间]2,0[π分为510等分可使误差不超过51021-⨯ 1分12. 用改进Euler 格式求解初值问题:⎩⎨⎧==++1)1(0sin 2'y x y y y 要求取步长h 为0.1,计算y(1.1)的近似值 (保留小数点后三位)[提示:sin1=0.84,sin1.1=0.89] (6分)解:改进Euler 格式为:⎪⎩⎪⎨⎧++=+=+-++-+)],(),([2),(1111n n n n n n n n n n y x f y x f hy y y x hf y y 2分 于是有⎪⎩⎪⎨⎧+++-=+-=+-++-+-+)sin sin (05.0)sin (1.012112121n n n n n n n n n n n n n x y y x y y y y x y y y y (n=0,1,2……) 2分 由y(1)=0y =1,计算得⎪⎩⎪⎨⎧=≈=+-=-838.0)1.1(816.0)1sin 11(1.01121y y y 2分 即y(1.1)的近似值为0.83813. ][],[],,[lim ],[),,(],,[)(0'000000'x f x x f x x f x x f b a x b a C x f x x ==∈∈→证明:定义:设(4分)证明:]['],[],[],[lim ][][lim]['00000000000x f x x f x x f x x f x x x f x f x f x x x x ===--=→→故可证出 4分14. 证明:设nn RA ⨯∈,⋅为任意矩阵范数,则A A ≤)(ρ (6分)证明:设λ为A 的按模最大特征值,x 为相对应的特征向量,则有Ax=λx 1分 且λρ=)(A ,若λ是实数,则x 也是实数,得Ax x =λ 1分而x x ⋅=λλ x A x ,⋅≤⋅⋅≤λ故x A Ax 2分由于A x 0x ≤≠λ得到,两边除以 1分故A A ≤)(ρ 1分 当λ是复数时,一般来说x 也是复数,上述结论依旧成立。

《数值分析》2018-2019学年第二学期期末考试A卷

河海大学2018-2019学年第二学期期末考试《数值分析》试题(A)卷科目:数值分析考试时间:出题教师:集体考生姓名:专业:学号:题号一二三四总分分数一、单项选择题(每小题2分,共10分)1、n 阶方阵A 可作LU 分解的一个充分条件是A 为()。

A.对角占优阵B.正交阵C.非奇异阵D.对称正定阵2、设n 阶方阵A 及单位阵E 满足0|3|=-A E ,则谱半径)(A ρ()。

A.<3B.3≤C.>3D.3≥3、若迭代公式)(1k k x x ϕ=+是p 阶收敛,则=--+∞>-pkk k x x x x )(lim **1()。

A.0B.p!C.)(*)(x p ϕ D.!/)(*)(p x p ϕ4、设)(x Ln 和)(x Nn 是相同的插值条件下关于)(x f 的拉格朗日插值和牛顿插值,则下述式子中正确的是()。

(其中∏=-=nj jxx x w 0)()()A.)(],...,,[)!1()(10)1(x w x x x f n f n n =++ξB.)()!1()()()()1(x w n f x Nn x f n +≠-+ξC.)(],...,,,[)()(10x w x x x x f x Ln x f n ≠-D.)(],...,,,[)()(10x w x x x x f x Ln x f n =-5、称函数)(x ε为[a,b ]上的三次样条函数,是指)(x ε满足条件()。

A.为分段三次多项式且有二阶连续导数B.为分段三次多项式且有三阶连续导数C.为分段函数且有任意阶导数D.为分段三次埃尔米特插值多项式二、填空题(每小题4分,共20分)1、若已知x 的相对误差为%1,则)(x f =10x 的相对误差为。

2、设1)(3-=x x f ,则过节点-1,0,1的二次牛顿插值多项式为。

3、设有求积公式)31()31(10f A f A +-是插值型求积公式,则=0A ,=1A 。

数值分析试题及答案

数值分析试题及答案一、选择题(每题3分,共30分)1. 下列关于数值分析的说法,错误的是()。

A. 数值分析是研究数值方法的科学B. 数值分析是研究数值方法的数学理论C. 数值分析是研究数值方法的误差分析D. 数值分析是研究数值方法的数学理论、误差分析及数值方法的实现答案:B2. 在数值分析中,插值法主要用于()。

A. 求解微分方程B. 求解积分方程C. 求解线性方程组D. 通过已知数据点构造一个多项式答案:D3. 线性方程组的解法中,高斯消元法属于()。

A. 直接方法B. 迭代方法C. 矩阵分解方法D. 特征值方法答案:A4. 牛顿法(Newton's method)是一种()。

A. 插值方法B. 拟合方法C. 迭代方法D. 优化方法答案:C5. 在数值分析中,下列哪种方法用于求解非线性方程的根?A. 高斯消元法B. 牛顿法C. 雅可比方法D. 斯托尔-温格尔方法答案:B6. 下列关于误差的说法,正确的是()。

A. 绝对误差总是大于相对误差B. 相对误差总是小于绝对误差C. 误差是不可避免的D. 误差总是可以消除的答案:C7. 在数值分析中,下列哪个概念与数值稳定性无关?A. 条件数B. 截断误差C. 舍入误差D. 插值多项式的阶数答案:D8. 用泰勒级数展开函数f(x)=e^x,下列哪一项是正确的?A. f(x) = 1 + x + x^2/2! + x^3/3! + ...B. f(x) = 1 - x + x^2/2! - x^3/3! + ...C. f(x) = x + x^2/2 + x^3/6 + ...D. f(x) = x - x^2/2 + x^3/6 - ...答案:A9. 插值多项式的次数最多为()。

A. n-1B. nC. n+1D. 2n答案:B10. 下列关于数值积分的说法,错误的是()。

A. 梯形法则是一种数值积分方法B. 辛普森法则是一种数值积分方法C. 龙格法则是数值积分方法中的一种D. 数值积分方法总是精确的答案:D二、填空题(每题3分,共15分)1. 在数值分析中,条件数是衡量问题的______。

2019学年高二数学下学期期末考试试题 理(含解析)

2019学年第二学期期末考试试题(卷)高二数学(理科)一、选择题(本大题共12小题,共60分,每小题只有一个选项是正确的。

1. 设P={x|x<4},Q={x|x2<4},则()A. P⊆QB. Q⊆PC. P∈QD. Q∈P【答案】B【解析】由得:,故,故选B.2. 如图所示,可表示函数图象的是()A. ①B. ②③④C. ①③④D. ②【答案】C3. 已知集合A={1,3,},B={1,m},A∪B=A,则m=()A. 0或B. 0或3C. 3或D. 1或3【答案】C【解析】试题分析:由A∪B=A可得或考点:集合的子集4. 下列函数中,既是偶函数又在(-∞,0)内为增函数的是()A. y=()xB. y=x-2C. y=x2+1D. y=log3(-x)【答案】B.. ..........5. 若集合A={y|y=2x+2},B={x|-x2+x+2≥0},则()A. A⊆BB. A∪B=RC. A∩B={2}D. A∩B=∅【答案】D【解析】由,得,,则,故选D.6. 命题“若a≥-1,则x+a≥1nx”的否定是()A. 若a<-1,则x+a<1nxB. 若a≥-1,则x+a<1nxC. 若a<-1,则x+a≥1nxD. 若a≥-1,则x+a≤1nx【答案】B【解析】“若,则”的否定是若,则,故选B.7. 已知f(x)是定义在R上的偶函数,它在[0,+∞)上递增,那么一定有()A. B.C. D.【答案】B【解析】∵)在上递增,,,故选B.8. 已知函数,那么的值为()A. 27B.C. -27D.【答案】B【解析】由题可得:,故,故选B.9. 下列有关命题的说法正确的是()A. 命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”B. 命题“若cos x=cosy,则x=y”的逆否命题为真命题C. 命题“∃x∈R,使得2x2-1<0”的否定是:“∀x∈R,2x2-1<0”D. “若x+y=0,则x,y互为相反数”的逆命题为真命题【答案】D【解析】命题“若,则”的否命题为:“若,则”,A错误;命题“若,则”为假命题,则其逆否命题为假命题,B错误;命题“,使得”的否定是“,使得”,故C错误;若,则互为相反数的逆命题是:互为相反数,则,为真命题;故选D.10. 函数,满足f(x)>1的x的取值范围()A. (-1,1)B. (-1,+∞)C. {x|x>0或x<-2}D. {x|x>1或x<-1}【答案】D【解析】当时,即,,∴,当时,即,,综上满足的的取值范围或,故选D.点睛:本题考查分段函数的意义,解不等式的方法,体现了分类讨论和等价转化的数学思想,基础性较强;分和两种情况解不等式,解指数不等式时,要化为同底的指数不等式,再利用指数函数的单调性来解.11. 若对任意实数x∈R,不等式恒成立,则实数m的取值范围是()A. [2,6]B. [-6,-2]C. (2,6)D. (-6,-2)【答案】A【解析】对任意实数,不等式恒成立,则,解得,即实数的取值范围是,故选A.12. 已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间[0,2]上f(x)=x,若关于x的方程f (x)=log a|x|有六个不同的根,则a的范围为()A. B. C. D. (2,4)【答案】A【解析】由得:,当时,函数的图象如图:,再由关于的方程有六个不同的根,则关于的方程有三个不同的根,可得,解得,故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出的周期是4,画出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于的不等式,解得即可.二、填空题(本大题共4小题,共20分)13. 命题“∃x∈R,x2+ax-4a<0”为假命题,是“-16≤a≤0”的 ______条件.【答案】充要【解析】∵命题“”为假命题,∴命题“”为真命题,则判别式,即,解得,则命题“”为假命题,是“”的充要条件,故答案为充要.14. 若-2≤x≤2,则函数的值域为 ______.【答案】【解析】设,则;∴,∴时,,时,,∴的值域为,故答案为.点睛:本题主要了考查指数式的运算,换元法求函数的值域,以及配方求二次函数值域的方法;先写出,从而可设,根据的范围即可求出的范围,进而得到二次函数,这样配方求该函数的值域即可得出的值域.15. 函数的取值范围为______ .【答案】或【解析】易知函数为奇函数,且当时,,当时,,即函数的取值范围为或.16. 下列说法错误的是______ .①已知命题p为“∀x∈[0,+∞),(log32)x≤1”,则非p是真命题②若p∨q为假命题,则p,q均为假命题③x>2是x>1充分不必要条件④“全等三角形的面积相等”的否命题是假命题.【答案】①【解析】对于①,∵,∴,成立即命题是真命题,则非是假命题,故错;对于②,若为假命题,则,均为假命题,正确;对于③,∵,反之不能,∴是充分不必要条件,正确;对于④,∵不全等三角形的面积可能相等,∴“全等三角形的面积相等”的否命题是假命题,正确;故答案为①.三、解答题(本大题共6小题,共70分)17. 已知命题p:方程有两个不相等的实数根;命题q:2m+1<4.(1)若p为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.【答案】(1);(2)【解析】试题分析:(1)若为真命题,则应有,解得实数的取值范围;(2)若为真命题,为假命题,则,应一真一假,进而实数的取值范围.试题解析:(1)若为真命题,则应有,解得;(2)若为真命题,则有,即,因为为真命题,为假命题,则,应一真一假,①当真假时,有,得;②当假真时,有,无解,综上,的取值范围是.18. 在平面直角坐标系x O y中,圆C的参数方程为(θ为参数),直线l经过点P(1,2),倾斜角.(1)求直线l的参数方程;(2)设直线l与圆C相交于A,B两点,求|PA|•|PB|的值.【答案】(1)(为参数)【解析】试题分析:(1)根据直线经过点,倾斜角,可得直线的参数方程.(2)把直线的方程代入,得,由此能求出的值.试题解析:(1)∵直线经过点,倾斜角,∴,(为参数)(2)∵圆C的参数方程为(为参数),∴圆的直角坐标方程为,把直线的方程代入,得,设,是方程的两个实根,则,则.19. 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,如表为抽样试验结果:(1)用相关系数r对变量y与x进行相关性检验;(2)如果y与x有线性相关关系,求线性回归方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?(结果保留整数)参考数据:,,.参考公式:相关系数计算公式:,回归方程中斜率和截距的最小二乘估计公式分别为:,.【答案】(1)y与x有很强的线性相关关系;(2);(3)机器的转速应控制在15转/秒以下.【解析】试题分析:(1)根据表中数据计算与相关系数的值,判断与有很强的线性相关关系;(2)求出回归方程的系数、,写出线性回归方程;(3)利用回归方程求出的值即可.试题解析:(1)根据表中数据,计算,,,所以相关系数;因为,所以与有很强的线性相关关系;(2)回归方程中,,,∴所求线性回归方程为.(3)要使,即,解得,所以机器的转速应控制在转/秒以下.20. 已知.(1)求不等式的解集;(2)若恒成立,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)利用分类讨论思想分为,,三种情形,将问题转化为解不等式组问题,求出不等式的解集即可;(2)要使对任意实数成立,得到,解出即可. 试题解析:(1)不等式即为,等价于或或,解得或,因此,原不等式的解集为或.(2),若恒成立,则,则,解得.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.21. 已知不等式x2-5ax+b>0的解集为{x|x>4或x>1}(1)求实数a,b的值;(2)若0<x<1,,求f(x)的最小值.【答案】(1);(2)9.【解析】试题分析:(1)根据题意,分析可得方程的两个根是1和4,由根与系数的关系分析可得,,解可得、的值;(2)由(1)知的解析式,将其表示为由基本不等式分析可得答案.试题解析:(1)根据题意,不等式的解集为或,则方程的两个根是和,则有,,即,.(2)由(1)知,因为,所以,所以,所以,当且仅当,即时,等号成立,所以的最小值为9.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.22. 在极坐标系中,已知圆C的圆心,半径.(1)求圆C的极坐标方程;(2)若点Q在圆C上运动,P在OQ的延长线上,且|OQ|:|QP|=3:2,求动点P的轨迹方程.【答案】(1);(2)【解析】试题分析:(1)设为圆上任一点,的中点为,,所以,为所求;(2)先由求出点的坐标,再由点在圆上,所以,化简就可得到动点的轨迹方程.试题解析:(1)设为圆上任一点,的中点为,∵在圆上,∴△为等腰三角形,由垂径定理可得,为所求圆的极坐标方程.(2)设点的极坐标为,因为在的延长线上,且,所以点的坐标为,由于点在圆上,所以,故点的轨迹方程为.考点:简单曲线的极坐标方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卷)期末考试试卷(A2007学年第二学期考试科目:数值分析分钟考试时间:120年级专业学号姓名题号一2二三0四总分分)分,共10一、判断题(每小题210001?n)( 1. 用计算机求时,应按照从小到大的顺序相加。

1000n1n?219992001?为了减少误差2. ,应将表达式进行计算。

(改写为)19992001?)( 3. 用数值微分公式中求导数值时,步长越小计算就越精确。

) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。

(系数矩阵及其演变方式有用迭代法解线性方程组时,5. 迭代能否收敛与初始向量的选择、)(关,与常数项无关。

分)二、填空题(每空2分,共36_________.________,相对误差限为已知数a的有效数为0.01,则它的绝对误差限为1.0?110??????????xA?Ax,0?21,x??5A?_____.则设______,_____,2. ????21?????1?130????53f(x)?2x?4x?5x,f[?1,1,0]?f[?3,?2,?1,1,2,3]? 3. 已知则, .331?)?Af(0)?Af(f(x)dx?Af(?)的代数精度尽量高,应使4. 为使求积公式321331?A?A?A?,此时公式具有,,次的代数精度。

312?nA)(A的关系是 5. A阶方阵的谱半径与它的任意一种范数.(k?1)(k)BAX??N(k?XMX?0,1,2,)产时,使迭代公式用迭代法解线性方程组6.??)k(X .生的向量序列收敛的充分必要条件是AX?BAL和上三角矩7. 使用消元法解线性方程组系数矩阵时,可以分解为下三角矩阵14?2??BAX?.A?LUU?A,则阵若采用高斯消元法解的乘积,即,其中??21??L?U?AX?B,则,______________;若使用克劳特消元法解_______________u?lu BAX?的大小关系为_____(选填:则____;若使用平方根方法解>与,,111111<,=,不一定)。

??x?yy?8. 以步长为1的二阶泰勒级数法求解初值问题的数值解,其迭代公式为?y(0)?1?___________________________.三、计算题(第1~3、6小题每题8分,第4、5小题每题7分,共46分)32?x01??3x?xf(x)?2)(1, 1.在区间为初值用牛顿迭代法求方程内的根,要求以0证明用牛顿法解此方程是收敛的;(1),xx,计算结果(2)给出用牛顿法解此方程的迭代公式,并求出这个根(只需计算21位)。

取到小数点后422.给定线性方程组x?0.4x?0.4x?1?312?0.4x?x?0.8x?2?321?0.4x?0.8x?x?3?312(1)分别写出用Jacobi和Gauss-Seidel迭代法求解上述方程组的迭代公式;(2)试分析以上两种迭代方法的敛散性。

y f(x)在如下节点处的函数值3.已知函数x-1 0 1 2y0431(1)建立以上数据的差分表;P(x)y(1.1)的近似值;2()根据后三个节点建立二阶牛顿后插公式,并计算2(3)采用事后估计法计算(2)中近似值的截断误差(结果保留四位小数)。

34.已知如下数据表,试用最小二乘法求它的二次最小平方逼近多项式。

x -1 0 1 252y14???(3)x)fy?f((3)f的近似值。

和在以下节点处的函数值,利用差商表求已知函数5.4 3 x 18 1 y 2写出前进欧拉公式、后退欧拉公式,并由这两个公式构造一个预估-校正公式求解下列 6. 常微分方程的数值解。

22??yy??x(0?x?1,h?0.2)?0(0)?y?5(x,y)(i 0,1,2,,n),请用多种方法建立这些数据点之间四、(个数据点已知8分)n+1ii的函数关系,并说明各种函数的适用条件。

6期末考试答案及评分标准(A卷)考试科目:数值分析2007学年第二学期10分)一、判断题:(每小题2分,共5. ××3. × 4. 2. 1.×√36分)二、填空题:(每空2分,共2?100.5?0050.0.5或1.,26,155,2.20, 3.1,0,1,3 4.?(A)?A5.?(M)?16.10??4?2?????,,1,7. 1????021???2?1)yx??yy?y(x)?(1??n?0,1,2,2.5y?0.5,?y?1.5x8. 或nnnnn?1nnnn?125、6小题每题7分,共46分)分,第三、解答题(第1~4小题每题831?x?3xxf()?)证明:,由于1. (1f(1)??3?0,f(2)?1?0, a)2??3?0(x?(1f)(x?3x,2)), b)????,2)),x0?(1(f6(x)?x?(x)f(1,2)上不变号,在即c)??2?x(2)?0,(2)ff对于初值,满足d) 0所以用牛顿迭代法求解此方程是收敛的。

………………………………………4分(2)解:牛顿迭代法的迭代公式为73f(x)x?3x?1nnn?x?x?x?nn?1n2?3?)3fx(x nn分 (2)2?x进行迭代,得取初值01.8889,?x1………………………………………1分1.8795.x?2………………………………………1分)Jacobi迭代公式为2. 解:(1))(k(k?1)(k?10.4x???0.4x?x321?))(kk?1)(k(x?2??0.4x0.8x?分……………………………2?231?)(k?1)(k)(k3???0.4x?x0.8x?321 Gauss-Seidel迭代公式为)(k1)(k)(k??1?x0.4x?0.4x??321?)kk?1)((k?1)(x2?0.8x???0.4x……………………………2分?231?1)?1)(k(k?1)(k?3?0.8x??0.4xx??312?440.0.?0.40.80?得开,为征)(2Jacobi迭代矩阵的特方程展?400..83?????00.256?0.96??0??0.4(??0.8)(0.505)?0.4?0.505)(,,即???0.2928?0.8000,??-1.0928,1从而得(或由单调性易判断必有一个大于,321Jacobi的特征根,)因此迭代矩阵的谱半径等于必大于1,所以迭代法发散。

2分……………………………?0.40.4??00.80.4?迭代矩阵的特征方程为Gauss-Seidel,展开得???0.40.82??????0.204,?0.628,??0,0?(0.128)?0.832?迭代矩阵的谱半径,解得312迭代法收敛。

Gauss-Seidel小于1,所以2……………………………分1解:3. ()建立差分表8y x y?32y??y11?3404?1?232?13? 2分………………………………………2)建立牛顿后插公式为(23)?12)(x2)?((Px)?0?x?(x?2!!21)1)(x?)?(x?2x??3(?2 24?x??则所求近似值为79.)?2P(1.12分 (3))根据前三个节点建立牛顿后插公式为(341)1(x)?1)?()?3?x1P(x?(x2!21!)1x??2x(?3?(x?1)24x2x????)(1682.P1)?(1.则2根据事后误差估计法2x?)1(??)0.9x)?.9)?P(P(0(R??2221?x故截断误差9.?00471.?02.68)??(2.79?.R(11)?21.2分 (3)2.x?a?)?aaxP(x根据已知数据,得4. 解:设所求二次最小平方逼近多项式为2102111?1????a??????00012????????a,?YA,M??1????1115??a??????20142???? 9 ……………………………2分则4268??????????26M,M8Y?M4?????????61868????……………………………1分建立法方程组为426a8??????0??????4a268???????1??????a68186??????2……………………………2分解得a?3.5,a?1.5,a??1.5.210……………………………1分2P(x)?3.5?1.5x?1.5x.从而得所求一次最小平方逼近多项式为1……………………………1分P(x)为已知节点数据的插值二次多项式。

构造如下差商表:5. 解:设2y x一阶差商二阶差商2125847213P[4,3,3][3,3]P22(3)P3P[3,3,3]2[3,3]P22(3)P32……………………………2分P(x)f(x)的插值函数,故有是因为二次多项式的二阶差商为常数,又25P[4,3,3]?P[3,3,3]?222……………………………2分而P[3,3]?752?3]?3,[4,P,23?42因此得109?3]P[3,,22分……………………………1由于)k(]x,,x,x,x[(x)?k!Pf,n1k?从而得9?,]?P[3,f3(3)?22??.5]?,3,3(3)?2!P[f32分 (2)22y?0.2y?0.2x?f(x,y)?y?y?h 6. 解:前进欧拉公式:1分…………nnn1?nnnn22y0.20.2x??x,y)?yhy?y??f(分......1 后退欧拉公式:1n?1?nn?1?1nn?1nn预估时采用欧拉公式22*y0.20.2x?y?y?nnnn?1分 (1)校正时采用后退欧拉公式??2*2y0.2??yy?0.2x1n1n?1?nn? 1分……………………………,2,3,4,5)1(i??x0.2i,2.?0x?,y?0,h0由初值知,节点分别为i000.2,x?当122*0,?0.2yy?0.2x?y?0010??2*2008y.2?0.2?y?y0.x?0,1110 1分……………………………0.4,x?当222*0.0160,?y?0.2??yyx0.21121 11??2*204010y.2x?0.2?y?y?0..2212……………………………1分x?0.6,当3*22y?y?0.2x?0.2y?0.0724,2232??2*21131.??0.20y?yy?0.2x. 3323……………………………1分x?0.8,当4*22y?y?0.2x?0.2y?0.1877,3343??2*2?y0.2481??y?0.2x0.2y. 4434……………………………1分x?1.0,当5*22y?y?0.2x?0.2y?0.3884,4454??2*2?y0..2x?0.24783?yy?0. 5455四、(8分)答:1、可以建立插值函数:(1)Newton基本差商公式P(x)?f(x)?(x?x)f[x,x]?(x?x)(x?x)f[x,x,x]01002n0011]xx,f[x,,)?xx)(x?x)(x?x??(0n0?11n1……………………………1分(2)Lagrange插值多项式L(x)?af(x)?af(x)??af(x)??af(x)n0i1n1in0(x?x)(x?x)(x?x)(x?x)n?1ii?01,(i?0,n,)?a1,.其中i(x?x)(x?x)(x?x)(x?x)ni11i?ii?0ii……………………………1分这两类插值函数的适用条件是:n不太大;而且要求函数严格通过已知数据点。

相关文档
最新文档