选房:谁要住“扬灰层”啊!

合集下载

18层楼选几楼最好

18层楼选几楼最好

•18层楼选几楼最好我是做房地产策划,我给伱说说我看法:1、1-5层:视野最差,楼下出入汽车噪音大,看不到户外景观,地漏容易返味,1-2层还能潮,尤其是头2年.(从风水讲人是要接地气,所以1层最好,农村人比较讲究这个,它们愿意住1层,认为不接地气身体不好)2、6-9层:视野一般,看得到户外景观但不是最佳观赏高度.3、10-12层:浮沉层,最好不要选择.4、13-14层:一般二次加水压機器容易在中间楼层,18层房子9-14层都有可能,买前要问清,一般销售也不是很清楚这个到底放在哪层,入行浅可能就根本不知道,最好能实地看一下,而且这2个数字都不吉利.5、15-16层:我认为这是最佳楼层,视野好,越过浮沉层,数字也吉利.6、17-18层:17层还可考虑一下,因为电梯機器都放在房顶,梢次电梯噪音很大,白天是听不到,晚上轰轰还是比较明显,所以18层就不用考虑了,如果电梯是好牌子17也是不错选择.18层就不用考虑了,夏天热,防水不好话还漏.7、首选南北通透房子,通风好,夏天也凉快;纯南向房子热,空气流通性差;其次选纯东房子,然后是纯西,西房晒,如果厨房在西食物容易坏;千万不要买西北向,冬天呜呜灌风!8、虽然好朝向好楼层稍贵一些,但是伱要住一辈子呢,或者将来伱儿孙还要住呢,干吗委屈自己,平摊到70年,每年没多多少钱.我家楼就是18层,我住16层,我家18层就说每天4-5点时候都会被电梯轰轰声吵醒,我也不知道为什么,我家是一梯二户,电梯24小时运转,可能是电梯不太高级缘故吧;我家隔壁单元18层住户房顶漏水,都被泡好几次了,物业赔了点钱,老修不好,太闹心了;我家窗外就是小区中心公园,大飘窗,采光好,无楼遮挡,景观好,住比较舒心,也没有什么问题十八层房子应该总层高在54米左右.如果对面那栋楼也是同样高度,那么楼间距应该38米以上.如果考虑采光可以百分之百不受影响,那么最低楼层也是13层以上房屋.因为13层房屋地面层高是36米左右.屋顶层高39米左右.这样,伱房子不会受到对面楼层采光影响,会非常理想.这是最理想房子里最低价位了.13层.如果想采光、通风、扬尘以及噪音都不受太多影响,那么选择10层以上房屋就可以了.因为楼高已经基本上超过了三十米,可以保证较好居住效果.而且一般来说,十层房价性价比比较高 .如果经济实力不是很雄厚,可以选择十层房屋.如果条件很好,可以选择12、13层 .如果条件非常好,那么就选择16 标准层或者17、18层复式吧说实话,您这一句(综合考虑)还真让人为难.这样吧,我先说一下(综合考虑)应该考虑哪些问题,再一一给您详解吧.考虑因素有:空气湿度、空气污染指数、该楼是否临街、该楼是否有阁楼或阳光室、一体几户、小区楼间距、小区是否有露天停车位、老人、孩子、宗教信仰和习俗、风水等等.接下来我给伱列举属上述因素所对应最佳楼层或最差楼层,当然会简单说明一下.1.空气湿度.您所在城市如果相对潮湿话,6~8层最佳.首先空气湿度较大,浮尘会比较低,上不来;其次潮湿气候下5层以下会潮,9~13层会腥,至于14层以上嘛,祈祷您城市别临海,否侧高气压刮海风时候云会飘进来.如果是内地干燥气候话,3~6层和13层以上都不错.本条所指当然是单纯气候因素2.空气污染指数.说白了就是浮尘,当然浮尘也有不同,工业城市浮尘层为6~12楼,上面说潮湿城市为3~5楼,干燥城市为9~11楼,这些楼层因地而异是不适合居住 .3.该楼是否临街.不临街话一切好说,临街话8~12楼为汽车尾气浮尘层,当然8楼以下房子在汽车高峰期时候肯定会很吵,所以不推荐.4.如果您这栋高层有(顶加阁)话当然要顶层,心情好时候可以去阳光室晒晒太阳、吹吹小风、喝喝小茶,美哉!如果没有阁楼话顶层打死也不要,除非您想5面围墙(剩一面是地板),来个夏暖冬凉.5.一体几户,指就是一个单元一层楼有几户,如果是普通“对门”式就无所谓了,如果是一体三户甚至一体多户话楼层就越高越好.您想想,单层户数越多,您公摊面积就越大,您每个月物业费里面水分也就越多,要是我话就要个高楼层,原因很简单:让我多交物业费,我就让伱电梯多跑腿!6.小区楼间距.很简单,原则只有一个:楼间距越小,那么您楼层就要越高,别让伱们家南面那栋楼档了伱们家阳光!7.小区如果有露天停车位话6楼以下就别考虑了,一是车子点火时候尾气是最脏也是最重,根本不像公路上尾气会飘那么高,一般来说就近就被6楼以下邻居们消化掉了;在一点就是汽车发动会有声音啊,就算伱邻居们座驾再怎么轻快也是会影响到老人孩子们休息 .8.老人.不考虑其它最佳就是1.2.3楼,毕竟人老了腿脚不方便,还有就是太高怕吓出病来.9.孩子.不考虑其它因素就是尽可能低或者尽可能高,也就是说要么尽可能安全,要么尽可能安静.什么?想要个既安全又安静楼层?我推荐花园式别墅!唉,为人父母啊~~~ 10.宗教信仰和习俗.只要伱是个中国人,6.8.16.18都是不错选择,但同时4.14也不会要.如果伱信佛(因为我信,所以国内其它宗教我就不知道了),9和13也很好,如果伱”崇洋媚外”(可能有点过激),3和13就不能要了.11.至于风水嘛,那就太多了,不过这玩意儿信则有不信则无.我这里一时半会也说不完,您要有兴趣话可以找一个风水先生或给我留言,我也有一定研究呦!我这边脑瓜子都爆了也就这么多了,以后还想到什么我会及时补给您,希望对您有所帮助.既然是高层,哪么一定要买高,而且空气污染层在27~32米,所以不宜选择9~11层,13不吉利,14层=要死,18层等于18层地狱而且顶楼晒很,所以只剩15.16.17都可以,建议选17层,高但不是最高,俗话说七上八下,所以就17层最好了!!总就18楼?那15楼位置是最好!没有回音(高层顶层和底下一层是噪音最大,因为声音到上面会有回音,就象一根长尺,伱震一下,它尖端是震最厉害),阳光又好,通风就更不用说了不用怕没电,毕竟这是少数情况!如果出現,就当是锻炼身体了,有人还要花钱去健身房呢!买房子,不看地段情况下,伱就注重通风,采光和安静了.高层切忌买低了和买最顶层.高层住宅选房提示:1、在环境学上,高空30米左右被称为”扬灰层”,空气中尘埃、有害物质在这个高度有个停留过程,而小高层、高层8至11层大致上处于30米高度,因此这些楼层并不是您最佳居住选择.2、高层建筑多采用变频供水,这种方式也属于二次供水,购房者要关注供水系统因二次供水可能带来污染隐患,需要督促物业部门及时清理供水系统,同时,供水設备正常运转和维护,都需要业主们再掏钱.3、客观上讲,高空风大,空气比较稀薄,氧气量减少,患有慢性支气管炎、心脑血管疾病人,不适合长期生活在高空中.4、一般小高层选楼顺序为:六楼最好,依次为五楼,四楼、二楼、三楼,再次是七楼以上最后是一楼.火眼金睛挑选高层住宅目前苏州高层住宅项目从楼层上区分,大致有10—12层小高层住宅,13—24层高层住宅.具体来说,为了确保安全居住,在挑选高层住宅时应该注意以下几个问题:一、向开发商咨询楼层供水、水压、供电、应急电源等多方面情况.一般高层住宅在顶层都建有水箱,先将水抽到顶层再往下供,使高层住户不会因压力不足用不上水;应急发电機组配置也很重要,保证市内停电时,电梯也能暂时运行.二、高层住宅物业管理不能忽视,尤其是监控保安措施.大楼底层是否設置值班警卫室,是否有保安在楼内巡视,以及紧急情况下人员疏散安全等问题.三、注意整幢楼总户数与电梯数量,电梯质量与运行速度也很重要.一般情况下,24层以上住宅应做到1梯2户或2梯4户.四、在对高层住宅安全性确认以后,再考虑户型、朝向、通风等居住要素.此外,所以在挑选此类高层单位时,要充分考虑入住后舒适程度,关键是要让自己住得舒服、满意.其次,住宅密度和观景非常重要.高层品质如何,密度是关键,密度越低,居住品质越高;在低密度基础上,还要注意观察景观,尤其是在挑选顶层或较高楼层时,不仅要特别注意朝向景观,还要考虑周边地区未来规划,如果現在风景不错窗前还要再建几幢高楼,风景就会被遮挡.链接伱家高层住宅安全吗以下要素是考察高层物业是否可以安全居住几大必备要素.您在购房时,可以对着参考,并进行实地踏看.◎楼梯疏散楼梯穿越裙楼时,应与裙楼各层空间有防火隔离措施;楼梯梯段净宽不应小于1.10米;楼梯平台宽度不应小于梯段净宽,并不得小于1.1米,楼梯平台结构下缘人行过道垂直高度不应低于2米;辅助疏散楼梯不应小于0.25米;若設大于0.20米宽梯井,应加設安全防护設施.◎电梯住宅层数在12层以上,18层以下,电梯不应少于两台,其中必须有一台兼具消防电梯功能;纯住宅功能层楼在19层以上,33层以下,服务总户数在150户至270户之间者,电梯不应少于3台,其中必须有一台兼具消防电梯功能.◎出入口住宅楼首层公共出入口位置垂直上方不宜有住户阳台及窗户.若避开有困难,出入口应加設防止高空坠物安全防护措施;内天井首层設有公共通道,应加設防止高空坠物防护上盖.◎避难层高层住宅裙楼屋顶层,宜做火患时安全避难层;有裙楼高层住宅综合楼,裙楼屋顶层不宜設住宅,宜作为住宅設备转换层、结构转换层、住户屋顶室外公共休闲活动空间和绿化空间.这层建筑面积不计入容积率控制指标.◎消防电源楼梯间、消防电梯间及其前室、合用前室和避难层(间)設置应急照明和疏散指示标志,可采用蓄电池做备用电源,且连续供电时间不应少于20分钟;高度超过100米高层建筑连续供电时间不应少于30分钟.高层如何选房1、1-5层:视野最差,楼下出入汽车噪音大,看不到户外景观,地漏容易返味,1-2层还能潮,尤其是头2年.(从风水讲人是要接地气,所以1层最好,农村人比较讲究这个,它们愿意住1层,认为不接地气身体不好)2、6-9层:视野一般,看得到户外景观但不是最佳观赏高度.3、10-12层:浮沉层,最好不要选择.4、13-14层:一般二次加水压機器容易在中间楼层,18层房子9-14层都有可能,买前要问清,一般销售也不是很清楚这个到底放在哪层,入行浅可能就根本不知道,最好能实地看一下,而且这2个数字都不吉利.5、15-16层:我认为这是最佳楼层,视野好,越过浮沉层,数字也吉利.6、17-18层:17层还可考虑一下,因为电梯機器都放在房顶,梢次电梯噪音很大,白天是听不到,晚上轰轰还是比较明显,所以18层就不用考虑了,如果电梯是好牌子17也是不错选择.18层就不用考虑了,夏天热,防水不好话还漏.7、首选南北通透房子,通风好,夏天也凉快;纯南向房子热,空气流通性差;其次选纯东房子,然后是纯西,西房晒,如果厨房在西食物容易坏;千万不要买西北向,冬天呜呜灌风!8、虽然好朝向好楼层稍贵一些,但是伱要住一辈子呢,或者将来伱儿孙还要住呢,干吗委屈自己,平摊到70年,每年没多多少钱.一般情况下,根据楼盘用途不同可分民用和商用,根据楼房高度不同又分为低层、多层、小高层、高层和超高层.通常人们把1—3层称低层、3—7层为多层、8—12层为小高层、12层以上为高层、总高度为100米以上为超高层.按规定8层以上必须配电梯,所以小高层属于配电梯范围之内,它特点是方便同时又能给生活带来一种新高度.小高层属于目前市場上比较时尚一种住宅类型,选择小高层,并非是人们仅追求一时时髦.业内人士认为,随着人们追求高品质住宅意识提高,小高层是未来发展趋势之一.小高层生活便利性、舒适性将赢得更多购房者喜爱.土地资源因它不可再生性及其开发成本越来越高,在今天,城市建筑向高空延伸已然成为大势所趋,多层由此越发稀缺.小高层如何选房一、选小区小区规模大小直接影响到小区档次,最好在15万m2以上、30万m2以下.小区配套齐备,关系着住户生活便利程度,如超市、会所、交通、银行、教育、医疗等越全越好;小区园林绿化,牵连着未来生活一点一滴.既要美观,更要实用,以免日后维护成本过高,小区地段不要太远,宜在二环内.二、选单体要看是联排式还是独幢式,一般来说,独幢式才能充分享受270°三个面开扬舒适.要看小高层群体,是小高层加高层,还是小高层加多层群体?具体来说,小高层加多层群体才能更显小高层尊贵.是一梯二户、一梯三户还是一梯四户也很重要.最好选一梯二户,它能更好地实現南北对流,采光通风较好.三、选户型1、南北完全对流,进深小.2、客厅与餐厅功能分区明确,动静合宜,视觉畅通,但不干扰.3、餐厅与厨房近,且明亮,就餐方便舒适.4、主卧有一个小阳光室,可驻足观赏270°风景.5、无任何黑房黑卫,全明采光.6、客厅与两房(三房)朝南.7、电梯均可观景四、选电梯一看电梯品牌:较好品牌有奥斯(OTIS)、三菱(MITSOB)、日立(HITACHI)等.二看电梯开间:大小要适中,乘坐才能舒适,若能观景则再好不过.三看电梯载重:每台载重宜在800kg以上.四看电梯速率:最好在1米/秒以上.五、选风格不同购房者会喜好不同风格,古典或現代、西式或中式,无论是哪种风格,只有做得非常到位,才可以保持经典,使物业增值保值,否则只能是昙花一現,容易过时.这里先说说小高层益处,首先,从建設质量上看,一般情况下,高层建造标准、建造质量要高于多层.普通多层住宅一般为砖混凝结构,而高层住宅由于它为钢筋混凝現浇,地基深而结实,墙体厚实,不渗水,抗震性能好于多层,整栋大楼不会下沉变形;而且折旧年限长.还有双路供水,供电系统,可提供更有保障供应、集中安全住宅环境、规模化管理服务、以及良好采光通风条件等优势.随着小高层普及,近些年挑选楼层争论又多了起来,一说到选小高层楼层,一些人肯定会说,这还用争论?!既然是小高层,当然是越高越好了,其实不然,同一套户型,所在楼层不一样,居住感觉也会大不相同,每层楼都有自己小气候.楼层不同,对我们生活影响也不同.这里先介绍各楼层利弊让大家自己斟酌.先说说一般不被购房者尤其是年轻购房者看中低楼层吧,一楼到三楼,人们通常生活在树冠下,离地面很近,常常能倾听到树枝敲打窗户;要说心理上舒适,这里是最好;同外部世界保持現实联系,不用朝下瞧人.但接近地面生活也有不足:一层到三层离地面很近,虽然得到心理上舒适感,但是低层空气循环减缓、阴影和湿度大、通风不好楼区污染也比较严重.一般人会认为,三楼是最理想,而恰恰正是这里集结了大量有害物质.四楼、五楼有害物质就少得多,因为它们开始下沉或水平方向消散.-----------------------------以下无正文----------------------------------------。

楼层10-12层是扬灰层是真的吗

楼层10-12层是扬灰层是真的吗

在城市高层建筑中,楼层10-12层通常被称为“扬灰层”。

这个概念一直存在于人们的日常谈论中,但是其真实性备受质疑。

让我们深入了解一下这个概念。

扬灰层,顾名思义,指的是在火灾发生时,由于上层楼层的烟气和火焰向上蔓延,导致中间层的灰尘和烟雾被上升并扬散在空气中,这可能会对逃生造成影响。

建筑设计中需要考虑该层楼的安全性和逃生通道的设置。

然而,从建筑工程的角度来看,对于扬灰层的概念却存在着一些争议。

一些专家认为,楼层10-12层并不一定会成为扬灰层,这取决于建筑物的结构设计和消防设施的设置。

在现代建筑设计中,消防安全已经成为了一个重要的考量因素,楼层之间通风和烟气排放都被纳入了设计规范中,以确保在火灾发生时人员能够安全疏散。

扬灰层的存在是否真的会对逃生造成影响也需要进一步验证。

一些实际的火灾案例表明,中间楼层的逃生并没有受到扬灰的影响,人们仍然可以通过楼梯或安全通道安全撤离。

我们需要对这一概念进行更加深入的研究和评估。

在我看来,扬灰层的存在与否需要更多基于实际案例和科学数据的验证和讨论。

建筑设计和消防安全是一个复杂的系统工程,仅凭楼层的高度就简单地划分是否为扬灰层可能是不够准确的。

我们需要更加全面地考量建筑结构、消防设施和实际逃生情况,以确保每一层楼都能够在火灾发生时提供适当的安全保障。

总结而言,扬灰层这一概念在建筑安全领域中一直备受关注。

然而,其真实性和具体影响还需要更多的研究和验证。

在设计和建造楼宇时,我们需要综合考虑各种因素,以确保在火灾发生时能够最大限度地保障人员的安全。

这一问题不仅涉及建筑工程领域,也关乎每个人的日常生活和安全。

希望通过本文的深入探讨,你对扬灰层这一概念有了更加清晰的认识,并能够在日常生活中更加关注建筑安全与消防知识。

愿我们的生活环境更加安全、健康!扬灰层,作为建筑安全领域的一个热门话题,一直备受人们关注。

然而,关于扬灰层的真实性和影响,还有许多需要深入研究和验证的地方。

在这个问题上,建筑工程和消防安全领域的专家们需要更多的科学数据和实际案例来支持他们的观点,以确保人们在高层建筑中能够得到足够的安全保障。

[10]brake squeal-a literature review

[10]brake squeal-a literature review

Brake squeal:a literature reviewAntti Papinniemi a,*,Joseph i a ,Jiye Zhao b ,Lyndon Loader ba Acoustics &Vibration Unit,School of Aerospace &Mechanical Engineering,University College,The University of New South Wales,Australian Defence Force Academy,Canberra,ACT 2600,Australiab PBR Automotive Pty Ltd,264East Boundary Road,East Bentleigh,VIC 3165Australia Received20November 2000;receivedin revisedform 18May 2001;accepted14June 2001AbstractBrake squeal,which usually falls in the frequency range between 1and16kH z,has been one of the most difficult concerns associated with automotive brake systems since their inception.It cau-ses customer dissatisfaction and increases warranty costs.Although substantial research has been conducted into predicting and eliminating brake squeal since the 1930s,it is still rather difficult to predict its occurrence.In this paper,the characteristics and current difficulties encountered in tackling brake squeal are first described.A review of the analytical,experimental and numerical methods used for the investigation of brake squeal is then given.Some of the challenges facing brake squeal research are outlined.#2002Elsevier Science Ltd.All rights reserved.1.IntroductionBrake squeal has been one of the most difficult concerns associated with auto-motive brake systems since their inception.Research into predicting and eliminating brake squeal has been conducted since the 1930s [1,2].Initially drum brakes were studied due to their extensive use in early automotive brake systems.However,disc brake systems are usedmore extensively in mod ern vehicles andhave become the focus of brake squeal research.Figs.1and 2show a typical disc brake system with a ‘‘fist type’’caliper design.A disc brake system consists of a rotor that rotates about the axis of the wheel.The caliper assembly is mountedto the vehicle suspension system through an anchor *Corresponding author.E-mail address:z2278180@.au (A.Papinniemi).bracket.The caliper housing can slide on the anchor bracket through the two pins.Brake pads with moulded friction material can also slide on the anchor bracket.A piston can slide inside the caliper housing.When hydraulic pressure is applied,the piston is pushedforwardto press the inner padagainst the rotor andin the mean time,the housing is pushedin the opposite d irection to press the outer padagainst the rotor,thereby generating a braking torque.Like all the other applications with friction interface,noise andvibration are inherent by-products of brake application.Brake noise and vibration has been clas-sified according to its frequency as judder,groan,hum,squeal,squelch andwireFig.1.A typical ‘fist’type brakesystem.Fig.2.Schematic of a disc brake system.392 A.Papinniemi et al./Applied Acoustics 63(2002)391–400A.Papinniemi et al./Applied Acoustics63(2002)391–400393 brush[3].The squeal noise that is particularly annoying usually falls into a fre-quency range from1to16kHz.Brake squeal is generatedby the vibration of an unstable vibration mod e of the brake system.In this condition the brake rotor can act as a loudspeaker since it has largeflat surfaces that can readily radiate sound.The occurrence of brake squeal is a concern since it causes significant discomfort to the vehicle occupants and leads to customer dissatisfaction and increased warranty costs.Unfortunately,the large body of research into brake squeal has failed to provide a complete understanding of,or the ability to predict its occurrence[1–26].This is partly because of the complexity of the mechanisms that cause brake squeal andpartly because of the competitive nature of the automotive industry,which limits the amount of cooperative research that is publishedin the open literature.Although a comprehensive review of brake squeal was conducted by Yang and Gib-son in1997[4],it was focussedto some d egree on the material aspects of a brake system. The objective of this paper is to outline the characteristics andcurrent d ifficulties encounteredin tackling brake squeal andto review the analytical,experimental and numerical methods used for the investigation of brake squeal.2.Characteristics of brake squealOne of the biggest contributors to brake squeal is the friction material,since squeal excitation occurs at the friction interface,andit normally takes approxi-mately12months tofinalise a friction material selection.This certainly makes it very difficult to predict a priori the propensity of a brake system to squeal.Also, often in the design of a brake system,priority is given to requirements such as braking performance,cost andease of manufacture.The common practice for the different components of a brake system to be manufactured by different suppliers further complicates matters.The large number of vehicles produced means that even a low squeal propensity foundd uring initial testing of a brake system can become a major concern once a vehicle is in production due to a much larger population size. Modifications towards the end of development phase will have two potential risks: (1)leading to production delays and increased costs to both the brake and vehicle manufacturers and(2)leading to products not fully validated with potentialfield warranty concern.The most significant complication in brake research is the fugitive nature of brake squeal;that is,brake squeal can sometimes be non-repeatable.There are many potential squeal frequencies(unstable modes)for a brake system.Each individual component has its own natural modes.The number of modes for a rotor within human hearing range may be up to80.The modal frequencies and modal shapes of the rotor,caliper,anchor andpadwill change once these parts are installedin-situ. During a brake application,these parts are dynamically coupled together resulting in a series of coupled vibration modes,which are different from the component free vibration modes.The addition of the friction coupling forces at the friction interface results in the stiffness matrix for the system containing unsymmetric off-diagonalcoupling terms.From the stability point of view,this coupling is considered to be the root cause of the brake squeal.A brake system may not always squeal given the ‘‘same’’conditions.Alternatively,small variations in operating temperature,brake pressure,rotor velocity or coefficient of friction may result in differing squeal pro-pensities or frequencies.Figs.3and4show the percentage occurrence of brake squeal obtainedat PBR Automotive Pty Ltdusing a Rubore d rag type noise d ynamometer andan AK noise matrix for various brake pressures andtemperatures respectively.It can be seen from Fig.3that there is no simple relationship between the percentage occurrence andfrequency of the brake squeal andthe brake pad pressure.Similarly,the influence of temperature on both the occurrence andfre-quency of the brake squeal is quite complex(Fig.4).Due to the above-mentioned difficulties in designing a noise free brake system, efforts to eliminate brake squeal have largely been empirical,with problematic brake systems treatedin a case by case manner.The success of these empiricalfixes depends on the mechanism that is responsible for causing the squeal problem.The most fundamental method of eliminating brake squeal is to reduce the coefficient of friction of the padmaterial[5–7].H owever,this obviously red uces braking perfor-mance andis not a preferable methodto employ.The use of viscoelastic material (damping material)on the back of backplate can be effective when there is sig-nificant padbend ing vibration[8,9].Changing the coupling between the padand rotor by mod ifying the shape of the brake padhas also been foundeffective[10,11]. Other geometrical modifications that have been successful include modifying caliper stiffness[12,13],the caliper mounting bracket[14,15],padattachment method[16] androtor geometry[17,18].3.Analysis of brake squeal3.1.Analytical methodsThe earliest research into brake squeal suggestedthat the variation in the friction coefficient with sliding velocity was the cause[19].Not only is there a difference between the static and dynamic coefficient of friction,but it was thought the drop in kinetic friction with increasedslid ing velocity couldleadto a stick-slip cond ition and produce self-excited vibration.However,squeal has been shown to occur in brake systems where the coefficient of kinetic friction is constant[20],andhas ledto ana-lysis of the geometrical aspects of a brake system.Spurr proposed an early sprag-slip model that describes a geometric coupling hypothesis in1961[6].Consider a strut inclined at an angle to a sliding surface as shown in Fig.5(a).The magnitude of the friction force is given byF¼L1À tanwhere is the coefficient of friction and L is the load.It can be seen that the friction force will approach infinity as approaches cot .When =cot the strut‘sprags’or locks andthe surface can move no further.Spurr’s sprag-slip mod el consistedof a double cantilever as shown in Fig.5(b).Here,the arm O0P is inclinedat an angle 0 to a moving surface.The arm will rotate about an elastic pivot O0as P moves under the influence of the friction force F once the spragging angle has been reached. Eventually the moment opposing the rotation about O0becomes so large that O00P replaces O0P,andthe inclination angle is red ucedto 00.The elastic energy storedin O0can now be releasedandthe O0P swings in the opposite direction to the movingsurface.The cycle can now recommence resulting in oscillatory behaviour.Others extended this idea in an attempt to model a brake system more completely.Jarvis andMills useda cantilever rubbing against a rotating d isc in 1963[21],Earles andSoar useda pin-d isc mod el in 1971[22],andNorth introd ucedhis eight-d egree of freedom model in 1972[23].The culmination of these efforts was a model published by Millner in 1978[24].Millner modelled the disc,pad and caliper as a 6degree of free-d om,lumpedparameter mod el andfoundgoodagreement between pred ictedand plex eigenvalue analysis was usedto d etermine which configura-tions wouldbe unstable.Parameters investigatedinclud edthe coefficient of padfric-tion,Young’s mod ulus of padmaterial,andthe mass andstiffness of caliper.Squeal propensity was foundto increase steeply with the coefficient of friction,but squeal wouldnot occur below a cut offvalue of 0.28.H e foundthat for a constant friction value,the occurrence of squeal and squeal frequency depends on the stiffness of pad material (Young’s modulus).Caliper mass and stiffness also displayed distinct nar-row regions where squeal propensity was high.The common conclusions of these models are that brake squeal can be caused by geometrically induced instabilities that do not require variations in the coefficient of friction.Since these closed form theoretical approaches cannot adequately model the complex interactions between components foundin practical brake systems,their applicability has been limited.However,they do provide some good insight into the mechanism of brake squeal by highlighting the physical phenomena that occur when a brake system squeals.3.2.Experimental methodsThe frequencies of a squealing brake are highly dependent on the natural fre-quencies of the brake rotor [17].Consequently it is of fundamental importance to be able to determine the vibration modes of the rotor.Not only will an understanding of the vibration modes of the rotor help predict how a brake system may vibrate,but it is also necessary in developing countermeasures to eliminate the problem.The existence of in-plane modes in addition to the bending modes is a further complica-tion,andthere is evid ence that the in-plane mod es can be the cause of some type of brake squeals as well as the bending modes[18].Fig.5.(a)Single strut rubbing against moving surface;(b)sprag-slip system.396 A.Papinniemi et al./Applied Acoustics 63(2002)391–400A.Papinniemi et al./Applied Acoustics63(2002)391–400397 Accelerometers provide an effective tool for determining the vibration mode shapes andthe forcedresponse of a system.Fig.6(a)shows a bend ing mod e shape of a typical brake rotor that has been determined experimentally.A model was cre-atedusing STAR MODAL software that consistedof384gridpoints over the surface of a brake rotor.Frequency response measurements were made with a B&K2032FFT analyser using a B&K4374uni-axial accelerometer anda B&K8001imped ance head. The excitation was introduced with a B&K4810shaker driven by a random noise sig-nal.Unfortunately,the contact mounting requiredfor accelerometers limits their usage on rotating brake components.They can only be usedfor analysis of stationary brake components making it almost impossible to determine the mode shapes of a squealing brake rotor.Optical techniques have been usedmore recently.In particular,d ouble pulsedlaser holographic interferometry has been successfully appliedto squealing brake systems [16,17,25,26].This has allowedthe coupledmod e shapes of a complete brake system to be determined while it is squealing.A holographic image is produced by triggering a laser at the maximum and minimum amplitude of a vibrating object.The difference in optical path length,causedby the d eformedshape of the vibrating object,creates an interference fringe pattern on a holographic plate.The mode shape can then be determined by interpreting the fringe pattern.The advantage of holographic interferometry is that the mode shapes of a brake rotor can be determined while it is squealing.Included in the holographic image can be the rotor as well as the pads,anchor bracket and caliper.The technique can be appliedto a brake system mountedon a brake d ynamometer.Suspension compo-nents,such as the spindle,spring and damper,can also be included to simulate the on car performance of the brake system.An example of the value of double pulsed holography in investigating a squealing brake was work done by Nishiwaki et al.in1989[17].In the brake system that was being investigatedit was apparent that the mod e shape of the vibrating brake rotor was stationary with respect to the brake caliper.Hence,the mode shape is also sta-tionary with respect to the area of excitation.The rotor was modified by changing the symmetry of the rotor about its axis of rotation.The mode shapes of the mod-ifiedrotor must now rotate with respect to the area of excitation,preventing themode.rotor from vibrating in the original vibration398 A.Papinniemi et al./Applied Acoustics63(2002)391–4003.3.Numerical methodsFinite element analysis(FEA)has been usedin the analysis of brake squeal.Mod al analysis of brake components is an area where FEA can be readily applied.Fig.6(b) shows afinite element model of a brake rotor.The model,consisting of8700Tet92 solid elements,was developed using a commercialfinite element code ANSYS5.6. Unfortunately,the coupling between brake components leads to vibration modes that differ to those found for the individual components.Therefore,the real interest among researchers is to be able to model an entire brake system.The critical aspect in the modelling of a complete brake system is the coupling between components,particularly the rotor/padinterface.The contact stiffness itself is adjusted using experimental results,but the more difficult aspect is to introduce the tangential friction coupling.Liles includ edfriction coupling between rotor andpadas offdiagonal terms in the stiffness matrix and used a complex eigenvalue analysis to assess the stability of a brake system[5].Once the model was developed,the effect of varying parameters such as friction coefficient,padgeometry andcaliper stiffness, could be determined.Dihua and Dongying also used a similar approach to improve the design of an anchor bracket[14].The work of these,and other,researchers has shown that it is possible to create models that incorporate the friction coupling between the rotor andthe pad.H owever,there has been little experimental evid ence to verify the accuracy of these models.They may be useful for studying the effect of varying parameters within the brake system,but their ability to model the important friction interface is limited.As small variations in operating temperature,brake pres-sure,rotor velocity or coefficient of friction may result in differing squeal propensities or frequencies(Figs.3and4),an accurate pred iction of brake squeal using numerical methods requires an accurate determination of material properties(particularly for the friction material)under different operating conditions.Furthermore,proper model-ling of the boundary conditions especially where the coupling between various components is important remains a challenge.4.Challenges for the futurePresently,research into brake squeal is focusedon specific brake systems or genera-tion mechanisms.The challenge for the future is to be able to develop general techni-ques andguid elines to eliminate brake squeal d uring the d esign stage.Given the complexity of the mechanisms that generate brake squeal,it appears that general guidelines are some way offin the future.For the present,the reduction of squeal noise for specific brake systems is achievable,with the additional knowledge acquired in each case adding to the overall understanding of brake squeal.Theoretical analysis of brake systems is difficult given the complexity of the mechanisms andthe lack of an ad equate mod el for the friction interface that causes brake squeal.However,this should not limit the development of simplified models as valuable insight can be gained.Understanding obtained by studying simplified models can assist in the interpretation of experimental results and the development of improvedcomputational tools.A.Papinniemi et al./Applied Acoustics63(2002)391–400399The application of FEA to brake squeal appears to offer some -mercial software packages are being continually refinedwith improvedmod elling features andthe friction coupling capabilities are improving.The rapidd evelopment in computer aid edengineering systems shouldmake it feasible to analyse every aspect of a brake system from braking performance to vibro-acoustic analysis,thus allowing brakes to be designed with minimum propensity to squeal and desirable braking performance.Experimental methods will still play an important role for a number of reasons. Firstly,they offer more effective analysis tools than numerical or purely theoretical methods.Secondly,diagnosis of the cause of brake squeal problems can often only be foundby experimentation.Finally,the verification of solutions to squeal pro-blems,andthe applicability of FEA mod els,can only be achievedthrough experi-mental means.Ultimately the future elimination of brake squeal will be confirmed though experimental results andthefinal testing of brake systems. AcknowledgementsThis study forms part of a project funded by the Australian Research Council under the SPIRT scheme and the industry partner is PBR Automotive Pty Ltd. References[1]Lamarque PV,Williams CG.Brake squeak:the experiences of manufacturers andoperators andsome preliminary experiments.Research report no.8500B.The Institution of Automobile Engi-neers,1938.[2]Mills H R.Brake squeak.Research report nos.9000B(1938)and9162B.The Institution of Auto-mobile Engineers,1939.[3]Lang AM,Smales H.An approach to the solution of disc brake vibration problems.Institute ofMechanical Engineering,C37/83,1983,p.223-31.[4]Yang S,Gibson RF.Brake vibration andnoise:reviews,comments,andproposals.Int J of MaterialsProduct Technol1997;12(4-6):496–513.[5]Liles GD.Analysis of disc brake squeal usingfinite element methods.SAE Paper,No.891150,1989.[6]Spurr RT.A theory of brake squeal.I Mech E Auto Div Proc No.1,1961/62.p.30-40.[7]Bergman F,Eriksson M,Jacobson S.Influence of disc brake topography on generation of brakesqueal.Wear1999;225-229:621–8.[8]Hoffman CT.Damper design and development for use on disc brake shoe and lining assemblies.SAE paper No.880254,1988.[9]Lewis TM,Shah P.Analysis andcontrol of brake noise.SAE paper No.872240,1987.[10]Flint J.Instabilities in brake systems.SAE paper No.920432,1992.[11]Nossier TA,Said MAR,El Nahas NS,Abu El Fetouh G.Significance of squeal in disc brake design.Int J of Vehicle Design1998;19(1):124–33.[12]Matsui H,Murakami H,Nakanishi H,Tsunda Y.Analysis of disc brake squeal.SAE paper No.920553,1992.[13]Murakami H,Tsunada N,Kitamura T.A study concerned with the mechanism of disc brake squeal.SAE paper No.841233,1984.[14]Dihua G,Dongying J.A study on disk brake squeal usingfinite element methods.SAE paper No.980597,1998.400 A.Papinniemi et al./Applied Acoustics63(2002)391–400[15]Baba H,Okade M,Takeuchi T.Study on reducing low frequency brake squeal from modal analysisof mounting bracket.SAE paper No.952697,1995.[16]Fieldhouse JD,Newcomb TP.An investigation into disc brake noise using holographic inter-ferometry.Institute of Mechanical Engineering,C427/11/213,1991.[17]Nishiwaki M,Harada H,Okamura H,Ikeuchi T.Study on disc brake squeal.SAE paper No.890864,1989.[18]Matsuzaki M,Izumihara T.Brake noise caused by the longitudinal vibration of the disc rotor.SAEpaper No.930804,1993.[19]North MR.A survey of publishedwork on vibration in braking systems.MIRA Bulletin No.4,1969.[20]H ulten J.Brake squeal—a self exciting mechanism with constant friction.SAE Truck andBusMeeting,Detroit,MI,USA,1993.[21]Jarvis RP,Mills B.Vibrations induced by dry friction.I Mech E Proc1963/64;178(1/32):847–57.[22]Earles SWE,Soar GB.Squeal noise in disc brakes.Paper C101/71.I Mech E Symposium on Vibra-tion andNoise in Motor Vehicles,1971.[23]North MR.Frictionally induced,self excited vibrations in a disc brake system.PhD thesis,Lough-borough University of Technology,1972.[24]Millner N.An analysis of disc brake squeal.SAE paper No.780332,1978.[25]Felske A,Hoppe G,Matthai H.Oscillation in squealing brakes—analysis of vibration modes byholographic interferometry.SAE paper No.780333,1978.[26]Fieldhouse JD,Newcomb TP.Double pulsed holography used to investigate noisy brakes.OpticsLasers Engng1996;25:455–94.。

Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem Myths and R

Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem Myths and R

In this paper, we present a number of results of theoretical signi cance on the subject. We reexamine the results on the Hankel-wrapped storage schemes in the setting of a parallel implementation of a state-of-the-art sequential implementation. Theoretically we can show that under certain conditions the described approach is asymptotically 100% e cient: if the number of processors is xed and the problem size grows arbitrarily large, perfect speedup can be approached. However, we also show that our approach is not scalable in the following sense: To maintain a given level of e ciency, the dimension of the matrix must grow linearly with the number of processors. As a result, it will be impossible to maintain performance as processors are added, since memory requirements grow with the square of the dimension, and physical memory grows only with the number of processors. While this could be a de ciency attributable to our implementation, we also show that for the standard implementations of the sequential QR algorithm, it is impossible to nd an implementation with better scalability properties. Finally, we show that these techniques can indeed be incorporated into a real code by giving details of a prototype distributed memory implementation of the serial algorithm DLAHQR 1], the LAPACK version of the double implicit shifted QR algorithm. Full functionality of the LAPACK code can be supported. That is, the techniques can be extended to allow for the cases of computing the Schur vectors, computing the Schur decomposition of H , or just computing the eigenvalues alone. We have implemented a subset of this functionality, for which the code is described and performance results are given. Thus this paper makes four contributions: It describes a data decomposition that allows, at least conceptually, straight-forward implementation of the QR algorithm; It gives theoretical limitations for parallelizing the standard QR algorithm; It describes a parallel implementation based on the proposed techniques; It reports performance results of this proof-of-concept implementation obtained on the Intel ParagonTM system. 2. Sequential QR Algorithm. While we assume the reader of this paper to be fully versed in the intricate details of the QR algorithm, we brie y review the basics in this section. The Francis double implicit shifted QR algorithm has been a successful serial method for computing the Schur decomposition H = QTQT . Here T is an upper pseudo-triangular matrix, with 1x1 or 2x2 blocks along the diagonal, and Q is orthogonal. We assume for simplicity that our initial matrix H is Hessenberg. The parallelization of the reduction to Hessenberg form is a well understood problem, and unlike the eigenvalue problem, the Hessenberg reduction has been shown to parallelize well 6, 12]. One step of the Francis double shift Schur decomposition is in Figure 1. Here, the Householder matrices are symmetric orthogonal transforms of the form: vvT Pi = I ? 2 vT v where v 2 <n and ( vj = 0 if j < i + 1 or j > i + 3 1 if j = i + 1 We assume the Hessenberg matrix is unreduced, and if not, nd the largest unreduced submatrix of H . Suppose this submatrix is H (k : l; k : l). We then apply the Francis HQR Step to the rows

一个设计师对选房的建议

一个设计师对选房的建议

一个设计师对选房的建议,长期跟进,为大家甄别户型好坏新房中国给你介绍什么才是好户型1,南北通透首先,杭州这边的气候带,大部分时间都是吹东南风或者西北风。

所以,南北通透是很重要的,东西通透也还可以,但是不如南北,朝向上,一般好房子都是正南偏东15度。

通透会增加空气的流通性,保持室内气道通畅,让你呼吸到更好的新鲜空气。

这很重要,缺了这一点,会让你觉得住在房子里气闷,重着生病容易生病,而且如果家里有人生病什么的,不利于散气,容易造成传染。

2,动静分区一般居住房,几个主要功能区分别是厨房,餐厅,客厅,卧室,卫生间和储物间。

其中厨房餐厅客厅都是属于开放空间,人流活动比较频繁,对隐私没有要求,属于动区,卧室和卫生间是比较私人的地方,对隐私有很高的要求,具有一定使用专属性,属于静区,动静分区分的好,能让你休息的时候不会受到客厅使用者的干扰。

活动的时候不会影响到卧室里休息的家人。

动静分区一般都是南北或者东西两个分区,由于考虑到南北通透问题,一般东西分区更好。

南北分区会影响气流通透。

目前LOFT广受购房者喜欢的最主要原因就是上下分区,完全杜绝隐私和其他声光干扰。

3,干湿分区好的房子,尤其是空间比较富裕的房子通常会提倡干湿分区,这样有两个好处,增加卫生间的使用效率,比如洗澡,上厕所,洗手和补妆什么的可以分开,全面提升卫生间的使用效率。

不过如果户型够大的话,这个可以在后期设计给予改进,问题不是很大。

一般情况下,一个房子的干湿分区并不是你要考虑的,因为这是设计家装设计可以弥补的。

4,明厨卫厨卫是一个套间里最容易产生废气地方,厨房也是最重要的家庭工作平台,有采光,并且透气是很重要的。

如果家庭成员多的话,最好有两个卫生间。

同时可以考虑干湿分区,这样不会有早晨一家人抢厕所的尴尬。

中国人烧饭容易产生油烟,所以我们应该首先考虑厨房能封闭。

但是最好是透光的,这样的设计会让家庭主妇有一个更好的工作环境。

能与家人有互动。

根据美国研究表明。

扬灰层什么意思

扬灰层什么意思

所谓的"扬灰层"纯粹是个谣言,尤其是18层到顶的高层,9-11层因为处在中间,不高也不低,着实是个好楼层,房价也相对较高。

楼层太低了的话视野、采光不好,你想想你周围都是高楼林立,你买个低层多憋闷,而且小区内的声音都能听到,比较乱,也失去了买高层的意义;太高了的话万一电梯坏了上下不方便,而且有些人从高处往下看有眩晕感,尤其是女士和儿童。

有些无良的卖房者,用这个谣言误导买房人,这几层他们自己内部人士留着住,要不就是留着涨价,还有就是通过这些所谓的"扬灰层""噪音层"等等来减小购房者的选择范围,从而尽快购买。

自己想想也知道,灰尘是有重量的,若只受重力和空气阻力的话,它终究是要落地的,但是因为空气的流动,灰尘受重力和风力的作用,漂浮在空中也是可能的,但不同的地区、风向以及不同的小区布局,所产生的气流都是不同的,而不同的空气湿度和温度,也影响着灰尘的浓度,所以,拿来的放之四海而皆准的"扬灰层",实在是可笑之极,简直是无稽之谈。

中国很多家庭买房都是全家出动并"倾家荡产",要说谨慎是必须的,但是凡事要动脑子想想,不能听风就是雨。

我当初买房也是这个情况,为了这个所谓"扬灰层",跑了十几个小区,问了很多人,包括亲身住在这几层的,都说没有感受到扬灰,至少和其他楼层是没差别的。

我也查阅了很多资料,其中桨遥颂赠央视13套的新闻专门请专家通过实验数据说明,扬灰层根本不可信,只是谣言而已。

物理专家指出,10层左右是"扬灰层"的说法是不符合大气物理常识的。

因为在离地面三四十米高的地方,灰尘是不会停顿戒享希的。

灰尘在距离地面10公里至52公里的大气平流层都不会停下来。

也就是说,一般普通高层楼都没有所谓的扬灰层一说。

扬灰层只是一种说法,并未科学测定。

一般情况下,空气中的污染物随气流不断沉降和流动,在空中没有污染源的情况下,楼层越高,空气相对越干净。

高层楼房住几层最好

高层楼房住几层最好

高层楼房住几层最好高层楼房住几层最好高层楼房住几层最好?高层楼房住几层最好?多层一般是指6、7层高的楼,高层是指6、7层以上。

多层住宅和高层住宅各有特点,不能简单地说哪种好,应从结构、成本、面积、质量、房型、物业管理收费等多方面考虑。

1、从建设质量上看,一般情况下高层楼房住几层最好,高层的建造标准、建造质量要高于多层。

普通多层住宅一般为砖混凝结构,而高层住宅由于它为钢筋混凝现浇,地基深而结实,墙体厚实,不渗水,抗震性能好于多层,整幢大楼不会下沉变形;而且折旧年限长。

2、高层视野较开阔,空气质量较好,噪音小;自然风大,有的房间不需装空调可节约电费;采光彩好,日照时间长,有的朝向太阳照射达到七八个小时之久。

3、从房屋实际使用面积看,高层的得房率比多层低,即购买相同建筑面积的住房,高层的套建筑面积低于多层的套建筑面积。

住宅的面积既包括使用面积,也包括住宅的公共部位,如楼梯间等公共面积的分摊。

高层住宅由于有电梯、电梯等侯间、地下室等,需分摊的公用面积较多层的要多。

4、高层上下楼有电梯可代步,出入方便,老人,残疾人和病从可以免去爬楼登高之苦;可一旦电梯发生故障,上下楼比较困难。

5、虽然高层的建造成本较高,高层楼房住几层最好但同样建筑面积的高层占用的土寺面积较小,因此高层与多层的价格差距不大。

环线土地价格较高,新建商品房一般高层居多,而环外住宅小区以多层为主;在环线,有时多层价格要高于高层。

高层楼房住几层最好及楼房选择技巧?高层楼房住几层最好?现在的房价是越来越贵,相比一个月前至少每平方米又涨了一千多元,因此现在下手买房子的是越来越多,一套房子是有的人半生的工资。

所以在购置新房时一定要慎重选择,海神在为大家指导购房过程中总结了丰富的经验,下面海神大师就教大家在高层楼房住几层最好及选房买楼时注意的一些风水上的原则。

一、注重大的环境大向吉则吉,首先要看峦头―外环境。

峦头是指室外山水的形势,看山水形势之有情无情。

层楼房的合适楼层

层楼房的合适楼层

【1】说起来,住几楼还真不仅仅是电梯按钮上的那么个小问题。

要把它列成一道方程式来算的话,空气、噪声、景观、消防、电磁辐射、日照,甚至还有风水禁忌,这些参数,一个都不能少。

先说1楼到3楼,人们通常生活在树冠下,离地面很近,常常能倾听到树枝敲打窗户——要说心理上舒适,这里是最好的:同外部世界保持现实联系,不用朝下瞧人。

但接近地面的生活也有不足:空气循环减缓、空气换气受阻、阴影和湿度增大、污染也比较严重。

因为汽车和柏油马路使空气中饱含甲醛、一氧化碳、氮……至少远离汽车路干线200米才算安全。

沿马路的噪音也是个问题。

目前的声屏罩顶多只能减少3-6个分贝的噪音,剩下的就全部都要我们自己消化了。

那么,是不是越高越好呢?高层空气清新、噪声也少、景色也很优美。

但是,城建生态学家却认为,高层的空气并不像想象的那么清新。

前面题过的污染物集中区不说,大大小小的烟囱几乎将城市包围,30米以上的楼层,跟烟囱平起平坐,吸“二手烟”的机会自然多得多。

专家指出,附近有烟囱的建筑,选择时一定要注意与烟囱所处的角度。

以上海的地理环境来说,冬半年以北风为主,夏半年又以南风为主。

所以选择房子的时候,尽量选避开烟囱高度的楼层,也不要选那些处在主导风向的下风向的房子。

另外,不要以为住在13楼的噪音一定比3楼小,上海市环境科学研究院常务副院长曹卢林的说法也许会让你大吃一惊:闹市里不沿路面的高层建筑中8楼到 14楼的噪音反而比下面的楼层要大。

一是因为声音是波状立体传播的,向上面去的声波丝毫不比往两边的弱,当沿路面比较矮的铺面房阻挡掉了相当一部分低处的声波,处在后面的高层接收到的声波自然要比同一幢楼低层接收到的强。

二来,高架路对声波产生的共鸣、反射作用,也会在高一点的楼层中反映得更明显。

不容忽视的小问题其实,谁不知道理想的住房什么样?——高度不超过6楼,自然景色优美。

最好一边是公园,另一边是秀水,不仅风景如画,还要鸟语花香。

住在这样的地方,恐怕想不舒心都难。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选房:谁要住“扬灰层”啊!
文/苦咖啡
2003年,一篇《售楼小姐真情自白》的网文让“扬灰层”这个词汇成了压在购房者心上的又一块重石,这位“业内人士”表示,高层建筑的9至11楼是“扬灰层”,脏空气到这个高度就会停顿。

这里的污染物密度最高。

买了这几层的房子,就只能一辈子吃灰了。

“扬灰层”究竟可不可信?到底哪一层才是“扬灰层”呢?首先我们来看看关于大气中灰尘的知识。

灰尘的颗粒有大有小
我们平时所说的“灰尘”,属于大气污染中的颗粒物污染。

按照这些颗粒的类型、大小,我们把它们分为粉尘(dust),烟(fume),黑烟(smoke),飞灰(fly ash),雾(fog),炭黑(carbon black)等等。

有些颗粒物比较大,直径(本中的“直径”均指空气动力学直径)可达几十、上百微米,粘在衣服上、打在脸上都很明显。

有些颗粒物很小,只有几微米,肉眼看不到。

小颗粒往往对健康更有害。

因为直径小于10微米的颗粒(PM10)会被人吸入体内,而且颗粒越小,被吸入后进入呼吸道的部位越深。

直径10微米的颗粒物通常沉积在上呼吸道;直径5微米的可进入呼吸道的深部;直径2.5微米以下的(PM2.5),可深入到细支气管和肺泡。

灰尘会悬浮在大气中
灰尘颗粒也是有重量的。

如果没有其它外力影响、只受重力和空气阻力作用
的话,它们终究会落到地上。

但是由于空气中时时刻刻都存在着气流(也就是风),灰尘在下落中总会不断受到气流影响。

一些小颗粒的粉尘,极有可能在重力和风力的不断作用下,长期漂浮在空中。

即使一部分灰尘顺利降落,也会有另一部分灰尘重新启程,不断进行着“扬尘—沉降”的循环。

气流可以引起地面扬尘、让灰尘保持在空中。

但另一方面,它又可以把灰尘送走,起到稀释作用。

因此气流对灰尘浓度的影响是复杂的,与风速、风向、地形等有密切关系。

在高楼林立的城市里,风速、风向、气温等很多气象条件都受到了建筑的影响,同时城市中的车流人流也进一步扰动了气流。

因此,城市中的气流特点与平坦地势的气流特点差别很大。

不同的建筑街道布局,会产生各种不同的气流模式。

因此,灰尘在大气中的运动和浓度分布会呈现复杂、瞬息万变的特点,很难把握其规律。

影响灰尘浓度的因素很多、很复杂
除了气流以外,灰尘在大气中的浓度还受到一些因素的影响,例如:
颗粒物的性质(组成,粒径,比重,电荷,pH值等)。

直径大的颗粒易于沉降;直径小的更容易受到外界扰动而悬浮在空气中。

气温的变化。

热空气可以把灰尘向上提起。

同时,气温升高也可以加速颗粒物的扩散,降低污染。

其影响同样是复杂的。

空气湿度。

大气中的小颗粒容易吸附水汽,凝结形成雾,悬浮在空中。

这种情况下不利于颗粒物的扩散,其浓度会增大。

但是当空气湿度继续增大时,颗粒重量增加了,沉降加快;还可能形成降雨,冲刷大气中的颗粒物,使其浓度迅速
降低。

上述因素都会对空气中的颗粒物浓度产生影响。

相关论文《城市街道大气颗粒物污染特征及影响因素的研究》和《北京市秋季大气颗粒物的污染特征研究》特别指出,气象因素对颗粒物分布的影响是在大范围内的作用,起作用的区域远高于楼房的高度,也远大于若干个小区的面积。

具体到某一栋楼、某几层的高度,就必须考虑具体建筑布局、地形等因素的影响。

小颗粒物最大浓度区的高度不能确定
所谓“扬灰层”,一般的理解就是在这个层高周围,大气中的灰尘浓度最高,超过上下方的其它层。

这个现象是否存在呢?
有学者对“灰尘在空气中的分布规律”做过模拟,他建立了相关的数学模型,经过公式推算发现:随着高度的增加,空气中的灰尘浓度有先增加后减小的趋势。

也就是说对于某一直径大小的颗粒物,可能会在某个高度上浓度最大。

初听之下,这和“扬灰层”的说法很接近。

不过还不能就此定论。

首先,这个模型在建立时忽略了灰尘的重力,因而并不适用于重力作用明显的、直径较大的颗粒物。

其次,即使对于小颗粒物,想要根据这个模型来推算其浓度最大值具体出现在什么高度,也几乎是不可能的任务。

正如前文所述,城市中由于建筑物的影响,空气的无规则“湍流”加剧,气流变化很复杂。

在建筑物附近,灰尘分布与建筑物密度、高度、几何形状、门窗朝向、街道宽度和走向、绿化面积、空气中污染物浓度等许多人为因素关系很大。

这就必然导致了每个地区、每个小区,甚至每栋楼的情况都是不同的。

再加上不同直径大小的灰尘颗粒,浓度最大值出现的高度也不相同。

因此,并没有一个放
之四海而皆准的“扬灰层”推算公式。

实践检验:相比其它层,差别并不大
理论推导的结果是就算“扬灰层”存在,其影响因素也过于复杂,难以确定其高度。

那么实际测量的结果又如何呢?
《新闻晨报》曾报道上海一小区的业主们在自己的住宅楼内进行了一次为期3天的小实验,在3楼、10楼和23楼的主卧飘窗位置观察积灰情况。

结果显示,三个楼层积灰程度并没有明显差别。

当然,这个实验非常粗浅,不过这种实验的精神是值得鼓励的。

科学家也做过类似的实验。

在石家庄某高层建筑附近的颗粒物监测结果显示,空气中直径在0.5微米以下的小颗粒物在高度24米处(相当于8层上下)呈现最大值;直径在2.5微米以下的在高度7米处(相当于3层上下)呈现最大值;而直径在10微米以下的随高度增加而减少。

总体来说,近地面处灰尘的浓度较高。

随高度增加,灰尘总量(总悬浮颗粒物)减少了,而其中微小颗粒物所占比例则越来越大。

这一观测结果验证了理论推论:不同直径的颗粒物,其最大浓度区的位置也不同,彼此相隔很远。

不可能有哪一层汇聚了所有颗粒物的最大浓度区。

而对于某一种颗粒物的最大浓度区,情况又能有多严重呢?我们来看一下上面这个监测结果的具体数字:
直径2.5微米以下的颗粒物在它的最大值处(3层上下)的浓度为0.3毫克/立方米,其它层高处为0.25毫克/立方米,只多出了25%;直径0.5微米以下的变化幅度更小,从0.11毫克/立方米增至0.12毫克/立方米,增加了不到10%。

(关于环境空气质量标准的国家规定,请见附表。

)这样的浓度变化值并不算很明显,也难怪上海那几位业主没有看出来积灰程度的差别了。

所以前面所谓的“内幕”,建筑物的9至11楼是扬灰层,这是不科学的。

大气中的大颗粒物通常越靠近地面浓度越高;只有对于小颗粒物,在外力的作用下,有可能在某一高度存在一个最大浓度区。

但是由于影响因素过多,并不一定所有楼房周围都存在这个最大浓度区;即使存在,对于不同建筑物和不同大小的颗粒,最大浓度区的高度也各不相同。

更重要的是,不同高度间颗粒物浓度只是略有差别而已。

如果“扬灰层”真的有那么多灰,一看每个楼都像套了个游泳圈一样,也就没有必要讨论了,绝对不会有人去那几层住的。

空气动力学直径:又称气体动力学当量直径(aerodynamic equivalent diameter)。

表述粒子运动的一种假想粒子直径。

总悬浮颗粒物(Total Suspended Particicular,TSP):即指能悬浮在空气中,空气动力学当量直径小于等于100微米的颗粒物。

摘自果壳著《过日子要有技术含量》,清华大学出版社,2012年9月。

相关文档
最新文档