探讨电力输电线路防雷接地技术

合集下载

输电线路防雷接地措施的重要性及维护探讨

输电线路防雷接地措施的重要性及维护探讨

输电线路防雷接地措施的重要性及维护探讨随着电力系统的不断发展和完善,输电线路的防雷接地措施越来越受到重视。

由于输电线路在各种气候条件下均需要保持稳定的运行状态,因此对于输电线路的防雷接地措施的重要性不可忽视。

本文将从防雷接地措施的必要性、影响因素和维护方法等方面展开探讨。

一、防雷接地措施的必要性1. 保障电力系统的安全运行2. 保障输电线路设备的安全性输电线路设备在雷电天气下极易受损,特别是塔架和绝缘子等部件,若遭到雷击而受损,会直接影响输电线路的正常运行。

通过有效的防雷接地措施,可以大大降低输电线路设备受雷击的风险,保障设备的安全性。

3. 保障供电可靠性对于输电线路而言,供电可靠性是其最基本的要求之一。

雷电天气可能导致输电线路的短路、烧毁等故障,而这些故障将直接影响供电的稳定性和可靠性。

加强防雷接地措施,有助于提高输电线路的供电可靠性。

1. 输电线路周围的自然环境自然环境是影响防雷接地措施效果的重要因素之一。

例如地形、植被、降雨、降雪等因素都会对输电线路的防雷接地产生一定影响。

而在严酷的自然环境下,如高寒、高温、多雨、多雪等地区,防雷接地措施的设计和维护将更加复杂和困难。

2. 输电线路的设计和建设标准输电线路的设计和建设标准也直接影响到防雷接地措施的有效性。

在设计和建设阶段,就应当考虑到当地的气候特点以及地形条件,合理设置雷电防护装置和接地设施,以保证输电线路在各种气候条件下的安全运行。

3. 防雷接地设施的维护和管理对于已建成的输电线路,接地设施的维护和管理也直接关系到防雷接地措施的有效性。

只有定期进行接地设施的检测、维护和修复工作,才能保证防雷接地措施的有效性。

2. 加强接地系统的管理对于接地系统,必须加强其管理工作。

建立健全的接地设施档案和管理制度,对接地设施的建设、维护、管理等方面进行规范和监督,确保接地设施的安全稳定运行。

3. 加强人员培训加强相关人员的防雷接地知识培训,提高其对防雷接地措施的认识和理解,加强对防雷接地设施的维护和管理工作,提高接地设施的维护水平。

220kV高压输电线路防雷接地技术探析

220kV高压输电线路防雷接地技术探析

220kV高压输电线路防雷接地技术探析陈 卓 陈嘉康(国网重庆电力公司北碚供电分公司)摘 要:我国高压输电线路中220kV电路分布较为广泛,此类电路往往通过户外架空方式进行连接,因此,容易受到环境因素影响出现故障,如常见的雷击故障是破坏高压输电线稳定运行的主要因素之一。

为保障电路安全,本文对220kV高压输电线路防雷接地技术进行探析,详细分析常见的高压输电线路雷击形式,并针对防雷接地技术的实际情况,提出220kV高压输电线路防雷接地技术的设计和使用方式,全面提高防雷措施的有效落实程度,保障输电线路安全运行。

关键词:220kV;高压;输电线路;防雷接地技术;继电保护0 引言输电线路受到雷电威胁较大,在电路连接设计时,需要考虑其防雷性能和特点,确保防雷效果符合要求,保障高压电路的正常使用。

目前常见的防雷方式可以归纳为两种,其一为将雷电阻挡在设施之外,避免雷电进入而影响系统运行;其二为将雷电引导到其他区域,减轻雷电对重点区域相关设备的影响。

1 220kV输电线路雷击形式高压输电线在被雷击时会发生闪络,以此为依据,将输电线路的雷击形式分为两类:其一为直击。

在雷电直击塔顶避雷线时,电流会通过避雷线传导入相邻的杆塔结构,随着杆塔传输到大地。

该情况下一部分雷电电压会留在杆塔中,与导线上的电位形成高位电压差,从而引发杆塔导线闪络。

此类雷击故障在山区输电线中发生概率相对较高。

其二为绕击。

在雷电经过线路时,受到电感影响,容易出现雷电绕击故障,发生时会产生瞬间高压,使导线电位快速提高,此时导线的电位差与杆塔电位差相差过大,引起绝缘子串击穿放电,随之出现闪络现象[1]。

由于绕击产生的瞬时电压和电流较大,使其危害相对较大且发生较为频繁,其中高压线路发生概率更大,一般占总绕击的80%左右。

对其产生原因进行分析,能够发现其与高压线路保护角有关,具体公式如下:Pa=β槡h/86-3 35(1)其中,Pa为输电线路绕击率;β为高压线路保护角。

试论电力输电线路防雷接地技术

试论电力输电线路防雷接地技术

试论电力输电线路防雷接地技术摘要:电力输电线路的防雷接地技术是预防和减少雷击危害的重要手段之一,通过合理设计和实施接地系统,能够将雷电的能量分散到地下,从而降低雷击对电力设备和系统的影响。

在电力输电线路的防雷接地技术中,主要包括杆塔接地、导线接地、防雷装置接地等。

本文主要分析电力输电线路防雷接地技术。

关键词:电力;输电线路;防雷技术引言电力输电线路是现代社会中不可或缺的重要基础设施,但由于天气原因如雷电等因素的存在,电力输电线路经常面临着雷击带来的威胁。

雷击不仅容易造成设备损坏、停电等问题,还可能对用户的生活和工作产生严重影响。

因此,为了保障电力系统的安全稳定运行,防雷接地技术成为了不可忽视的关键环节。

1、电力输电线路遭受雷击的危害分析雷击会引发电力设备的故障或损坏,如变压器、断路器等,导致供电中断或者设备需要维修或更换,增加了电网运行的成本和风险。

雷击会产生瞬态过电压,导致电力系统中的电压波动和谐波等问题,进而影响设备的正常运行,甚至对用户设备造成损害。

雷击可能导致发生火灾,尤其是在电力设备周围可能引发火灾,威胁人身安全和财产安全。

雷击引起的瞬态过电压会传递到电力系统的其他部分,导致系统不稳定,甚至可能引发电力系统的连锁故障。

雷击可能给线路上的工作人员和周边居民带来安全隐患。

2、传统防雷接地技术的局限性传统防雷接地技术往往需要大面积的接地系统,包括金属杆塔接地和土壤接地,这对于一些场地受限或城市区域来说可能会面临空间限制的问题。

传统防雷接地技术需要大量的材料和工程投入,包括金属杆塔、导线和铜排等,增加了工程成本。

此外,现场施工的复杂性和人力资源的需求也增加了成本。

传统防雷接地技术的性能很大程度上取决于地质和土壤条件。

对于土壤电阻率较高的地区,传统接地系统的效果有限,因而需要采用更复杂的接地措施。

传统防雷接地技术一旦安装完成,维护起来较为困难。

例如,杆塔接地需要定期清洁和检查,土壤接地可能会受到水分和化学物质的影响,需要定期检测和保养。

探讨35kV输电线路防雷措施

探讨35kV输电线路防雷措施

探讨35kV输电线路防雷措施35kV输电线路是电力系统中较高电压的输电线路之一,需要特别注意防雷措施。

以下是对35kV输电线路防雷措施的探讨。

1. 地线防雷:地线是输电线路中的一部分,其主要作用是将感应到的雷电能量迅速引入大地,减少对其他设备的干扰。

对于35kV输电线路,地线的导体应采用符合规定标准的裸导线,以确保良好的接地效果。

还需注意地线的布设,尽量减少接地电阻,提高抗雷击能力。

2. 减少结构突出部分:为了减小35kV输电线路遭受雷击的风险,可尽量减少结构部件的突出部分,如减少绝缘子串数量,降低杆塔高度等。

这样可减少雷电击中的可能性,提高线路的抗雷击能力。

3. 良好的绝缘性能:35kV输电线路的绝缘设计需符合相关标准和规范要求,以确保绝缘性能良好。

绝缘子的选择应遵循正常工作电压和附加电压等要求,防止中间相间隙电晕放电和绝缘子表面电晕放电产生,从而提高绝缘系数和耐电气击穿性能。

4. 防雷接地装置:35kV输电线路应配备有效的防雷接地装置。

这些装置包括避雷针、防雷带、防雷网等,通过引雷和集流放电的作用,将雷电能量迅速引入大地,保护线路设备。

5. 防雷检测:定期进行防雷设备的检测和维护工作,对电力线路的防雷设备进行定期的巡检和测试,发现问题及时处理,确保防雷设备的有效性。

6. 防雷杆塔绝缘和绝缘子串绝缘:对于35kV输电线路的钢管杆塔,应对其表面进行绝缘处理,以防止雷击短路。

绝缘子串在安装时应满足规范要求,确保良好的绝缘性能。

35kV输电线路的防雷措施需要从多个方面综合考虑,包括地线防雷、减少突出部分、良好的绝缘性能、防雷接地装置、防雷检测以及杆塔绝缘和绝缘子串绝缘等。

通过合理的设计和配备有效的防雷设备,能够有效提高35kV输电线路的抗雷击能力,确保电力系统的稳定运行。

探讨10kV配网线路防雷技术的保护方案

探讨10kV配网线路防雷技术的保护方案

探讨10kV配网线路防雷技术的保护方案1. 引言1.1 研究背景10kV配网线路是城市电力配送系统中重要的组成部分,其负责将高压输电线路输送的电能转变为可供市民使用的低压电能。

由于10kV 配网线路通常高高挂在空中,暴露在雷电天气下,因此存在着极高的雷电风险。

雷电可能会对10kV配网线路造成严重的损坏,导致供电中断、设备损坏甚至火灾等严重后果。

基于以上背景,急需研究10kV配网线路的防雷技术,以保障供电的可靠性和安全性。

目前,在国内外,已经存在各种不同的10kV配网线路防雷技术方案,包括避雷器的应用、接地技术的优化等。

在这样的背景下,本文将对10kV配网线路的雷电特点、常见雷电危害以及防雷技术方案等进行深入探讨,旨在为10kV配网线路的防雷工作提供科学的参考和指导。

1.2 研究意义10kV配网线路防雷技术的研究意义非常重大,主要体现在以下几个方面:随着电力设备的不断发展和智能化程度的提升,对10kV配网线路的稳定性和可靠性要求也越来越高。

雷电是导致配网线路设备损坏和停电的重要原因之一,因此研究防雷技术方案对于提高配网线路的抗雷能力至关重要。

配网线路作为电力系统的重要组成部分,承担着能源传输和分配的关键任务。

一旦遭受雷击导致设备损坏或停电,将对用户生活和生产带来严重影响。

研究10kV配网线路防雷技术方案可以有效保障用户的用电需求,提高电网的可靠性和供电质量。

随着现代社会的不断发展,人们对电力的依赖程度愈发增加。

研究10kV配网线路防雷技术方案也是为了保障电力系统的安全稳定运行,防止雷电等外界因素对电网造成不可估量的破坏。

研究10kV配网线路防雷技术方案具有重要意义,对于提高电网的稳定性和可靠性有着积极的促进作用。

2. 正文2.1 10kV配网线路雷电特点分析10kV配网线路作为城市电力配送的重要组成部分,受雷电影响较大。

雷电是一种自然现象,一旦雷击发生,可能对电力设备和线路造成损坏,导致停电或事故发生。

解析220kV高压输电线路防雷接地技术

解析220kV高压输电线路防雷接地技术
2.2.4采用消弧线圈接地方法
通常情况下在雷电活动相对频繁,接地电阻较高的地区可采用消弧线圈接地措施进行防雷。消弧线圈是带铁芯的电感线圈,当220kV输电线路遭受雷击时,消弧线圈能够使放电处的电压下降,减轻雷电对线路的损害。当二相和三相遭遇雷击时,一相导线不会因此增加跳闸的概率。从地线和导线闪络的作用看,线路的耦合作用降低了没有发生闪络绝缘子的电压,一定程度上提升了线路的抗雷能力。
2.2接地技术
2.2.1架设耦合地线
当降低杆塔接地电阻较为困难时,可采取架设耦合接地线的途径。通过在导线下方增加接地线的方式,从而提升线路的耐雷效果,降低反击跳闸故障发生的可能性。耦合地线既能够降低杆塔分流系数,又使得接地电阻率相对较高的地区雷电感生电流在临近接地装置散流,起到降低塔顶感应电压的作用。同时,架设耦合地线能够提升导线与地线间的耦合程度,避免由于塔顶出现雷击对绝缘子造成的不良影响。
2.1.4采用绝缘方式中不平衡法则
现代220kV输电线路为了节省占地面积,通常会采用同杆架设的方式,这会导致双回路现象时有发生。通过采用绝缘方式中不平衡法则,能够有效区别双回路绝缘子串片,使其差异性特征更加凸出。当遭受雷击,线路绝缘子串片越少越容易产生闪络,闪络效果可以和地线相媲美。从而提升另一个导线的耦合性,使输电线路的防雷性得到显著提升。在实际操作时,两线路绝缘比过大或过小都不好,最佳比例为2:31左右,比例过大易导致线路故障,比例过小会影响防雷效果。因此,在安装线路时要应用不平衡法则,合理确定两线路比例和绝缘子片数。
2.1.5安装自动重合闸装置
220kV输电线路具有修复性的特点,当遭受雷击后,它可以短时间内控制由于雷电引起的部分问题。如减少冲击闪络、工频电弧导致的线路跳闸问题等,这是高压输电线路安全运行对保障。安装自动重合闸装置有助于及时判别“临时性故障”和“永久性故障”,从而及时采取应对对策,提升输电线路的安全可靠性。

浅谈输电线路的防雷接地技术

浅谈输电线路的防雷接地技术

浅谈输电线路的防雷接地技术摘要:我国经济水平的快速发展同时也带动着城镇生产力水平的发展,而我国之前的乡镇输电线路铺设一直就没有得到国家电力部门的根本重视。

值得庆幸的是,近些年来随着我国国家电网工程的进一步改造,国家电力部门和电网公司都意识到了这个问题,对无论是城镇还是农村的电力系统进行集中优化改造,使整个输电线路的安全问题得到应有的保障,但是,对于输电线路的防雷工作一直不能采取有效的措施,本文则重点从技术层面出发简单阐述输电线路的防雷接地技术。

关键词:输电线路;防雷接地;技术;分析1 导言据统计,供电系统运行时的故障发生率在持续上升。

这多数是由于自然环境变化等因素造成。

输电线路通常都是暴露在野外,经常会受到雨水、台风、雷击等各种自然灾害的影响,给电力系统的正常运行带来了不便。

雷击是对输电线路破坏最大的自然灾害,雷击瞬间产生的强电流会造成输电线路无法承受巨大的负荷而出现短路、烧毁等问题,对电力系统、电力设备造成的危害相当大,防雷接地的设计和维护可以有效防范这一问题的产生。

2 防雷接地的基础知识为使雷电迅速导入大地,以防止雷害为目的的接地叫做防雷接地。

防雷接地的主要作用是保障人身和财产的安全。

多点接地、重复接地、就近接地是防雷接地的基本原则。

接地根据其作用和要求,可大致分为工作接地、保护接地、防雷接地三大类。

2.1 工作接地工作接地是为电路正常工作而提供的一个基准电位。

当该基准不与大地连接时,视为相对的零电位。

这种相对的零电位会随着外界电磁场的变化而变化,从而导致电路系统工作的不稳定。

当该基准与大地连接时,基准电位视为大地的零电位,而不会随着外界电磁场的变化而变化。

根据电路的性质,将工作接地分为信号地、模拟地、数字地、直流地、交流地、电源地、功率地、屏蔽地、设备地、系统地等。

工作接地的目的是无论在工作还是事故的情况下,都能对电器设备的可靠运行进行保证,使人体接触得电降低,迅速切除故障设备或线路,从而使电器设备和输电线路的绝缘水平降低。

探讨电力输电线路防雷接地技术

探讨电力输电线路防雷接地技术

2 雷 击的几 种类型 ( 击 、反击 、绕击 )的成 因 以及原 因分析 直
雷击杆 、塔顶部或避雷线时 ,雷电电流流过塔体和接地体 , 使杆塔 电位升高 ,同时在相导线上产生感应过电压 。如果升高塔体电位和相导 线感应过电压合成的电位差超过高压送 电线路绝缘 闪络电压值 ,导线与 杆塔之 间就会 发生闪络 ,这种闪络就是反击 闪络 。雷 电直击 、反 击跳 闸一般雷电流较大 ,  ̄50 V 31 k 典型杆塔反 击耐雷水平可达 15 7k 0 2 ~1 A, 5 2 0V 2 k 典型杆塔为7 ~ k ,10V 5 10 A k 典型杆塔为4 ~ 5 A 1 1 0 7k 。雷 电反击一 般有下列特征 :1 多相故障一般是由直击引起 ; ) ) 2 水平排列的中相或 上三角排列 的上相故障一般是由雷电反击引起 ;3 档中导地线之 间雷 ) 击放电的 , 一般是雷 电直击 、反击弓 起。 l 雷电绕击率与避 雷线对边导线 的保护角、杆塔高度 以及高压送 电线 路经过的地形 、地貌和地质条件有关 。山区高压 送电线路的绕击率约 为平地高压送 电线路的3 。山区设计送 电线路时不可避免会 出现大跨 倍 越 、大高差档距 ,这是线路耐雷水平的薄弱环节 ;一些地 区雷电活动相 对强烈 ,使某一区段的线路较其它线路更容 易遭受 雷击 。雷电绕击导 线 引起绝缘闪络对应的雷电流幅值较小 , ̄ 5O V t Ok 线路绕击 耐雷水平为 n 2 ~ 4 A 2 k 线路为1 ~1k 2 2k ,20V 2 4 A,l0V 1k 线路为5 ~ k 。雷电绕击故 . 7A 5 障一般有下列特征 :1 雷电绕击一般只引起单相故 障;2 导线上非线 ) )
8 8
应 用 科 学
科年 l 2 第9 0 霸 1 期 O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探讨电力输电线路防雷接地技术
发表时间:2019-04-28T09:54:14.407Z 来源:《基层建设》2019年第5期作者:温渊博
[导读] 摘要:输电线路是电力系统防雷的重要保护对象,如果发生雷击事故,将造成大面积的停电,严重影响社会和人民生活。

内蒙古电力(集团)有限责任公司呼和浩特供电局内蒙古呼和浩特市 010000
摘要:输电线路是电力系统防雷的重要保护对象,如果发生雷击事故,将造成大面积的停电,严重影响社会和人民生活。

加强输电线路的防雷不仅可以减少雷击输电线路引起的雷击跳闸次数,还有利于变电站内电气设备的安全运行,是保证电力系统供电可靠性的重要环节。

由此可见,输电线路的防雷措施在目前气候不稳定的情况下应得到不断的加强。

关键词:雷电;输电线路;接地网;防雷措施
前言:“雷击”属于一种十分常见的自然现象,由于输电线路的特殊性质,一般情况下都是露天安装,受到外界环境的影响相对来说也就比较大,因此经常容易遭到雷击。

一旦输电线路遭受雷击,就会产生强大的电流直接烧坏线路,严重者还会引发火灾,不仅影响电力系统的正常运行,同时也会严重威胁到人们的生命健康以及财产安全。

我国近几年来经济发展迅速,电力需求越来越高,各种事故发生几率相对来说也增长了很多,不同地区的雷击原因也可能不尽相同,这大大提高了防雷技术的研究难度。

一、输电线路雷电的原因及危害的种类
1.1输电线路雷电的产生
雷电是自然界中一种常见的放电现象。

通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。

当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。

1.2输电线路雷电危害的种类
输电线路线路上出现的大气过电压有两种,一种是雷直击于线路引起的,称为直击雷过电压;另一种是雷直击线路附近地面,由于电磁感应所引起的,称为感应雷过电压。

雷击的危害主要有三方面:
(1)直击雷。

是指雷云对大地某点发生的强烈放电。

它可以直接击中设备,雷电击中架空线,如电力线,电话线等。

雷电流便沿着导线进入设备,从而造成损坏。

(2)感应雷。

它可以分为静电感应及电磁感应。

一旦雷云对某目标放电,雷云上的负电荷便瞬间消失,此时导线上的大量正电荷依然存在,并以雷电波的形式沿着导线经设备入地,引起设备损坏。

(3)地电位提高。

当10kA的雷电流通过下导体入地时,我们假设接地电阻为10'Ω,根据欧姆定律,我们可知在入地点A处电压为100kV。

二、输电线路防雷接地技术的四道防线
2.1为了避免导线受雷击,可以在线路上设置避雷针和避雷器,也可以通过改用电缆的方式避免导线受雷击;
2.2当输电线路的避雷线一旦遭遇雷电侵袭时,要最大限度的避免和限制线路绝缘闪络现象的发生。

为此,进行避雷线接地方式的改进和线路绝缘性能的增强则显得非常重要,对于个别杆塔,要安装避雷器;
2.3如果线路绝缘受到雷击出现闪络,不要进行工频电弧的转变,这样就不会导致短路故障的发生,也就不会出现跳闸现象。

对此,需要降低绝缘上工频电场的强度,或电网中性点的接地方式改为不直接接地的方式;
2.4如果出现跳闸,也不要马上切断电力供应。

对此,可以安装自动重合闸,或改用双回路或环网进行供电。

三、输电线路防雷措施分析
高压送电线路各种防雷措施都有其针对性。

现对生产运行部门常用的架空输电线路防雷措施简述如下:
3.1安装避雷器。

避雷线的架设在一定程度上降低了导线上的感应过电压,但不是完全消除,这就要求安装避雷器来将雷电流泄放到大地,从而限制过电压,保障输电线路及设备的安全。

未沿全线架设避雷线的35kV~110kV架空输电线路,应在变电所1km~2km的进线段架设避雷线。

此外,发电厂、变电所的35kV及以上电缆进线段,在电缆与架空线的连接处应装设阀型避雷器,连接电缆段的1km架空线路应架设避雷线。

3.2要降低杆塔的接地电阻。

对于平原地带的杆塔来说,任何一根杆塔都要配备接地装置,并且要与避雷线连接,来提高输电线路防雷的可靠性和实用性;对于一般高度的杆塔来说,为了提高线路耐雷水平与降低雷击跳闸率,降低杆塔冲击接地电阻是最有效和经济的方法,还要对同一条线路进行逐段改造,把邻近杆塔接地连接,来降低相邻杆塔的接地电阻,并将杆塔延伸至周边土壤电阻率较低的地方;对于山区地带的杆塔来说,通常在四个杆塔的底部应用打深井加降阻剂或采用长的辐射地线,来增加土壤与地线的接触面积使电阻率降低,实现输电线路的防雷。

3.3加强绝缘和采用不平衡绝缘方式。

在雷电活动强烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。

因为这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。

规程规定:全高超过40m的有地线杆塔,每增高10m应增加一片绝缘子。

随着同杆塔架设双回线路的不断出现,当普通的防雷措施不能满足要求时,采用不平衡绝缘方式可避免双回线路在遭受雷击时同时跳闸。

其原理是两回路的绝缘子片数不同,遇到雷击情况时,绝缘子片数少的一回路先闪络,闪络后的导线相当于避雷线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平,使之不发生闪络,保持连续供电。

3.4装设自动重合闸装置。

由于线路绝缘具有自恢复性能,大多数雷击造成的闪络事故在线路跳闸后能够自行消除。

因此,安装自动重合闸装置对于降低线路的雷击事故率具有较好的效果。

据统计,我国110kV及以上的高压线路重合闸成功率达75%~95%,35kV及以下的线路成功率约为50%~80%。

因此,各级电压等级的线路均应尽量安装自动重合闸装置。

信息请登陆:输配电设备网。

3.5加强雷电监测,消除设备隐患。

雷击闪络中单相闪络机会最多,闪络地点也是一基杆塔比较多见,但有时也有连续几基同时闪络,或相隔几基闪络的。

所以,故障巡查时,不能只查到一个故障点就结束故障巡视,而应把全区段查完。

四、输电线路杆塔接地降阻措施的探讨
对于接地电阻超标的杆塔进行降阻改造是提高线路耐雷水平保证线路安全运行的重要措施。

但对输电线路来说,由于降阻主要是出于防雷的需要,所以对降阻措施又有明确的要求,即以降低杆塔冲接接地电阻为主要目的。

所以对杆塔降阻措施应考虑以下几方面的问题:(1)关于水平接地体;(2)关于垂直接地体;(3)关于降阻剂的使用;(4)关于工程施工;(5)关于运行维护。

五、输电线路的维护
为了防止雷击跳闸停电,在防雷技术上应多做研究,输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率,以及对防雷设备接地情况进行检察,应根据地形、气候等条件综合考虑运行方式;从实际出发实行输电线路状态检修是电网发展的必然要求,也是输电线路管理水平不断提高的需要,如增加巡视站,清理线路旁的树枝等;应该尽量避免电能在输电网中的损耗,电力网在实际运行中可能由于带电设备绝缘不良而有漏电损耗。

这种损耗可以通过加强电力网的维护工作来降低,维护工作主要是定期清扫线路、变压器、断路器等的绝缘子和绝缘套管等;应综合考虑系统的运行方式、防止雷击永久性故障和降低雷击跳闸率,还要根据线路经过地区雷电活动的强弱、地形地貌特点、清理线路周围的不利因素、加装线路避雷器和接地电阻监测等措施,以降低雷电天气对输电线路造成的危害。

结语
国家应该提高对输电线路防雷措施的认识。

同时,要降低电力系统过电压能力,提高防雷保护水平,优化电力系统的经济效益。

我国的地形比较复杂,多山地、盆地和丘陵,防雷措施的改造和加强势在必行。

参考文献:
[1]杜澍春.关于输电线路防雷计算中若干参数及方法的修改建议.电网技术,2014,(12).
[2]程学启,咸日常.线路避雷器在输电线路防雷中的应用.中国电力,2013,(8).
[3]李永坚.基于现状分析改进山区输电线路的防雷工作.城市建设理论研究,2012(2).。

相关文档
最新文档