晶体三极管及其基本放大电路

合集下载

晶体三极管及其放大电路

晶体三极管及其放大电路

第3章 晶体三极管及其放大电路3.1 教学基本要求教 学 基 本 要 求主 要 知 识 点熟练掌握 正确理解 一般了解晶体管的结构及其工作原理√ 电流分配与放大作用√ 晶体管三极管 晶体管的工作状态、伏安特性及主要参数√ 放大电路的组成原则及工作原理√ 放大电路的主要技术指标、查阅电子器件相关数据资料 √ 图解法 √ 静态工作点估算法 √ 三极管放大电路的分析方法微变等效电路法√三种组态基本放大电路比较√静态工作点的选择与稳定、基本电路设计√耦合方式及直接耦合电路的特殊问题√ 多极放大电路 分析计算方法 √频率响应的基本概念 √三极管放大电路基础放大电路的频率响应频率响应的分析计算方法√3.2 重点和难点一、重点1.正确理解三极管的结构、电流分配、伏安特性和“放大”的实质。

2.三极管放大电路的图解法、小信号模型和放大电路的小信号模型分析方法。

3.放大电路中静态工作点的稳定问题。

二、难点1.正确理解NPN 和PNP 型三极管的组成及其工作原理。

2.三极管放大电路的小信号模型分析方法和工作点稳定问题。

3.基本放大电路的设计3.3 知识要点三极管的结构及类型 电流分配及电流放大作用 1.双极型三极管 共发射极特性、工作区域 主要参数“放大”的概念“放大”的概念及条件 三极管的内部条件外部条件 放大电路的组成、各元器件的作用2.共发射极放大电路 固定偏置共发射极放大电路的原理和工作波形 共发射极放大电路的三种工作状态与失真分析 分析方法与步骤静态分析3.共发射极放大电路的图解法动态分析失真与最大不失真输出电压三极管的小信号模型4.小信号模型分析法H参数的物理意义共发射极放大电路的小信号模型分析方法5.共发射极放大电路的工作点稳定问题6.共发射极、共基极和共集电极放大电路的特点阻容耦合方式直接耦合方式7.多级放大器变压器耦合方式光电耦合方式多级放大器的分析频率响应的基本概念RC低通电路的特性及波特图8.放大电路的频率响应RC高通电路的特性及波特图BJT的高频小信号混合π型模型单级阻容耦合放大电路的频率特性多级放大电路的频率特性3.4 主要内容3.4.1 晶体三极管3.4.1.1 晶体三极管的分类及结构晶体三极管通常简称为三极管,也称为晶体管和半导体三极管。

电子技术基础第2章 三极管及其放大电路

电子技术基础第2章 三极管及其放大电路
所谓静态是指放大电路在未加入交流输入信号(或为零) 时的工作状态。此时,直流电流所流过的路径,称为直流 通路。画直流通路时,电容视为开路,电感视为短路,其 它不变。
2.2 晶体管放大电路
2.2.2固定偏置式放大电路 3.动态分析和交流通路
所谓动态,是指放大电路在接入交流信号以后,电路中 各处电流、电压的变化情况。在输入信号的作用下,交流 电流所流过的路径,称为交流通路。画交流通路时,把电 容和直流电源视为短路,其它不变。
2.2 晶体管放大电路
2.2.3 分压式偏置放大电路 3.静态工作点的稳定原理
设由于温度升高,造成IC和IE增大,IE的增大导致UE升高。 由于UB固定不变,因此UBE将随之降低,使IB减小,从而 抑制了IC和IE因温度升高而增大的趋势,达到稳定静定工 作点Q的目的。
2.2 晶体管放大电路
2.2.3 分压式偏置放大电路 4.动态交流指标计算 (1)电压放大倍数Au (2)输入电阻Ri (3)输出电阻Ro
2.2 晶体管放大电路
2.2.3 分压式偏置放大电路 5.放大电路的频率特性
放大电路的电压放大倍数与频率的关系称为幅频特性; 输出电压与输入电压的相位差与频率的关系称为相频特性。 频率特性是幅频特性和相频特性的总称。
2.2 晶体管放大电路
2.2.4 共集电极放大电路 1.共集电极电路静态工作点的计算
2.2 晶体管放大电路
2.2.5 多级放大电路 1.多级放大电路的组成
2.2 晶体管放大电路
2.2.5 多级放大电路 2.多级放大电路的级间耦合方式
在多级放大电路中,把级与级之间的连接方式称为耦合 方式。一般常用的耦合方式:阻容耦合、直接耦合、变压 器耦合等。
2.2.1基本放大电路概述 放大电路的放大实质是能量转换的过程。晶体管只是一

第4章 三极管及放大电路基础1

第4章 三极管及放大电路基础1

与 的关系
IC IC ICBO I E ICBO IC I B ICBO
(1 ) IC I B ICBO
I CBO IC IB 1 1
IE
N
P
N
I'C ICBO IC
IC I B (1 ) ICBO
共射直流电流放大倍数: IC I B 1.7 42.5 0.04 共射交流电流放大倍数: IC I B 2.5 1.7 40 0.06 0.04 说明: 例:UCE=6V时: 曲线的疏密反映了 的大小; IC(mA ) 160mA 电流放大倍数与工作点的位置有关; I 5 140mA CM 120mA 交、直流的电流放大倍数差别不大, 4 100mA 今后不再区别;
3 80mA
___
4. 集电极最大电流ICM 当值下降到正常值的三分之二时的 集电极电流即为ICM。
IC
2.5 2 1.7
1 0 2 4 6 8
IB 40mA
IB=60mA 20mA IB=0 10 UCE(V)
六、主要参数
5. 集-射极反向击穿电压U(BR)CEO 手册上给出的数值是25C、基极开路时的击穿电压U(BR)CEO。 6. 集电极最大允许功耗PCM 集电极电流IC 流过三极管, 所发出的焦耳热为: PC =ICUCE 导致结温 上升,PC 有限制, PCPCM 7. 频率参数

扩散 I C 复合 I B
IC
C
N
IB
P N
EC
或者 IC≈IB
I E IC I B (1 ) I B
EB
E
IE
二、电流放大原理

(完整word版)放大电路的工作原理和三种基本放大组态

(完整word版)放大电路的工作原理和三种基本放大组态

放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。

共射放大电路如图所示。

V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。

R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。

V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。

如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。

同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。

电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。

这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。

由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。

如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。

电路中各点的电流、电压波形如图所示。

放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。

晶体三极管及其基本放大电路

晶体三极管及其基本放大电路

22
2.4、三极管的主要参数
• 1、电流放大系数 • i)共射极电流放大系数
直流电流放大系数 IC
IB
交流电流放大系 数 Vic
Vib
h( fe 高频)
一般工作电流不十分大的情况下,可认为
Ma Liming
Electronic Technique
23
ii)共基极电流放大系数
共基极直流电流放大系数
3
6
9
IB=0 12 vCE(V)
区时, 有:VB>VC Rb
+

UBB
Ma Liming
+ 对于PNP型三极管,工作在饱和区 UCC 时, 有:VB<VC<VE

Electronic Technique
13
例:如图,已知三极管工作在放大状态, 求:1).是NPN结构还是PNP结构?
Ma Liming
Electronic Technique
20
方法二:用万用表的 hFE档检测 值
1. 拨到 hFE挡。
2.将被测晶体管的三个引脚分别插入相应的插孔 中(TO-3封装的大功率管,可将其3个电极接 出3根引线,再插入插孔),三个引脚反过来 再插一次,读数大的为正确的引脚。
3.从表头或显示屏读出该管的电流放大系数。
N
b
c PV
Rb
eN
+

UBB
Ma Liming
+
UCC 对于PNP型三极管,工作在放大区 - 时, 有:VC<VB<VE
Electronic Technique
10
iC(mA ) 4 3
2 1

双极型晶体三极管及其基本放大电路

双极型晶体三极管及其基本放大电路
3、三极管放大电路共有三种基本接法:共射、共集和共基电路。 其中共射电路能放大电压和电流,输入与输出反相,应用广 泛。共集电路无电压放大能力,能放大电流,因为其输入电 阻大,输出电阻小,多用作输入级,输出级及缓冲级。共基 电路能放大电压,无电流放大能力,且其输入电阻小,输出 电阻大,一般只用作高频放大。
4、多级放大电路的耦合方式有阻容耦合、变压器耦合、直接耦 合等类型。前级输出即为后级的输入,前级的输出电阻是后 级的信号源内阻,后级的输入电阻是前级的负载电阻。放大 电路的总增益为各级放大倍数的乘积;输入电阻是第一级电 路的输入电阻,输出电阻是最后一级电路的输出电阻。
5、复合管放大电路的分析可以等效成单管放大电路的分析。
模拟电子技术
ห้องสมุดไป่ตู้
双极型晶体三极管及其基本放大电路
晶体管的结构、原理及特性曲线→放大电路的分析方法→由 晶体管构成的三种基本放大电路→多级放大电路和复合管的 分析→放大电路的频率响应。 1、晶体管按照结构分成和两种,按材料分成硅管和锗管,由 于硅管的温度特性较好,所以硅管应用广泛。 晶体管有三种工作状态:
多级放大电路的级数越多,通频带越窄。
模拟电子技术
由于电路中的电抗元件对不同频率的输入信号呈现的电抗值 不同,电路的电压放大倍数是信号频率的函数,即频率响应。 频率响应分为幅频特性和相频特性,可以用波特图表示。
6、单级放大电路的频率响应:在中频段基本与频率无关;在低 频段,电压放大倍数随频率的降低而减小,输出电压与输入 电压之间的相移也发生变化;在高频段,电压放大倍数随频 率的升高而减小,相移也发生变化。
2、放大电路的分析方法有图解法和微变等效模型法两种。图解 法主要用来分析失真和静态工作点,工程计算中主要使用微 变等效模型法。 晶体管的模型有两种,低频为h参数等效模型,高频为混合π 模型。 分析放大电路的步骤为先直流,后交流。即先用直流通路计 算静态工作点,后画出交流通路,用低频小信号模型计算电 压放大倍数、输入电阻和输出电阻等交流参数。 由于静态工作点影响电路的性能,故实用放大电路都要有静 态工作点稳定的措施。

晶体管及其基本放大电路

晶体管及其基本放大电路
N(发射区) 发射结
E
BJT示意图
BJT结构特点
• 发射区的掺杂浓度最高 ( N+ );
• 集电区掺杂浓度低于发射区,且面积大;
• 基区很薄,一般在几个微米至几十个微米,且掺杂浓 度最低。
BJT三个区的作用:
CB E
发射区:发射载流子
集电区:收集载流子 基区:传送和控制载流子
P N+ N-Si
7.1.1 BJT的结构简介
基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= INC+ ICBO
动画示意
放大状态下BJT中载流子的传输过程
动画演示
7.1.2 放大状态下BJT的工作原理
三极管的放大作用是在一定的外部条件控制下,通
过载流子传输体现出来的。
外部条件:发射结正偏,集电结反偏。
以NPN管为例 发射结正偏 VBE≈ 0.7V; 晶体管发射结导通。
共发射极接法,发射极作为公共电极,用CE表示 ;
共基极接法,基极作为公共电极,用CB表示 ;
共集电极接法,集电极作为公共电极,用CC表示。
7.1.3 BJT的特性曲线
输入特性曲线 BJT的特性曲线
输出特性曲线
输入回路
RB VBB
IB
+ VBE
-
IC +
VCE IE
RC VCC
输出回路
试验电路
晶体管特性图示仪
P N
E
VCE IB 0V 1V 10V
VBE 0
随着VCE电压的增大, 基区IB的电流通道变窄, IB 减小。要 获得同样大的 IB , 必需增大VBE 。表现出曲线右移。
当VCE ≥1V时,特性曲线右移的距离很小。通常将VCE=1V

晶体三极管三种(共基、共发、共集)放大电路的优缺点

晶体三极管三种(共基、共发、共集)放大电路的优缺点

晶体三极管三种(共基、共发、共集)放大电路的优缺点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!晶体三极管三种放大电路的优缺点1. 引言晶体三极管(BJT)是电子器件中常用的放大元件之一,而三种常见的放大电路结构是共基、共发和共集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体管特性曲线:描述晶体管各极电流与
极间电压关系的曲线。
iB
b 输入 回路
iC
c
输出 回路
iB b
iE
e
iE
e
iC c
e
c
b
(a)共发射极
(b)共集电极
(c)共基极
2021/2/28
11
下面以共射极电路为测试电路
RC

iC mA

RB
iB
μA
++
UCC
UBB
uBE V
V uCE
--
2021/2/28
(b) 电路符号
2021/2/28
5
P
c
集电区 集电极
发射区
b *基极结构特点
(a)
c 1、三区两c 结 2、基b 区很薄
发射结 集电区
e
b
N+
P
N型外延 N+衬底
绝S缘i O层2
集电结 基区
3、e区重掺杂
e NP N
c区轻PN掺eP 杂
(b) b区掺杂最轻
c
图2-3 平面管(c)结构剖面图
4、集电区的面积则比发射区做得大,这是 三极管实现电流放大的内部条件。
2021/2/28
15
iC/ mA 4 3 2 1 0
5
IB=40 A
30A
20A
10A
0 A
10
15
b IB RB
UBB
IC
c ICN N
IBN
P
N IEN e IE
RC
15V UCC
uCE/ V
2021/2/28
16
iC/mA uCE=uBE4来自IB 40A饱 和
3

2

30 A 击

穿
20A 区
(emitter) e
N
发射极 发射区
P
基区
N (collcector )
集电区 集电极
b
c
NPN
b(base)
基极
(a) NPN管的原理结构示意图
e (b) 电路符号
2021/2/28
3
晶体管的结构
2021/2/28
4
符号中发射极上的箭 头方向,表示发射结 正偏时电流的流向。
c b
PNP
e
(a) PNP型三极管的原理结构
0
5
10
15
uCE/V
截止 区
iB =-iCBO (此时iE =0 )以下称为截止区。 工程上认为:iB =0 以下即为截止区。
2021/2/28
22
截止区 iC
※若不计穿透电流ICEO, 有iB、iC近似为0;
c ICBO
b
♀三个电极的电流都很 R iB
B
小,三极管类似于一
IEBO
N
R C
P 15V UCC
2021/2/28
6
5.1.2 晶体管的电流分配与放大作用
(以NPN管为例)
一、放大状态下晶体管中载流子的运动
BJT 处于放大状态的条件: 内部条件:
发射区重掺杂(故管子e、 c极不能互换) 基区很薄(几个m) 集电结面积大 外部条件: 发射结正偏 集电结反偏
2021/2/28
7
NPN型晶体管的电流关系
12
RC
5.1.3.1 共射极输入特性曲线 +
iC mA
RB
iB

共管射的组输态入晶特体性:UBB
μA
++
UCC
uBE V
V uCE
--
它是指一定集电极和发射极电压UCE下,三极管 的基极电流IB与发射结电压UBE之间的关系曲线。
iB f (uBE ) uCE常数
2021/2/28
13
iB/μA UCE=0 UCE≥1
N
个开关“断开”。 UBB
e iE
2021/2/28
图2-7 截止区载流子运动情况
23
5.1.4 晶体管的主要参数
一、电流放大系数
1、共射直流放大倍数
IC
IB
2、共射交流放大倍数
iC iB
常认为:
2021/2/28
24
二、极间反向电流
ICBO
集电极基极间的 反向饱和电流
截止区
即: iC 仅决定于iB ,与输出环 路的外电路无关。
2021/2/28
19
二、饱和区
iC/ mA uCE=uBE
饱 和
4


★发射结和集电
3

结均正向偏置
2

1
0
5
IB=40A
30A 20A
10A 0A iB=-ICBO
10
15
uCE/ V
截止区
临界饱和:uCE=uBE,uCB=0(集电结零偏)

1
10A
0A iB=-ICBO
0
5
10 15
uCE/V
截止区
共射输出特性曲线
2021/2/28
17
一、放大区 饱 和
★发射结正向偏置,区
iC/ mA uCE=uBE
4 放
3
集电结反向偏置
2


1、基极电流 iB 对集电 1
极电流 iC 的控制作用 0 很强
5
IB=40A
30A
20A
10A 0A iB=-ICBO
• BJT:Bipolar Junction Transistor ——双极型晶体管 ——(晶体三极管、半导体三极管)
﹡双极型器件 两种载流子(多子、少子)
2021/2/28
1
几种常见晶体管的外形
2021/2/28
2
5.1.1 晶体管的结构及其类型
发射结
集电结
符号中发射极上的箭 头方向,表示发射结 正偏时电流的流向。
(1) iB一定时,iC比放大时要小
三极管的电流放大能力下降,通常有iC<βiB
(2)uCE 一定时iB增大,iC基本不变
2021/2/28
21
三、截止区
★发射结和集电结 均反向偏置
iC/mA uCE=uBE
4
IB=40μ A
饱 和
3

2
放 30μ A
大 20μ A

10μ A
1
0μ A iB=-ICBO
90
60
30
b IB RB
UBB
0 0.5 0.7 0.9 uBE/V
IC
c
ICN
N
RC
IBN
P
N
UCC
IEN
e IE
2021/2/28
14
5.1.3.2 共射极输出特性曲线
共射组态晶体管的输出特性: 它是指一定基极电流IB下,三极管的输 出回路集电极电流IC与集电结电压UCE之 间的关系曲线。
iC f uCE iB 常数
10
15
uCE/ V
截止区
IC
I B
uCE 常数
在数值上近似等于β
问题:特性图中β=? β=100
2021/2/28
18
iC/ mA
放大区
uCE=uBE
饱 和
4


3
2、uCE 变化时, iC 影响很小(恒
2
大 区
流特性)
1
0
5
IB=40A
30A 20A
10A 0A iB=-ICBO
10
15
uCE/ V
2021/2/28
20
IC
饱和区
iC/mA uCE=uBE
4

饱 和
3


2

1
I C1
IB=40μ A
b
30μ A
IB
20μ A
RB
IEP
10μ A 0μ A
U iB=-ICBO BB
c ICN
N
IBN
P
N IEN e IE
RC UCC
0
5
10
15
uCE/V
截止 区
图2-6 饱和区载流子运动情况
2021/2/28
8
外加偏置电压要求
对 NPN管 UC > UB> UE
对 PNP管 要求 UC < UB < UE
UB
UC
UB
UC
2021/2/28
UE
UE
9
1、直流电流放大系数
共射极直流电流放大系数
I C
I
B
一般 20 ~ 200
2021/2/28
10
5.1.3 晶体管的共射特性曲线
相关文档
最新文档