空间几何体的表面积体积公式(大全)

合集下载

8.2空间几何体的表面积与体积

8.2空间几何体的表面积与体积

1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 33.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a.正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b.若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.c.正四面体的外接球与内切球的半径之比为3∶1. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)锥体的体积等于底面积与高之积.( × ) (3)球的体积之比等于半径比的平方.( × )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( √ ) (5)长方体既有外接球又有内切球.( × )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A.4π B.3π C.2π D.π 答案 C解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C. 2.(2014·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.12B.18C.24D.30答案 C解析 由俯视图可以判断该几何体的底面为直角三角形,由主视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 111ABC A B C -棱柱=S △ABC ·AA 1=12×4×3×5=30,V 111P A B C 锥-棱=13S111A B C ·PB 1=13×12×4×3×3=6.故几何体ABC -P A 1C 1的体积为30-6=24.故选C.3.(2015·陕西)一个几何体的三视图如图所示,则该几何体的表面积为( )A.3πB.4πC.2π+4D.3π+4答案 D解析 由三视图可知原几何体为半圆柱,底面半径为1,高为2,则表面积为: S =2×12π×12+12×2π×1×2+2×2=π+2π+4=3π+4.4.(教材改编)一个棱长为2 cm 的正方体的顶点都在球面上,则球的体积为________ cm 3. 答案 43π解析 由题意知正方体的体对角线为其外接球的直径, 所以其外接球的半径r =12×23=3(cm),所以V 球=43π×r 3=43π×33=43π(cm 3).5.(2015·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.答案 83π解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1 m ,圆锥的高为1 m ,圆柱的高为2 m ,所以该几何体的体积V =2×13π×12×1+π×12×2=83π (m 3).题型一 求空间几何体的表面积例1 (1)(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.1+2 2C.2+ 3D.2 2(2)(2015·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的主视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A.1B.2C.4D.8(3)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 (1)C (2)B (3)12解析 (1)由几何体的三视图可知空间几何体的直观图如图所示. ∴其表面积S 表=2×12×2×1+2×34×(2)2=2+3,故选C.(2)由主视图与俯视图想象出其直观图,然后进行运算求解.如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B. (3)设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1,∴斜高h ′=12+(3)2=2, ∴S 侧=6×12×2×2=12.思维升华 空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理. (3)旋转体的表面积问题注意其侧面展开图的应用.(2014·安徽)一个多面体的三视图如图所示,则该多面体的表面积为( )A.21+ 3B.18+ 3C.21D.18答案 A解析 由几何体的三视图可知,该几何体的直观图如图所示. 因此该几何体的表面积为6×(4-12)+2×34×(2)2=21+ 3.故选A.题型二 求空间几何体的体积命题点1 求以三视图为背景的几何体的体积例2 (2015·课标全国Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15答案 D解析 如图,由题意知,该几何体是正方体ABCD-A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A-A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为V 111A A B D -V 111B C D ABCD -=V 111A AB D -V 1111A BCD ABCD --V 111A A B D -=13×12×12×113-13×12×12×1=15.选D.命题点2 求简单几何体的体积例3 (2015·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D.2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.(1)一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的体积等于( )A.4π3 B.32π3 C.36πD.256π3(2)如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( ) A.23B.33C.43D.32答案 (1)B (2)A解析 (1)由三视图可知该几何体是一个直三棱柱,底面为直角三角形,高为12,如图所示,其中AC =6,BC =8,∠ACB =90°,则AB =10.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大.即r =6+8-102=2,故能得到的最大球的体积为43πr 3=4π3×8=32π3,故选B.(2)如图,分别过点A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,容易求得EG =HF =12,AG =GD =BH =HC =32,∴S △AGD =S △BHC =12×22×1=24,∴V =V E -ADG +V F -BCH +V AGD -BHC =2V E -ADG +V AGD -BHC =13×24×12×2+24×1=23.故选A.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. (3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解. 题型三 与球有关的切、接问题例4 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172B.210C.132 D.310答案 C解析 如图所示,由球心作平面ABC 的垂线, 则垂足为BC 的中点M . 又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少? 解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r . 又正方体的棱长为4,故其体对角线长为43, 从而V 外接球=43πR 3=43π×(23)3=323π,V 内切球=43πr 3=43π×23=32π3.2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少? 解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π.3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少? 解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为(32)2-(12×6)2=3,因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB=AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为( ) A.22B.1C. 2D. 3答案 C解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x2,OC 1=R =1(R为球的半径),∴(x 2)2+(x2)2=1,即x =2,则AB =AC =1, ∴S 11ABB A 矩形=2×1= 2.14.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5. 则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积.解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案 96温馨提醒 (1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”. (2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练 (时间:35分钟)1.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A.8 cm 3B.12 cm 3C.323 cm 3D.403 cm 3答案 C解析 由三视图可知该几何体是由棱长为2 cm 的正方体与底面为边长为2 cm 正方形、高为2 cm 的四棱锥组成,V =V 正方体+V 四棱锥=8 cm 3+83 cm 3=323cm 3.故选C.2.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为( ) A.100π3B.500π3C.75πD.100π答案 D解析 依题意,设球半径为R ,满足R 2=32+42=25, ∴S 球=4πR 2=100π.3.(2015·课标全国Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) A.14斛 B.22斛 C.36斛 D.66斛 答案 B解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛).4.一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( )A.3+ 6B.3+ 5C.2+ 6D.2+ 5答案 C解析 由三视图还原为空间几何体,如图所示, 则有OA =OB =1,AB = 2. 又PB ⊥平面ABCD , ∴PB ⊥BD ,PB ⊥AB ,∴PD =22+1=5,P A =2+12=3,从而有P A 2+DA 2=PD 2,∴P A ⊥DA ,∴该几何体的侧面积S =2×12×2×1+2×12×2×3=2+ 6. 5.(2015·课标全国Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为( )A.36πB.64πC.144πD.256π答案 C解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C到平面OAB 的距离,即三棱锥C-OAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.选C.6.(2014·山东)三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,P -ABC的体积为V 2,则V 1V 2=________. 答案 14解析 设点A 到平面PBC 的距离为h .∵D ,E 分别为PB ,PC 的中点,∴S △BDE =14S △PBC , ∴V 1V 2=V A -DBE V A -PBC =13S △BDE ·h 13S △PBC ·h =14. 7.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7 解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 8.一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3.又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3, 则其体积比为932. 9.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的主视图和俯视图是相同的正方形,求它们的表面积之比.解 由题意可知这三个几何体的高都相等,设长方体的底面正方形的边长为a ,高也等于a ,故其表面积为S 1=6a 2.直三棱柱的底面是腰长为a 的等腰直角三角形,高为a ,故其表面积为S 2=12×a ×a +12×a ×a +(a +a +2a )×a =(3+2)a 2.14圆柱的底面是半径为a 的圆的14,高为a ,故其表面积为S 3=14πa 2+14πa 2+a 2+a 2+14×2πa ×a =(π+2)a 2.所以它们的表面积之比为S 1∶S 2∶S 3=6a 2∶(3+2)a 2∶(π+2)a 2=6∶(3+2)∶(π+2).10.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和30 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.B 组 专项能力提升(时间:25分钟)11.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S —ABC 的体积为( )A.3 3B.2 3C. 3D.1答案 C解析 如图,过A 作AD 垂直SC 于D ,连接BD .由于SC 是球的直径,所以∠SAC =∠SBC =90°,又∠ASC =∠BSC =30°,又SC 为公共边, 所以△SAC ≌△SBC .由于AD ⊥SC ,所以BD ⊥SC .由此得SC ⊥平面ABD .所以V S —ABC =V S —ABD +V C —ABD =13S △ABD ·SC . 由于在Rt △SAC 中,∠ASC =30°,SC =4,所以AC =2,SA =23,由于AD =SA ·CASC = 3.同理在Rt △BSC 中也有BD =SB ·CBSC = 3.又AB =3,所以△ABD 为正三角形,所以V S —ABC =13S △ABD ·SC=13×12×(3)2·sin 60°×4=3,所以选C.12.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A.28+6 5B.30+6 5C.56+12 5D.60+12 5答案 B解析 由几何体的三视图可知,该三棱锥的直观图如图所示,其中AE ⊥平面BCD ,CD ⊥BD ,且CD =4,BD =5,BE =2,ED =3,AE =4.∵AE =4,ED =3,∴AD =5.又CD ⊥BD ,CD ⊥AE ,则CD ⊥平面ABD ,故CD ⊥AD ,所以AC =41且S △ACD =10.在Rt △ABE 中,AE =4,BE =2,故AB =2 5.在Rt △BCD 中,BD =5,CD =4,故S △BCD =10,且BC =41.在△ABD 中,AE =4,BD =5,故S △ABD =10.在△ABC 中,AB =25,BC =AC =41,则AB 边上的高h =6,故S △ABC =12×25×6=6 5. 因此,该三棱锥的表面积为S =30+6 5.13.(2015·四川)在三棱柱ABC —A 1B 1C 1中,∠BAC =90°,其主视图和左视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P —A 1MN 的体积是________.答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱,∵V 1—P A MN =V 1—A PMN ,又∵AA 1∥平面PMN ,∴V 1—A PMN =V A —PMN ,∴V A —PMN =13×12×1×12×12=124, 故V 1—P A MN =124. 14.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E —ACD 的体积为63,求该三棱锥的侧面积. (1)证明 因为四边形ABCD 为菱形,所以AC ⊥BD .因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)解 设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E —ACD 的体积V E —ACD =13×12AC ·GD ·BE =624x 3=63. 故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5.故三棱锥E —ACD 的侧面积为3+2 5.15.如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,AB =2,EB = 3.(1)求证:DE ⊥平面ACD ;(2)设AC =x ,V (x )表示三棱锥B -ACE 的体积,求函数V (x )的解析式及最大值.(1)证明 ∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE .∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC .∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C ,∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC .(2)解 ∵DC ⊥平面ABC ,∴BE ⊥平面ABC .在Rt △ABE 中,AB =2,EB = 3.在Rt △ABC 中,∵AC =x ,BC =4-x 2(0<x <2),∴S △ABC =12AC ·BC =12x ·4-x 2, ∴V (x )=V E -ABC =36x ·4-x 2(0<x <2). ∵x 2(4-x 2)≤(x 2+4-x 22)2=4,当且仅当x 2=4-x 2,即x =2时,取等号, ∴x =2时,体积有最大值33.。

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表1.多面体的面积和体积公式2.旋转体的面积和体积公式1、圆柱体:表面积:2πRr+2πRh 体积:πR²h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:πR²+πR[(h²+R²)的平方根]体积:πR²h/3 (r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a² ,V=a³4、长方体a-长,b-宽,c-高S=2(ab+ac+bc) V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr²,S侧=Ch ,S表=Ch+2S底,V=S底h=πr²h 10、空心圆柱R-外圆半径,r-圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R²+Rr+r²)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a²+h²)/6 =πh²(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1²+r2²)+h²]/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr²=π2Dd²/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D²+d²)/12 ,(母线是圆弧形,圆心是桶的中心)V=πh(2D²+Dd+3d²/4)/15 (母线是抛物线形)1.直线在平面的判定(1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面.(2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.(5)如果一条直线与一个平面平行,那么过这个平面一点与这条直线平行的直线必在这个平面,即若a∥α,A∈α,A∈b,b∥a,则bα.2.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.3.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.4.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.5.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面,则它们所成的角是0°的角.(2)取值围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面任何直线所成的角.6.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S′=S·cosα其中S为二面角一个面平面图形的面积,S′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.7.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V和所取三点构成三角形的面积S;③由V=S·h,求出h即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.8.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.9.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.10.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法公理1:如果一条直线上的两点在一个平面,那么这条直线上的所有的点都在这个平面.公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3:过不在同一条直线上的三个点,有且只有一个平面.推论1: 经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.公理4 :平行于同一条直线的两条直线互相平行.等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面的两条直线或既不平行也不相交.异面直线判定定理:用平面一点与平面外一点的直线,与平面不经过该点的直线是异面直线.两异面直线所成的角:围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面、与平面相交、与平面平行①直线在平面——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面的射影所成的锐角.esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面,所成的角为0°角由此得直线和平面所成角的取值围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面.直线与平面垂直的判定定理:如果一条直线和一个平面的两条相交直线都垂直,那么这条直线垂直于这个平面.直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行.③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行.直线和平面平行的判定定理:如果平面外一条直线和这个平面的一条直线平行,那么这条直线和这个平面平行.直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线.a、平行两个平面平行的判定定理:如果一个平面有两条相交直线都平行于另一个平面,那么这两个平面平行.两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行.b、相交二面角(1)半平面:平面的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面.(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角.二面角的取值围为[0°,180°] (3)二面角的棱:这一条直线叫做二面角的棱.(4)二面角的面:这两个半平面叫做二面角的面.(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(6)直二面角:平面角是直角的二面角叫做直二面角.esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直.记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面垂直于交线的直线垂直于另一个平面.Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)。

几何体的表面积与体积计算

几何体的表面积与体积计算

几何体的表面积与体积计算一、立体几何体表面积的计算方法立体几何体是空间中具有一定形状的物体,它们的表面积和体积是我们在几何学中经常计算的重要内容。

下面将介绍几种常见的几何体表面积的计算方法。

1. 立方体的表面积计算公式立方体是一种六个面都是正方形的立体几何体。

它的表面积计算公式为S=6a^2,其中a表示正方形的边长。

2. 正方体的表面积计算公式正方体是一种六个面都是正方形的立体几何体,与立方体的区别在于正方体各个边的长度相等。

它的表面积计算公式与立方体相同,也是S=6a^2。

3. 长方体的表面积计算公式长方体是一种六个面都是矩形的立体几何体,它的表面积计算公式为S=2(ab+ac+bc),其中a、b、c分别表示矩形的三条边长。

4. 圆柱体的表面积计算公式圆柱体是一种由一个矩形和两个圆所围成的几何体。

它的表面积计算公式为S=2πr^2+2πrh,其中r表示底面圆的半径,h表示圆柱体的高。

5. 圆锥体的表面积计算公式圆锥体是一种由一个圆和一个由圆所围成的锥面组成的几何体。

它的表面积计算公式为S=πr^2+πrl,其中r表示底面圆的半径,l表示从圆心到圆锥顶点的直线距离。

6. 球体的表面积计算公式球体是一种由无数个半径相等的小球所围成的几何体,它的表面积计算公式为S=4πr^2,其中r表示球体的半径。

二、立体几何体体积的计算方法除了表面积,立体几何体的体积也是我们经常需要计算的。

下面将介绍几种常见的几何体体积的计算方法。

1. 立方体的体积计算公式立方体的体积计算公式为V=a^3,其中a表示正方形的边长。

2. 正方体的体积计算公式正方体的体积计算公式与立方体相同,也是V=a^3。

3. 长方体的体积计算公式长方体的体积计算公式为V=abc,其中a、b、c分别表示矩形的三条边长。

4. 圆柱体的体积计算公式圆柱体的体积计算公式为V=πr^2h,其中r表示底面圆的半径,h表示圆柱体的高。

5. 圆锥体的体积计算公式圆锥体的体积计算公式为V=1/3πr^2h,其中r表示底面圆的半径,h表示圆锥体的高。

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全,DOC

空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1、①棱柱②圆柱2、①②3、①②4、①球:②③二、1、①棱柱②圆柱2、①棱锥②圆锥3、①棱台②圆台4、①球:②③三、1、2、则+=即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式:)(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

则∴V 即:)(33)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S S S S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr,则:每个圆柱的体积h S V i i ==nrr i 2π……=2r nr ⨯π=[3r n n π=[3r n n π当→n ∴V 半球5、 ∴S =球6、(1则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:中间剩下的正四面体的体积为:a a a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个即:61(2 (a)(b)(c)(d)(e)(3(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:aar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图:R ,∴S 1π=即:S 1 8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d (2) 正方体的外接球正方体的体对角线=a 3球体的直径d(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:339(∴a h r 12641==即:a a r V 33321663434)126(πππ===球∴π3:18=V V 球正四机体: (2)正四面体的外接球 外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46 ∴2:33122:86:33ππ==aaV V 正四面体球 (310、 (1 球体直径、圆柱的高、圆柱底面直径构成直角三角形。

1.3空间几何体的表面积和体积

1.3空间几何体的表面积和体积

变题1.如果球O和这个正方体的六个面 2 都相切,则有S= a 。 变题2.如果球O和这个正方体的各条棱 2 都相切,则有S= 2a 。
D A D1 A1 B C
O
C1 B1
变式练习.有三个球,一球切于正方体的各 面,一球切于正方体的各侧棱,一球过正方 体的各顶点,求这三个球的体积之比. 作轴截面
s3
R
O
s2 s1
4 3 V球 = πR 3 1 1 1 = RS1 + RS2 + RS3 +... 3 3 3 1 = R(S1 + S2 + S3 +...) 3 1 = RS球表 3
s3
R
O
s2 s1
S球表=4πR2
例4 如图,圆柱的底面直径与高都等于球的直径。 求证: (1) 球的体积等于圆柱体积的2/3; (2) 球的表面积等于圆柱的侧面积。
7
例1 已知棱长为a,各面均为等边三角形的四面体 S-ABC,求他的表面积。
S
A
B C
练习:下图是一个几何体的三视图(单位:cm)想 象对应的几何体,并求出它的表面积 6
8
10
10
6 10
解:直观图是四棱台,侧 面是四个全等的梯形,上 下底面为不同的正方形
12
例2 如图,一个圆台形花盆盆口直径为20cm,盆 底直径为15cm,底部渗水圆孔直径为1.5cm, 盆壁长15cm。为了美化花盆的外观,需要涂 油漆。已知每平方米用100毫升油漆,涂100 个这样的花盆需要多少油漆(π取3.14,结果 精确到1毫升,可用计算器)?
S 4 R2 3 a 2
例5.如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点 都在球O的球面上,问球O的表面积。

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些

高中数学的几何体表面积和体积公式是哪些高中数学的几何体表面积和体积公式1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高)3、正方体:表面积:S=6a2,体积:V=a3(a-边长)4、长方体:表面积:S=2(ab+ac+bc)体积:V=abc(a-长,b-宽,c-高)5、棱柱:体积:V=Sh(S-底面积,h-高)6、棱锥:体积:V=Sh/3(S-底面积,h-高)7、棱台:V=h[S1+S2+(S1S2)^1/2]/3(S1上底面积,S2下底面积,h-高)8、拟柱体:V=h(S1+S2+4S0)/6(S1-上底面积,S2-下底面积,S0-中截面积,h-高)9、圆柱:S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h(r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积)10、空心圆柱:V=πh(R^2-r^2)(R-外圆半径,r-内圆半径,h-高)11、直圆锥:V=πr^2h/3(r-底半径,h-高)12、圆台:V=πh(R2+Rr+r2)/3(r-上底半径,R-下底半径,h-高)13、球:V=4/3πr^3=πd^3/6(r-半径,d-直径)14、球缺:V=πh(3a2+h2)/6=πh2(3r-h)/3(h-球缺高,r-球半径,a-球缺底半径)15、球台:V=πh[3(r12+r22)+h2]/6(r1球台上底半径,r2-球台下底半径,h-高)16、圆环体:V=2π2Rr2=π2Dd2/4(R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径)数学基础差的学生如何提高数学成绩基础薄弱的同学提高数学成绩的方法数学基础打牢,是个非常重要的事,很多及格成绩不到的同学,基本是连计算和公式都不是很过关。

对于这一类学生有以下几点建议。

空间几何体的结构、表面积与体积

空间几何体的结构、表面积与体积

2021年新高考数学总复习第八章《立体几何与空间向量》空间几何体的结构、表面积与体积1.空间几何体的结构特征(1)多面体的结构特征名称棱柱棱锥棱台图形底面互相平行且全等多边形互相平行侧棱平行且相等相交于一点但不一定相等延长线交于一点侧面形状平行四边形三角形梯形(2)旋转体的结构特征名称圆柱圆锥圆台球图形母线平行、相等且垂直于底面相交于一点延长线交于一点轴截面全等的矩形全等的等腰三角形全等的等腰梯形圆侧面展开图矩形扇形扇环2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r 1+r 2)l3.空间几何体的表面积与体积公式名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底·h 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13S 底·h台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3概念方法微思考1.底面是正多边形的棱柱是正棱柱吗?为什么?提示 不一定.因为底面是正多边形的直棱柱才是正棱柱. 2.如何求不规则几何体的体积?提示 求不规则几何体的体积要注意分割与补形,将不规则的几何体通过分割或补形转化为规则的几何体求解.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × ) (3)棱台是由平行于底面的平面截棱锥所得的平面与底面之间的部分.( √ ) (4)锥体的体积等于底面积与高之积.( × )(5)已知球O 的半径为R ,其内接正方体的边长为a ,则R =32a .( √ ) (6)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( × ) 题组二 教材改编2.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( ) A .1 cm B .2 cm C .3 cm D.32 cm答案 B解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,。

计算三维几何体的体积和表面积

计算三维几何体的体积和表面积

计算三维几何体的体积和表面积立方体
立方体是一个具有六个相等的正方形面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:边长的立方
- 表面积公式:6倍边长的平方
长方体
长方体是一个具有六个不同大小的矩形面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:长乘以宽乘以高
- 表面积公式:2倍长乘以宽加上2倍长乘以高加上2倍宽乘以高
圆柱体
圆柱体是一个有两个平行圆面和一个连接这两个圆面的曲面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:底面积的圆半径的平方乘以高
- 表面积公式:两倍底面积的圆半径加上底面积的圆周长乘以高
圆锥体
圆锥体是一个有一个圆面和一个从圆面上的每个点到一个顶点的曲面的三维几何体。

它的体积公式和表面积公式如下:
- 体积公式:底面积的圆半径的平方乘以高除以3
- 表面积公式:底面积的圆周长乘以斜面的斜高加上底面积
球体
球体是一个在三维空间中由所有离一个中心点的距离不超过一个给定常数的点组成的集合。

它的体积公式和表面积公式如下:
- 体积公式:4/3乘以π乘以半径的立方
- 表面积公式:4乘以π乘以半径的平方
以上是计算常见三维几何体体积和表面积的公式和方法。

根据
具体的三维几何体类型,选择相应的公式和方法进行计算即可。


果你需要更复杂的计算,例如不规则形状的体积和表面积,可能需
要使用数值计算方法或更高级的几何学技巧来解决。

在这种情况下,建议咨询数学专家或采用专业的计算软件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间几何体的表面积与体积公式大全一、 全(表)面积(含侧面积) 1、柱体① 棱柱② 圆柱 2、锥体①棱锥:h c S ‘底棱锥侧21=②圆锥:l c S 底圆锥侧21=3、 台体① 棱台:h c c S )(21‘下底上底棱台侧+=②圆台:l c c S )(21下底上底棱台侧+=4、 球体① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、柱体① 棱柱 ② 圆柱 2、锥体① 棱锥 ② 圆锥3、① 棱台 ② 圆台 4、球体① 球:r V 334π=球② 球冠:略 ③ 球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。

三、 拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。

最早推导出球体体积的祖冲之父子便是运用这个原理实现的。

2、阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的32。

分析:圆柱体积:r r h S V r 3222)(ππ=⨯==圆柱圆柱侧面积:r h cS r r 242)2(ππ=⨯==圆柱侧因此:球体体积:r r V 3334232ππ=⨯=球 球体表面积:r S 24π=球通过上述分析,我们可以得到一个很重要的关系(如图)+ =即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式公式: )(31S SS S h V 下下上上台++=证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。

延长两侧棱相交于一点P 。

设台体上底面积为S 上,下底面积为S 下高为h 。

易知:PDC ∆∽PAB ∆,设h PE 1=, 则h h PF +=1由相似三角形的性质得:PFPEAB CD =即:hh hSS +=11下上(相似比等于面积比的算术平方根)整理得:SS h S h 上下上-=1又因为台体的体积=大锥体体积—小锥体体积 ∴hS S S h h S h h S V 下上下上下台)(31)(313131111+-=-+=代入:SS h S h 上下上-=1得:h S S S SS h S V 下上下上下上台31)(31+--=即:)(3131)(31S SS S h h S S S hS V 下下上上下上下上台++=++=∴)(31S SS S h V 下下上上台++=4、球体体积公式推导分析:将半球平行分成相同高度的若干层(层n ),n 越大,每一层越近似于圆柱,+∞→n 时,每一层都可以看作是一个圆柱。

这些圆柱的高为nr ,则: 每个圆柱的体积h S V i i ==nrr i 2π 半球的体积等于这些圆柱的体积之和。

]1[)0()0(222221n r r n r r-=-= ]1[)1()1(222222n r r n r r -=-= ]1[)2()2(222223nr r n r r -=-= ……]1[)1()1(22222nn r r n n r r n---=-=∴半球体积为:)......(22221r r r V V n n nr+++⨯⨯==∑π半球 =]}......[1{)1()1()0(2222nn n nr n nr -+++-⨯⨯π =]......[222223)1(210nn rn n -++++-π=]6)12)(1(1[])12()1(61[2323n r n r n n n n n n n ---=---ππ ]6)12)(11(1[3n n r ---=π 当+∞→n 时,01→n∴=V 半球r r r n n 33332)6211(]6)12)(11(1[πππ=⨯-=--- ∴球体积为:r V 334π=球5、 球体表面积公式推导分析:球体可以切割成若干(个n )近似棱锥,当+∞→n 时,这些棱锥的高为球体半径,底面积为球面面积的n1,则每一个棱锥的体积r S V n球1311⨯=,则所有的小棱锥体积之和为球体体积。

即有:rr S n n 33431π=⨯球 ∴r S 24π=球 6、正六面体(正方体)与正四面体 (1) 体积关系如图:正方体切下四个三棱锥后,球S n1o剩下的部分为正四面体 设正方体棱长为a , 则其体积为:a V 3=正方体四个角上切下的每一个三棱锥体积为:a a a hSV 3261)21(3131=⨯⨯==三棱锥 中间剩下的正四面体的体积为:aa a a hSV 322231]60sin 21[3131)32232()2()2(=-⨯︒⨯⨯⨯==⨯⨯正三棱锥这样一个正方体可以分成四个三棱锥与中间一个正四面体 即:a a a 33331461=+⨯ (2) 外接球正方体与其体内最大的正四面体有相同的外接球。

(理由:过不共面的四点确定一个球。

)正方体与其体内最大的正面体有四个公共顶点。

所以它们共球。

回顾:① 两点定线 ② 三点定面 ③ 三点定圆 ④ 四点定球 如图:(a)正方体的体对角线=球直径 (b)正四面体的外接球半径=43高 (c)正四面体的棱长=正方体棱长⨯2 (d)正方体体积:正四面体体积=3:1 (e)正方体外接球半径与正四面体外接球半径相等 (3) 正方体的内切球与正四面体的关系(a ) 正方体内切球直径=正方体棱长(b ) 正方体内切球与正四面体的四条棱相切。

(c ) 与正四面体四条棱相切的球半径=正方体棱长的一半 (d ) 设正四面体棱长为a ,则与其棱都相切的球半径为r 1有:a ar 422211=⨯= 7、利用祖暅原理推导球体体积。

构造一个几何体,使其截面与半球截面处处相等,根据祖暅原理可得两物体体积相等。

证明:作如下构造:在底面半径和高都是r 的圆柱内挖去一个与圆柱等底等高的圆锥。

如图: 在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为R ,截面高度均为h ,倒圆锥的截面半径为r 1锥,半球截面半径为r1球,则:挖去圆锥后的组合体的截面为:r R S 2121锥ππ-= 半球截面面积为:r S 212球π= ∵倒圆锥的底面半径与高相等,由相似三角形易得:h r =1锥 在半球内,由勾股定理易得:h Rr 221-=球∴h R S 221ππ-= h R S 222ππ-=即:S S 21=,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。

由祖暅原理可得:V V 21=所以半球体积:R R R V Sh Sh Sh 3232323231ππ=⨯⨯==-=⨯半球即,球体体积:RR V 3334322ππ=⨯=球8、 正方体与球(1) 正方体的内切球正方体的棱长=a 球体的直径d aV 3=正方体 a d r V 333613434)2(πππ===球:正方体V π:6=V 球 (2) 正方体的外接球正方体的体对角线=a 3球体的直径da d r V 333233434)2(πππ===球 :球V 2:3π=V 正方体(3) 规律:①正方体的内切球与外接球的球心为同一点; ②正方体的内切球与外接球的球心在体对角线上; ③正四面体的内切球与外接球的的半径之比为:3:1 ④正四面体内切球与外接球体积之比为:1:33 ⑤正四面体内切球与外接球表面积之比为:1:3⑥正方体外接球半径、正方体棱长、内切球半径比为:3:2:1 ⑦正四面体外接球、正四面体、内切球体积比为:ππ:6:33 ⑧正四面体外接球、正四面体、内切球表面积比为:ππ:6:3 9、正四面体与球(1)正四面体的内切球解题关键:利用体积关系思考内切球的球心到各个面的距离相等,球心与各顶点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径r 。

利用体积关系得:h a r a ⨯︒⨯=⨯︒⨯⨯)60sin 21(31)60sin 2131422( 所以:hr 41=,其中h 为正四面体的高。

由相关计算得:aa ah 36)]321(32[22=-=⨯⨯ ∴a h r 12641==即:a a r V 33321663434)126(πππ===球 aa a V 321223660sin 2131=⨯︒⨯=正四面体 ∴π3:18=V V 球正四机体:(2)正四面体的外接球外接球的半径=)2332(224343a a⨯-⨯=⨯高=a 46a a r V 333863434)46(πππ===球 a a a V 321223660sin 2131=⨯︒⨯=正四面体 ∴2:33122:86:33ππ==aaV V 正四面体球 (3)规律:①正四面体的内切球与外接球的球心为同一点; ②正四面体的内切球与外接球的球心在高线上; ③正四面体的内切球与外接球的的半径之和等于高; ④正四面体的内切球与外接球的半径之比等于1:3 ⑤正四面体内切球与外接球体积之比为:1:27 ⑥正四面体内切球与外接球表面积之比为:1:9⑦正四面体外接球半径、正四面体棱长、内切球半径比为:63:12:6 ⑧正四面体外接球、正四面体、内切球体积比为:ππ3:18:327⑨正四面体外接球、正四面体、内切球表面积比为:ππ:26:9 10、 圆柱与球(1)圆柱容球(阿基米德圆柱容球模型)圆柱高=底面直径=球的直径 球体体积=32圆柱体积 球面面积=圆柱侧面积 (2)球容圆柱球体直径、圆柱的高、圆柱底面直径构成直角三角形。

设球体半径为R ,圆柱高为h ,底面半径为r则有:)2()2(222r h R += 即:2422r hR +=四、 方法总结下面举例说明立体几何的学习方法例:已知正四面体的棱长为a ,求它的内切球和外接球的半径思路:先分析球心的位置。

因为正四面体是特殊的四面体,显然内切球与外接球的球心是重合的。

且是正四面体的高线交点。

再分析球心与一些特殊的点、线、面的位置、数量关系。

在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。

方法1:展平分析:(最重要的方法)如图:取立体图形中的关键平面图形进行分析! 连接DO 并延长交平面ABC 于点G ,连接G O 1连接D O 1并延长交BC 于点E ,则A 、G 、在平面AED 中,由相似知识可得:2111==GA EG DE O O ∴AD G O //1 且311=ADG O ∴△GO O 1∽△DOA ∴ 31AO O O 1= 即:a a A h O 4636434343AO 1=⨯=⨯== a a A h O 12636414141O 11O =⨯=⨯==a V 338634DO ππ==⨯外接球a OO V 331216634ππ==⨯内切球 方法2:体积分析:(最灵活的方法)如图:设正四面体ABCD 的内切球球心为O ,连接AO 、BO 、CO 、DO ,则正四面体被分成四个完全一样的三棱锥。

相关文档
最新文档