计算方法--矩阵特征值的数值计算方法(2011).
数值计算方法 9矩阵特征值的数值计算

两步算法的思路就是先利用初等反射阵批量约化消元的特点,将原始 矩阵用有限次的初等反射变换约化为与之正交相似的上Hessenberg阵, 然后使用平面旋转变换对实施算法构造相似矩阵序列,以求出亦即的 全部特征值。
4. 两步QR算法计算步骤
显然,初等反射矩阵H具有对称性和正交性,这样y=Hx是一个正交变换。 ➢初等反射变换主要用在以下两个方面: 等模反射变换 向量的约化消元
9.3 矩阵的QR分解
9.3.1 矩阵的初等反射变换
等模反射变换 定理9-3(等模反射定理)设x,y是两个互异的n维列向量,且2范数
相等,则存在一个初等反射阵H,使得Hx=y。 例9-11 等模反射变换。注意不唯一性。
p*Leabharlann 22n时,rB
max{ 2 p 1 p
,
n 1
p }最小。 p
例9-6,例9-7 原点平移加速。
2 原点平移的反幂法 ➢幂法与反幂法可以求矩阵的最大和最小特征值,对其他特征值就无
能为力了。但是可以将原点平移技术与反幂法结合起来,就可求 出任一个特征值(如果对所有的特征值有大概的估计的话)。
➢具体的作法:假设A在p附近有一个特征值,做原点平移B=A-pE, 用反幂法求B的最小特征值,给其加上p,就是要求的特征值。
例9-8,例9-9 原点平移加速。
9.3 矩阵的QR分解
9.3.1 矩阵的初等反射变换
➢ 矩阵的初等反射变换,又称镜面反射变换,或Householder(豪斯 荷尔德)变换,是一种正交变换。
9.4 QR算法
9.4.2 两步QR算法 2. 矩阵与上Hessenberg矩阵的正交相似 引入上Hessenberg阵的原因是,若对上Hessenberg阵进行分解,由 于的次对角线以下元素均为零,只需使用次构造方便的平面旋转变换 即可完成分解,显然这要比对一般矩阵进行分解简便得多。利用这个 特点给出的两步算法,可以降低基本算法的计算过程中对矩阵做分解 的计算量。
矩阵特征值计算

矩阵特征值计算
1 矩阵特征值计算
矩阵特征值计算是数学分析中一种重要的概念,它与矩阵的属性
密切相关。
一般情况下,矩阵特征值是指与矩阵有关的实值函数。
它
可以提供有关矩阵行列式和特征向量的有关信息。
矩阵特征值计算的定义为:设A是m×n的实矩阵,若存在一个实
数λ,使得A的每个元素都等于λ的倍数,则称λ为A的特征值(eigenvalue)。
所有不同的特征值构成A的特征值多项式,即特征
多项式的多项式,由
λ ^ n+λ ^ (n-1)+...+λ ^ 1+λ ^ 0
组成。
这里λ重复出现n次,证明A有n个线性无关的特征向量。
特征值是矩阵分析中最重要的因素。
一个矩阵的特征值有助于分
析数学问题,特别是矩阵和相对应的特征向量,以及A的分解及A的秩。
特征值及其特征向量也有助于我们解决具体问题,如求解最大值、最小值、最优解等。
计算矩阵特征值一般有两种方法:一种是近似方法,即迭代法;
另一种是精确方法,即行列式法和特征多项式法。
迭代法可以快速求
得与原矩阵几乎相等的特征值,但精确的特征值只能通过行列式法和
特征多项式法求出。
由于矩阵特征值的重要性,众多学者和研究者致力于提出更好的特征值计算方法。
而在数学和计算机科学领域,研究者更多地关注矩阵特征值,研究其计算方法和性能,以求取更好的计算效率提高计算精度。
求矩阵特征值的方法

求矩阵特征值的方法矩阵特征值是矩阵理论中的一个重要概念,它在许多领域中都有着广泛的应用,如物理学、工程学、计算机科学等。
求矩阵特征值的方法有多种,下面将介绍其中的三种常用方法。
一、特征多项式法特征多项式法是求矩阵特征值的一种常用方法。
它的基本思想是将矩阵A与一个未知数λ相乘,得到一个新的矩阵B=A-λI,其中I为单位矩阵。
然后求解矩阵B的行列式,得到一个关于λ的多项式,称为特征多项式。
矩阵A的特征值就是使特征多项式等于零的λ值。
具体步骤如下:1. 构造矩阵B=A-λI。
2. 求解矩阵B的行列式det(B)。
3. 解特征多项式det(B)=0,得到矩阵A的特征值λ。
二、幂法幂法是求矩阵特征值的一种迭代方法。
它的基本思想是从一个任意的非零向量开始,不断地将其乘以矩阵A,直到向量的方向趋于特征向量的方向,同时向量的模长趋于特征值的绝对值。
具体步骤如下:1. 选择一个任意的非零向量x0。
2. 迭代计算xn+1=Axn/||Axn||,其中||Axn||为Axn的模长。
3. 当xn+1与xn的差值小于某个预设的精度时,停止迭代,此时xn 的模长即为矩阵A的最大特征值,xn/||xn||即为对应的特征向量。
三、QR分解法QR分解法是求矩阵特征值的一种数值方法。
它的基本思想是将矩阵A 分解为QR,其中Q为正交矩阵,R为上三角矩阵。
然后对R进行迭代,得到一个对角矩阵,对角线上的元素即为矩阵A的特征值。
具体步骤如下:1. 对矩阵A进行QR分解,得到A=QR。
2. 对R进行迭代,得到一个对角矩阵D,对角线上的元素即为矩阵A的特征值。
以上三种方法都有其优缺点,具体选择哪种方法取决于实际应用场景和计算需求。
在实际应用中,还可以结合多种方法进行求解,以提高计算精度和效率。
矩阵特征值的数值解法

矩阵特征值的数值解法矩阵的特征值是在矩阵与其特征向量之间的关系中的数值解。
特征值在各个领域中都有广泛应用,包括物理、工程、金融等。
在解决实际问题时,我们经常需要计算矩阵的特征值,因此研究如何求解矩阵特征值的数值方法是非常重要的。
1. 幂迭代法(Power Iteration)幂迭代法是求解矩阵特征值的一种简单而常用的数值方法。
它的基本思想是通过不断迭代矩阵与向量的乘积,使得向量趋近于该矩阵的一个特征向量。
具体步骤如下:(1)初始化一个非零的初始向量x。
(2)进行迭代计算,即$x^{(k+1)}=Ax^{(k)}/,Ax^{(k)},$。
(3)当向量x的相对误差小于一些预设的精度要求时,停止迭代,此时的x即为矩阵A的一个特征向量。
(4)将x带入特征值的定义式$\frac{Ax}{x}$,计算出特征值。
幂迭代法的优点是简单易实现,计算速度较快,缺点是只能求解特征值模最大的特征向量,而且对于存在特征值模相近的情况,容易收敛到错误的特征值上。
2. QR迭代法(QR Iteration)QR迭代法是一种较为稳定的求解矩阵特征值的数值方法。
它的基本思想是通过不断进行QR分解,使得矩阵的特征值逐渐收敛。
具体步骤如下:(1)将矩阵A进行QR分解,得到正交矩阵Q和上三角矩阵R,令$A_1=RQ$。
(2)将$A_1$再次进行QR分解,得到新的矩阵$A_2=R_1Q_1$。
(3)重复步骤(2),直到得到收敛的矩阵$A_k$,此时$A_k$的对角线上的元素即为矩阵A的特征值。
QR迭代法的优点是对于特征值模相近的情况仍然能够收敛到正确的特征值上。
缺点是每次QR分解都需要消耗大量的计算量,迭代次数较多时计算速度较慢。
3. Jacobi迭代法(Jacobi's Method)Jacobi迭代法是一种通过对称矩阵的对角线元素进行迭代操作,逐步将非对角元素变为零的求解特征值的方法。
具体步骤如下:(1)初始化一个对称矩阵A。
求矩阵特征值的方法

求矩阵特征值的方法矩阵特征值是线性代数中一个非常重要的概念,对于矩阵的特征值和特征向量的求解是解线性代数问题和应用的关键之一。
下面将从基本概念、性质、求解方法等方面全面介绍矩阵特征值的方法。
一、基本概念矩阵特征值是指对于一个n阶矩阵A,存在常数λ,使得线性方程组(A-λI)x = 0有非零解x存在。
其中,I是n阶单位矩阵。
λ称为矩阵A的特征值,而满足(A-λI)x = 0的非零向量x称为A的对应于特征值λ的特征向量。
二、性质1. 矩阵A和其转置矩阵A^T具有相同的特征值,但对应的特征向量不同。
2. 矩阵的特征值是与矩阵的倍数无关的。
3. n阶矩阵A的特征值个数不超过n个,包括相同特征值重数。
即重特征值可以有多个线性无关的特征向量。
4. 矩阵的特征向量是线性无关的。
三、求解方法1. 特征值的定义法根据特征值的定义,我们将(A-λI)x = 0进行变换,得到(A-λI)x = 0,即(A-λI)x = 0。
利用行列式的性质求解此方程,得到特征值λ的值,再带入方程组中求解特征向量。
2. 特征值的代数重数和几何重数特征值λ是使(A-λI)x = 0有非零解的λ值,λ称为矩阵的代数重数。
而对应特征值λ的解向量x称为矩阵的特征多项式的零空间,零空间的维数称为矩阵的几何重数。
通常,代数重数大于等于几何重数。
3. 矩阵的特征向量特征向量是矩阵A与特征值λ的关联,通过求解(A-λI)x = 0可以得到特征向量。
特征向量是在特征值确定的情况下,通过解方程组取出的非零向量。
4. 特征值和特征向量的计算法常用的计算特征值和特征向量的方法有幂法、反幂法、QR方法、稀疏特征问题求解方法等。
(1)幂法幂法是求解矩阵最大特征值和特征向量的一种迭代方法。
首先初始化一个非零向量b0,然后进行迭代计算,直到满足迭代终止条件。
迭代过程为:b(k+1) = A*b(k),其中b(k)表示第k次迭代后的向量。
最后得到的向量b即为矩阵A的最大特征值对应的特征向量。
矩阵特征值求法的十种求法(非常经典)

矩阵特征值求法的十种求法(非常经典)以下是矩阵特征值求法的十种经典求法:1. 幂法(Power Method)幂法(Power Method)幂法是求解特征值的常用方法之一。
它基于一个重要的数学原理:对于一个非零向量$x$,当它连续乘以矩阵$A$的$k$次幂后,$Ax$的方向将趋于特征向量相应的特征值。
这种方法通常需要进行归一化,以防止向量过度增长。
2. 反幂法(Inverse Power Method)反幂法(Inverse Power Method)反幂法是幂法的一种变体。
它通过计算矩阵$A$的逆来求解最小的特征值。
使用反幂法时,我们需要对矩阵$A$进行LU分解,以便更高效地求解线性方程组。
3. QR方法QR方法QR方法是一种迭代方法,可以通过将矩阵$A$分解为$QR$形式来逐步逼近特征值。
这种方法是通过多次应用正交变换来实现的,直到收敛为止。
QR方法不仅可以求解特征值,还可以求解特征向量。
4. Jacobi方法Jacobi方法Jacobi方法是一种迭代方法,通过施加正交相似变换将矩阵逐步变为对角矩阵。
在每个迭代步骤中,Jacobi方法通过旋转矩阵的特定元素来逼近特征值。
这种方法适用于对称矩阵。
5. Givens旋转法Givens旋转法Givens旋转法是一种用于特征值求解的直接方法。
它通过施加Givens旋转矩阵将矩阵逐步变为对角矩阵。
这种方法是通过旋转矩阵的特定元素来实现的。
6. Householder变换法Householder变换法Householder变换法是一种用于特征值求解的直接方法。
它通过施加Householder变换将矩阵逐步变为Hessenberg形式,然后再进一步将其变为上三角形式。
这种方法是通过对矩阵的列向量进行反射来实现的。
7. Lanczos方法Lanczos方法Lanczos方法是一种迭代方法,用于对称矩阵的特征值求解。
该方法创建一个Krylov子空间,并使用正交投影找到最接近特征值的Krylov子空间中的特征值。
矩阵特征值的计算

物理、力学和工程技术中的许多问题在数学上都归结为求矩 阵的特征值和特征向量问题。
� 计算方阵 A 的特征值,就是求特征多项式方程:
| A − λI |= 0 即 λn + p1λn−1 + ⋅ ⋅ ⋅ + pn−1λ + pn = 0
的根。求出特征值 λ 后,再求相应的齐次线性方程组:
(13)
为了防止溢出,计算公式为
⎧ Ay k = xk −1
⎪ ⎨
m
k
=
max(
yk )
( k = 1, 2, ⋅ ⋅⋅)
⎪ ⎩
x
k
=
yk
/ mk
(14)
相应地取
⎧ ⎪
λ
n
⎨
≈
1 mk
⎪⎩ v n ≈ y k ( 或 x k )
(15)
9
(13)式中方程组有相同的系数矩阵 A ,为了节省工作量,可先对
11
11
≤ ≤ ⋅⋅⋅ ≤
<
λ1 λ2
λn −1
λn
对应的特征向量仍然为 v1, v2 ,⋅⋅⋅, vn 。因此,计算矩阵 A 的按模
最小的特征值,就是计算 A−1 的按模最大的特征值。
� 反幂法的基本思想:把幂法用到 A−1 上。
任取一个非零的初始向量 x0 ,由矩阵 A−1 构造向量序列:
xk = A−1xk−1 , k = 1, 2, ⋅⋅⋅
如果 p 是矩阵 A 的特征值 λi 的一个近似值,且
| λi − p |<| λ j − p | , i ≠ j
1 则 λ i − p 是矩阵 ( A − pI )−1 的按模最大的特征值。因此,当给
矩阵特征值问题的数值计算

矩阵特征值问题的计算方法特征值问题:A V=λV¾直接计算:A的阶数较小,且特征值分离得较好 特征值:det(λI-A)=0,特征向量:(λI-A)V=0¾迭代法:幂法与反幂法¾变换法:雅可比方法与QR方法内容:一、 特征值的估计及其误差问题二、 幂法与反幂法三、 雅可比方法四、 QR方法一、 特征值的估计及其误差问题 (一)特征值的估计结论 1.1:n 阶矩阵()ij n n A a ×=的任何一个特征值必属于复平面上的n 个圆盘:1,||||,1,2,ni ii ij j j i D z z a a i n =≠⎧⎫⎪⎪=−≤=⎨⎬⎪⎪⎩⎭∑"(10.1) 的并集。
结论1.2:若(10.1)中的m个圆盘形成一个连通区域D,且D与其余的n-m个圆盘不相连,则D中恰有A的m个特征值。
(二)特征值的误差问题结论1.3:对于n 阶矩阵()ij n n A a ×=,若存在n 阶非奇异矩阵H ,使得11(,,)n H AH diag λλ−=Λ=", (10.2)则11min ||||||||||||||i p p p i nH H A λλ−≤≤−≤∆ (10.3)其中λ是A A +∆的一个特征值,而(1,,)i i n λ="是A 的特征值,1,2,p =∞。
结论1.4:若n 阶矩阵A 是实对称的,则1min ||||||i p i nA λλ≤≤−≤∆。
(10.4)注:(10.4)表明,当A 是实对称时,由矩阵的微小误差所引起的特征值摄动也是微小的。
但是对于非对称矩阵而言,特别是对条件数很大的矩阵,情况未必如此。
二、 幂法与反幂法(一) 幂法:求实矩阵按模最大的特征值与特征向量假设n 阶实矩阵A 具有n 个线性无关的特征向量,1,iV i n =",则对于任意的0nX R ∈,有 01ni ii X a V ==∑,从而有01111112((/))n nk k k i i i i ii i nk k i i i i A X a A V a V a V a V λλλλ======+∑∑∑.若A 的特征值分布如下:123||||||||n λλλλ>≥≥≥",则有01111()k kk A X a V λλ→∞⎯⎯⎯→为对应的特征向量须注意的是,若1||1λ<,则10kλ→,出现“下溢”,若1||1λ>,则1kλ→∞,出现“上溢”,为避免这些现象的发生,须对0kA X 进行规范化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)对任意正整数 m ,m 是矩阵 A m 的特征值;
1 A (4)当矩阵 可逆时, 是矩阵 A 1 的特征值;
并且
x 仍然是矩阵 kA, kE A, A m 的分别对应于特征值
k , k , m , 1 的特征向量。
类似:若
是A的特征值,
( )是 ( A) 的特征值;
det(A3 2 A 4E)
设 f ( x) x 3 2x 4 ,则 f ( A) A3 2 A 4E 因为 A 的特征值为 1,2,3,所以
f ( A) A3 2 A 3E 的特征值为
f (1) , 1
f (2) , 4 f (3) 21
于是 det(A3 2 A 4E) (1) 4 21 84
AX X
成立,则 称为方阵A的特征值, X 称为A的对应于特征值 的特征向量。
矩阵的特征值与特征向量 如
1 A 2
1 4
取 2
1 X 1
1 AX 2
1 1 2 X 4 1 2
则特征向量 2 是特征值,
1 是特征向量. X 1
矩阵的特征值与特征向量
特征方程、特征根
A E 称为方阵A的特征多项式 记作f ( )
显然,A的特征值就是特征方程的根, 也称特征根。
注意
n阶方阵A有n个特征值。 (重根按重数计算),
1 0 0 求矩阵 A 2 5 2 的特征值和特征向量。 2 4 1
全部特征向量为 kp2 lp3
其中数 k , l 是不同时为零的任意常数。
如果矩阵
A 满足 A2 A,
则称 A
是幂等矩阵。
(幂等矩阵的特征值只能是0或1)
特征值与特征向量的性质
设n阶方阵A的n个特征值为 1 , 2 ,, n 则必有
(1) 12 n A
n
(2)1 2 n aii
的充要条件是 A具有n个线性无关的特征向量 . ( 2) 如果A R nn 有m 个( m n)不同的特征值 1 , 2 ,... m , 则对应的特征向量 x1 , x 2 ,... x m 线性无关
各不相同, 那么向量组 p1 , p2 ,, pm 线性无关。
设 A 为n阶矩阵,则矩阵A 和 A 的特征值相同。
T
设 是n 阶矩阵A 的特征值, x 是A的属于 特征值 的特征向量,则
(1)对任意常数 k ,数 k 是矩阵 kA 的特征值;
(2)对任意常数 k ,数 k 是矩阵 kE A 的特征值;
0 1 1 0 0 0
0 从而解得基础解系 p1 1 1
x 2 x3 0 方程组 x1 0
的全部特征向量为 kp1 其中k为任意非零常数。
当 2 3 1 时,求解齐次线性方程组 ( A E ) x 0
(其中)
( A) a0 a1 A a2 A2 am Am , ( ) a0 a1 am m
如果x1 , x2 是属于 0的两个特征向量,
那么 k1 x1 k 2 x2 也是属于 0 的特征向量。
设3阶方阵 A 的特征值为1,2,3,求
i 1
n
其中 aii 是矩阵A的主对角线元素之和,称为矩阵
i 1
的迹,记作tr ( A) 设 n 阶方阵A可逆的充分必要条件是A的n个 特征值全不为零。
特征值与特征向量的性质
设n阶方阵A的n个特征值为 1 , 2 ,, n 则必有
(1) 12 n A
nHale Waihona Puke (2)1 2 n aii
河北联合大学
heut-yjs@ heuuyjs@
1 2 3 4 5 4 6
• 理论基础 • 幂 法
• 规范幂法 • 反幂法 • QR分解法 • 参考文献
概念回顾 特性回顾
方阵的特征值与特征向量
特征值与特征向量的性质
矩阵的特征值与特征向量 A : n 阶方阵, 数 零列向量 X 使关系式 若 和 n 维非
i 1
n
其中 aii 是矩阵A的主对角线元素之和,称为矩阵
i 1
的迹,记作tr ( A) 设 n 阶方阵A可逆的充分必要条件是A的n个 特征值全不为零。
特征向量间的线性相关性
设 p1 , p2 ,, pm 分别为方阵 A 的属于特征值
1,2, ,m 的特征向量,如果 1,2, ,m
0 0 0 1 2 1 A E 2 4 2 ~ 0 0 0 2 4 2 0 0 0
得对应的方程组为 x1 2 x2 x3 0 从而解得基础解系
2 1 p 2 1 , p3 0 0 1
矩阵
A的特征多项式为
1 0 5 4
0 2 (3 )(1 ) 2 1
A E 2 2
令 A E 0 当
特征值为
1 3, 2 3 1.
1 3
时,求解齐次线性方程组
( A 3E ) x 0
1 2 0 0 A 3E 2 2 2 ~ 0 2 4 4 0
设与为相似矩阵(即存 在非奇异矩阵 P使 B P 1 AP),则 (1) A与B有相同的特征值; ( 2)如果y是B的特征向量,则 Py是A的特征向量.
定理6说明,一个矩阵 A经过相似变换 (A B P 1 AP ),则A的特征值不变 .
( 1 ) A R nn可对角化,即存在非奇 异 矩阵P使 1 2 1 P AP ... n