高三生物复习专题三遗传和变异(完整资料).doc

合集下载

高中生物遗传与变异知识点

高中生物遗传与变异知识点

高中生物遗传与变异知识点一、基因和染色体的结构与功能1.基因的结构:基因是由DNA分子组成的,由编码区和非编码区组成。

编码区是指直接参与蛋白质合成的DNA片段,非编码区则不参与蛋白质合成。

2.染色体的结构:染色体是由DNA和蛋白质组成的。

DNA在染色体上呈线状,固定在各个染色体上的特定位置。

3.基因的功能:基因是遗传信息的携带者,能够决定个体的性状及其遗传方式。

4.染色体的功能:染色体是遗传物质的载体,能够稳定遗传信息,并在细胞分裂过程中传递给后代细胞。

二、遗传变异的概念与类型1.遗传变异的概念:遗传变异指的是同一物种内个体之间在遗传物质上的差异。

2.遗传变异的类型:主要分为基因突变和染色体畸变两种。

-基因突变:指基因的突然改变,包括点突变、插入突变、缺失突变等。

例如,突变会导致基因的功能发生改变,进而影响个体的性状表现。

-染色体畸变:指染色体的数量和结构的异常,包括染色体数目异常和染色体结构异常。

例如,染色体缺失、重复、移位等畸变会引起染色体的不稳定和质量变化,从而影响个体的正常发育和生殖能力。

三、遗传规律与遗传定律1.孟德尔的遗传规律:孟德尔是遗传学的奠基人,他提出了两个基本遗传定律。

-第一定律:互斥性定律(简称分离定律):每个个体在生殖时只能传递给后代一半的遗传因子。

-第二定律:自由组合定律:每个基因对后代的遗传影响是相互独立的。

2.随机联合定律:指在两个或多个基因进行遗传时,基因之间以及其中一些基因的不完全显性和不完全隐性等特征的组合是随机的。

3.完全显性和不完全显性:完全显性是指一个等位基因(版本)能够完全表达其遗传信息,而不完全显性是指一个等位基因只能部分表达其遗传信息。

四、遗传特征的分离与联合1.分离:指两个不同表型的个体交配后,生产的后代表现出两个表型中的一个。

2.联合:指两个不同表型的个体交配后,生产的后代表现出两个表型的特征,即混合了两个表型的特征。

五、遗传的分子基础1.DNA的结构与复制:DNA由磷酸、糖和碱基组成,形成双螺旋结构。

高三生物高考变异复习(遗传与进化中的变异)课件湘教版

高三生物高考变异复习(遗传与进化中的变异)课件湘教版

由染色体上单个基因的异常所引起的疾病。目前至少 已经发现了3000多种。
常染色体显性遗传病: 常染色体遗传病
多指、并指、短指、软骨发育不全
常染色体隐性遗传病: 白化病、苯丙酮尿症 伴X显性遗传病:抗维生素D佝偻病
伴性遗传病
伴X隐性遗传病: 色盲症、血友病 伴Y染色体: 男性外耳道多毛症
由于染色体的数目、形态或结构异常而引起的疾 病称为染色体异常遗传病。 由于常染色体变异而引起的 遗传病。如21三体综合征, 猫叫综合征。
第七章 生物的变异、人类健康与生物的进化
一、变异的类型 1、不可遗传的变异:仅由 环境 引起,遗传物质 不变。 2、可遗传的变异:基因突变、基因重组、染色体变异 不同点:⑴ 基因突变 产生新的基因,没有基因突变 就没 有等位基因。 ⑵ 染色体变异和基因重组 产生新的基因型。 ⑶只有染色体变异 能在光学显微镜下观察到。 二、基因突变 1、概念:DNA分子中碱基对的增添、缺失或改变,而引 起的 基因结构 的改变。 细胞分裂的间期 2、发生时期: 3、特点: ⑴普遍性:任何生物生长发育的任何时期。 ⑵多方向性:不定向性。⑶可逆性。 ⑷稀有性:突变频率低。⑸有害性。 4、类型: 显性突变:d—D;隐形突变:D—d
五、一倍体、二倍体、多倍体和单倍体
一倍体:只有一个染色体组的细胞或体细胞中含单 个染色体组的个体 二倍体:具有两个染色体组的细胞或体细胞中含两个 染色体组的个体 例如:人、果蝇、玉米等大多数生物 多倍体:体细胞中含有三个或三个以上的染色体组的个 体。 例如:香蕉、马铃薯 单倍体: 体细胞中含有本物种配子染色体数目的个体 关键看它是由受精卵发育而成的个体,还是由配子发 育而成的个体。由受精卵发育而成的个体体细胞中含几个 染色体组就叫几倍体;由配子发育而成的个体叫单倍体。

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结遗传是生物学的重要分支之一,研究生物基因与性状传递规律以及遗传变异的发生和演化机制。

在高考生物中,遗传和变异是一个较为重要的考点,掌握好这些知识点对于提高成绩至关重要。

下面将对高考生物遗传和变异的知识点进行总结。

一、遗传与变异基础概念1. 基因:遗传物质的分子基本单位,能够编码生物性状。

2. 染色体:基因的载体,存在于细胞核中,是由DNA和蛋白质组成的复合体。

3. 基因型:一个个体在某一基因位点上的基因的组合。

4. 表现型:一个个体在性状上的表现。

5. 等位基因:存在于同一位点上,控制着相同性状的不同基因。

6. 显性和隐性:显性基因决定个体的显性性状,隐性基因只在显性基因缺失或没有的情况下表现。

7. 一对杂合:一个个体所含的两个等位基因不相同的状态。

8. 纯合:一个个体所含的两个等位基因相同的状态。

9. 遗传性状:与遗传有关的外显的性状。

二、遗传和变异的规律1. 孟德尔的遗传实验:孟德尔通过对豌豆的杂交实验,发现一对配对基因对独立地分离和随机组合,形成新的基因型和表现型的组合。

2. 分离定律:个体的两对基因分离开来,并独立地进入不同的配子。

3. 自由组合定律:位于不同的染色体上的基因对独立地分离和自由组合。

4. 互补定律:两对显性纯合子的复合子,其表型与一个配子的表型相同。

5. 独立分配定律:亲代的两对基因以各自的方式分配给子代。

三、单因素遗传1. 显性和隐性遗传:显性遗传是指显性基因决定的性状能够表现在杂合和纯合个体上,隐性遗传是指隐性基因决定的性状只能在纯合个体上表现。

2. 过显性:过显性是指杂合个体的表型超过两种等位基因的效应之和。

3. 倒位:两对等位基因互换位置,导致显性和隐性状相反。

4. 可变等位基因:一个基因座上可以有多个等位基因,这些等位基因在自然界中随时变化。

5. 基因突变:由于基因突变,导致性状改变。

四、多因素遗传1. 重叠性状:多对基因的叠加作用,由于每对基因只对性状的一部分贡献,导致连续性状的存在。

高三生物遗传与变异知识点

高三生物遗传与变异知识点

高三生物遗传与变异知识点生物遗传与变异是高中生物课程中的重点内容,它涉及到了生物体的遗传基础和变异现象,对于理解生物演化与适应环境具有重要意义。

本文将从基因、染色体、遗传规律、突变等方面进行讲解。

一、基因与染色体基因是生物遗传的基础单位,它位于染色体上。

染色体是生物体内的遗传物质,由DNA组成。

在细胞分裂过程中,染色体会从一个细胞分裂成为两个细胞,确保遗传信息的传递和稳定。

二、遗传规律经过长期的研究,生物学家摸索出了一些遗传规律,其中包括孟德尔的遗传规律和硬连锁与柔连锁遗传规律。

孟德尔的遗传规律主要包括基因的隐性和显性、各自对生物性状的影响、基因的分离等。

它帮助我们理解了生物遗传的本质和遗传特点。

硬连锁与柔连锁遗传规律则是指基因之间的相互作用和相互关系。

硬连锁指的是两个基因在染色体上靠得很近,几乎同时遗传给后代,而柔连锁指的是基因在染色体上靠得较远,因此可能被断裂、重组等产生新的遗传组合。

三、突变突变是指遗传物质发生变异或改变,导致生物产生新的性状或特征。

突变可以分为基因突变和染色体突变两种。

基因突变是指基因序列的变异。

它可以是点突变、插入突变或缺失突变等。

基因突变会导致个体产生新的特征,有时对生物的发育有重要影响。

染色体突变则是指染色体结构的变异。

它可以是染色体片段的倒位、易位、缺失、加倍等变异。

染色体突变可能导致胚胎发育异常、不孕、遗传疾病等。

四、遗传变异的意义生物的遗传变异对于演化和适应环境有着重要意义。

它能够增加生物种群的多样性,以适应环境的变化。

遗传变异在物种起源和进化中起到了重要作用。

通过变异和选择的双重作用,生物种群可以产生适应环境的新特征和特性,从而增加生存竞争的优势。

对于人类而言,遗传变异的研究对于探讨人类起源、疾病的发生机理以及个体差异等方面都有重要的意义。

综上所述,遗传与变异是生物学中非常关键的内容,它和生物的演化、适应等方面有着密切的关联。

通过对基因、染色体、遗传规律和突变等知识点的学习,我们能够深入理解生物遗传的本质和特点,为进一步研究生物学提供基础和参考。

【高中生物的遗传和变异知识点】 高中生物知识点大全

【高中生物的遗传和变异知识点】 高中生物知识点大全

《【高中生物的遗传和变异知识点】高中生物知识点大全》摘要:遗传和变异是高中生物的重点难点,你都掌握其知识点了吗?接下来小编为你整理了高中生物的遗传和变异知识点,一起来看看吧,P:黄色圆粒X绿色皱粒F1 :黄色圆粒F2:9黄圆:3绿圆:3黄皱:1绿皱,对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)(1YR、1Yr、1yR、1yr)X yr F2: 1 YyRr:1Yyrr :1yyRr :1 yyrr遗传和变异是高中生物的重点难点,你都掌握其知识点了吗?接下来小编为你整理了高中生物的遗传和变异知识点,一起来看看吧。

名词:1、基因:是控制生物性状的遗传物质的功能单位和结构单位,是有遗传效应的DNA片段。

基因在染色体上呈间断的直线排列,每个基因中可以含有成百上千个脱氧核苷酸。

2、遗传信息:基因的脱氧核苷酸排列顺序就代表~。

3、转录:是在细胞核内进行的,它是指以DNA的一条链为模板,合成RNA的过程。

4、翻译:是在细胞质中进行的,它是指以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程。

5、密码子(遗传密码):信使RNA上决定一个氨基酸的三个相邻的碱基,叫做~。

6、转运RNA(tRNA):它的一端是携带氨基酸的部位,另一端有三个碱基,都只能专一地与mRNA上的特定的三个碱基配对。

7、起始密码子:两个密码子AUG和GUG除了分别决定甲硫氨酸和撷氨酸外,还是翻译的起始信号。

8、终止密码子:三个密码子UAA、UAG、UGA,它们并不决定任何氨基酸,但在蛋自质合成过程中,却是肽链增长的终止信号。

9、中心法则:遗传信息从DNA传递给RNA,再从RNA传递给蛋白质的转录和翻译过程,以及遗传信息从DNA传递给DNA的复制过程。

后发现,RNA同样可以反过来决定DNA,为逆转录。

语句:1、基因是DNA的片段,但必须具有遗传效应,有的DNA片段属间隔区段,没有控制性状的作用,这样的DNA片段就不是基因。

遗传与变异高三知识点总结

遗传与变异高三知识点总结

遗传与变异高三知识点总结遗传是生物学中重要的概念之一,它涉及到个体之间的遗传信息传递以及后代的遗传特征。

而变异是指由于基因突变或外界环境因素等原因导致个体间遗传特征的差异。

在高三生物学知识点总结中,遗传与变异的理解与掌握是至关重要的。

本文将以清晰、简洁的方式总结高三生物学中与遗传与变异相关的知识点。

一、遗传物质的结构和复制1. DNA是遗传物质的载体,由核苷酸链组成。

每个核苷酸由磷酸基团、糖基(脱氧核糖或核糖)、碱基组成。

2. DNA分子的复制是生物遗传信息传递的基础。

复制过程中,DNA链分离并由DNA聚合酶复制成两条完全相同的链。

二、遗传规律及其分子基础1. 孟德尔遗传定律:包括显性性状与隐性性状、基因分离律和自由组合定律。

2. 染色体理论:基因位于染色体上,遗传物质按照一定规律在染色体上排列。

3. 遗传信息传递的分子基础:DNA通过转录与翻译被转化为蛋白质,遗传信息由DNA到RNA再到蛋白质传递。

三、性状的表现1. 显性与隐性:显性性状受到的基因控制表现在个体外部,隐性性状则不能直接表现在个体外部。

2. 基因型与表现型:基因型决定个体的遗传信息,而表现型则是基因型加上环境因素共同作用的结果。

四、遗传的交叉与基因连锁1. 遗传的交叉是指配子的互换与基因的重新组合。

2. 基因连锁是指基因在染色体上的位置靠近,很少发生重组的现象。

五、变异的类型及其原因1. 突变是基因或基因组的突发性变化,包括点突变、插入突变、缺失突变等。

2. 易位是指染色体片段的互换。

3. 变异的原因包括突变、环境因素、杂交等。

六、遗传变异与生物进化1. 遗传变异提供了物种适应环境的生存基础。

2. 突变与重新组合导致基因的多样性,为生物进化提供了物质基础。

3. 遗传多样性是物种适应环境变化和生存发展的重要条件。

七、遗传与疾病1. 遗传疾病是由于个体遗传信息中基因发生突变导致的疾病。

2. 常见的遗传疾病包括先天性遗传疾病、染色体异常疾病等。

2024年高考生物遗传和变异知识点总结

2024年高考生物遗传和变异知识点总结一. 基因和染色体1. 基因的概念和结构: 基因是控制遗传性状的单位,由DNA序列组成。

基因主要由编码区和调控区组成。

2. 染色体的结构: 染色体由DNA和蛋白质组成,包括着丝粒、中节和武器,显示为X形。

人体细胞有23对染色体,其中一对性染色体决定个体的性别。

3. 基因表达和遗传密码: 基因在细胞内通过转录和翻译进行表达,形成蛋白质。

遗传密码是DNA上碱基序列与蛋白质上氨基酸序列之间的对应关系。

二. 遗传与变异1. 遗传的模式和规律: 单倍体和双倍体的授精结合方式决定了不同的遗传模式,如显性遗传、隐性遗传和中间型遗传等。

遗传规律包括孟德尔遗传定律、多基因遗传和多因素遗传等。

2. 变异的原因和分类: 变异是指个体间基因型和表型的差异。

变异原因有突变、基因重组和基因互作等。

变异可分为显性变异、隐性变异和连续变异等。

3. 变异的作用和意义: 变异是进化的基础,对物种的适应和生存具有重要作用。

变异也是品种育种和遗传病的研究的重要基础。

三. 遗传与性别决定1. 性染色体: 人类性别决定基因位于性染色体上,男性为XY,女性为XX。

Y染色体上的性别决定基因决定了个体的性别。

2. 性染色体遗传: 男性性别决定基因为隐性,女性性别决定基因为显性,男性将Y染色体传给儿子,女性将X染色体传给儿子和女儿。

3. 性别比的控制: 性别比由性别比偏离比和性别比变化比。

性别比的偏离由性染色体和非性染色体控制。

四. 遗传与遗传病1. 遗传病的概念和分类: 遗传病是由异常基因引起的疾病,可分为单基因遗传病、多基因遗传病和染色体遗传病。

2. 常见的遗传病: 单基因遗传病如先天愚型、血红蛋白病等;多基因遗传病如近视、高血压等;染色体遗传病如唐氏综合征、慢性粒细胞性白血病等。

3. 遗传病的防治: 遗传病的防治可以通过遗传咨询、基因筛查和基因治疗等手段进行。

五. 遗传与进化1. 进化的概念和证据: 进化是生物种群遗传结构和表型特征随时间发生变化的过程。

高考生物遗传和变异知识点总结

高考生物遗传和变异知识点总结遗传和变异是高考生物中的重要知识点,它们涉及了生物的进化、多样性以及人类的遗传疾病等内容。

下面是对这一部分知识点的总结。

一、遗传的基本概念和规律1. 遗传的基本概念:遗传是指通过基因在代际之间传递和表达的生物性状的变化。

2. 遗传的因素:遗传的因素包括基因、染色体、DNA等。

3. 遗传的规律:(1) 孟德尔的遗传定律:孟德尔通过对豌豆杂交实验的观察总结了遗传定律,包括单因素遗传定律、分离定律和自由组合定律。

(2) 染色体遗传定律:染色体是载体基因的结构,染色体的亲子传递和分离规律决定了基因的遗传方式。

(3) 表现型的遗传规律:表现型是基因与环境相互作用的结果,包括多基因遗传、多基因互制、多基因环境相互作用等。

二、基因突变与变异1. 基因突变的定义:基因突变是指基因序列发生改变,造成新的表型出现的遗传变异。

2. 基因突变的分类:(1) 点突变:包括错义突变、无义突变和同义突变等。

(2) 基因重组:包括染色体交换、交配型重组和基因重组等。

(3) 缺失、插入与倒位:染色体上的片段缺失、插入或倒位引起的遗传变异。

3. 变异的类型:(1) 无性变异:通过染色体的重组来增加遗传多样性。

(2) 同源变异:同一种或相近物种中的个体之间存在的遗传差异。

(3) 多态性:包括形态多态性、生态多态性和生殖多态性等。

三、基因的亲缘关系和基因图谱1. 基因的亲缘关系:通过研究基因的相似性和差异性来判断基因之间的亲缘关系。

亲缘关系可以用基因相似指数和系统发育树来表示。

2. 基因图谱:基因图谱是将基因按照位置在染色体上进行排序和标记的图表。

它可以揭示基因与染色体的关系和基因的分布规律,为遗传研究提供了重要的依据。

四、人类的遗传和变异1. 人类的染色体:人类有23对染色体,其中22对是常染色体,1对是性染色体。

2. 基因突变与遗传疾病:基因突变是人类遗传疾病的重要原因。

常见的遗传疾病包括遗传性疾病、单基因遗传病和染色体异常等。

高中生物遗传与变异知识点

高中生物遗传与变异知识点1.遗传与遗传物质:(1)遗传是指生物个体或种群在后代间传递性状的现象。

(2)传递性状的遗传物质是基因。

2.染色体与基因:(1)染色体是生物细胞中可见的染色质聚集物,携带了遗传信息。

(2)基因是染色体上的功能单位,是操纵个体性状的遗传物质。

3.遗传的分类:(1)单基因遗传:受一个基因控制的性状,可分为显性遗传和隐性遗传。

(2)多基因遗传:受多个基因共同控制的性状,呈连续分布的现象。

4.遗传的规律:(1)孟德尔遗传定律:-第一定律:同一性法则,同一种纯合子的后代性状相同。

-第二定律:分离法则,同一杂合子的后代存在隐性性状。

-第三定律:再组合法则,两个基因的组合方式影响后代性状。

(2)随意分离定律:杂合子在减数分裂时配子的分离是随意的。

5.基因型与表型:(1)基因型是一个个体所拥有的基因种类及其组合方式。

(2)表型是基因型在外部环境作用下所表现出来的形态、结构、功能等。

6.基因突变与变异:(1)基因突变是指基因发生变异,可分为点突变、插入突变、缺失突变等。

(2)变异是指个体或种群表型的差异,包括遗传变异和环境变异。

7.自由联会和连锁不平衡:(1)自由联会是指处于同一染色体上的基因在减数分裂过程中以非孟德尔方式联合遗传。

(2)连锁不平衡是指处于同一染色体上的基因由于自由联会而不平衡地遗传。

8.性别遗传:(1)人类的性别遗传是由X和Y染色体决定的,男性为XY型,女性为XX型。

(2)X染色体和Y染色体携带了不同的性别决定基因,决定了个体的性别。

9.染色体与基因工程:(1)染色体工程是通过改变个体或种群的染色体结构来实现其中一种目的的技术。

10.生物技术与遗传病:(1)生物技术包括基因工程技术、细胞工程技术等,对生物遗传病的预防和治疗具有重要意义。

(2)遗传病是由基因突变引起的疾病,可遗传给后代。

以上是高中生物遗传与变异的主要知识点,理解和掌握这些知识点对于加深对遗传与变异的理解、提高综合应用能力以及解决遗传病等问题具有重要意义。

高三生物临界生辅导资料(遗传与变异)doc

高三生物辅导资料(遗传与变异)一:遗传的基本规律(基因分离定律、基因自由组合定律)(一)孟德尔科学实验:(1)豌豆作为实验材料的优点:①自花传粉,闭花受粉,自然状态下为纯种②有易于区分的相对性状。

(2)研究方法:假说——演绎法(提出问题→作出假说→演绎推理验证→分析结果得结论)(3)用下列杂交实验的图解来说明上述性状类概念等位基因(D 和d )相同基因(D 和D 、d 和d )(二)遗传规律的适用条件:(1)条件:有性生殖生物的真核生物,细胞核基因遗传;(2)时间:减数第一次分裂后期(3)分离定律实质:减1后期,等位基因随同源染色体的分离而分离自由组合定律实质:减1后期,非同源染色体上的非等位基因自由组合(注意:自由组合的2对或多对基因必须分别位于不同的同源染色体上)[典例]1.孟德尔的遗传定律能适用于下列哪些生物 ( )①噬菌体②乳酸菌③水稻④蓝藻⑤蘑菇A.①②B.③⑤C.②③D.①③2.孟德尔运用假说-演绎法总结出了遗传学的两大规律,以下说法中属于假说的是( )①F1代全部显现高茎②生物性状是由遗传因子决定的③F2代既有高茎又有矮茎,性状分离比接近3:1 ④体细胞中遗传因子成对存在⑤受精时,雌雄配子随机结合A.①③ B.②④⑤ C.①②③ D.①②③④⑤3.基因分离定律的实质是()A.子二代出现性状分离B.子二代性状分离比为3∶1C.等位基因随同源染色体的分开而分离D.测交后代分离比为1∶14.黄色皱粒(Yyrr)与绿色圆粒(yyRr)豌豆杂交,F1的基因型种类及比例为()A.4种,1∶1∶1∶1B.3种,1∶2∶1C.2种,1∶1D.4种,3∶1∶3∶1 5.据右图,下列选项中不遵循基因自由组合规律的是()6.一种观赏植物,纯合的兰色品种与纯合的鲜红色品种杂交,F1为兰色。

若让F1兰色与纯合鲜红品种杂交,产生的子代中的表现型及比例为兰色:鲜红色=3:1。

若将F1兰色植株自花授粉,则F2表现型及其比例最可能是()A.兰:鲜红=1:1B.兰:鲜红=3:1C.兰:鲜红=9:lD.兰:鲜红=15:17.在西葫芦的皮色遗传中,黄皮基因B对绿皮基因b为显性,但在另一白色显性基因E存在时,基因B和b都不能表达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】专题四生物的遗传本专题内容包括必修二《遗传与进化》第一章遗传因子的发现、第二章基因和染色体的关系、第三章基因的本质、第四章基因的表达等内容。

一高考预测遗传内容在高中生物中一向属于学习的重点和难点,在高考中也常常成为学生的失分点。

从近几年的高考题分析可知,遗传学往往在生物试题中占据较大比重,而且常常在简答题中出现,分值较高。

这一部分内容与细胞的化学成分、细胞的结构和功能、生活实践中有着广泛的联系,同时,许多生物科技的最新成果和社会热点问题也与本专题联系密切,如人类的优生优育、试管婴儿等。

高考更加突出考察跨学科的综合能力和学科知识的渗透能力,强调生物学知识的科学性,生物的整体性、社会性、多样性和适应性,以及生物学思想和方法论,会充分体现新课标的基本指导思想。

高考热点可总结如下:(1)遗传基本定律的细胞学基础、实质和应用;(2)DNA是遗传物质的主要证据;(3)DNA的结构特点;DNA的复制;碱基的有关计算;(4)中心法则内容及应用;(5)人类遗传病的类型;遗传系谱的分析与计算;遗传病与优生二考点归纳突破1.碱基互补配对原则及其拓展(1)碱基互补配对原则是指在DNA分子形成碱基对时,A一定与T配对,G一定与c配对的一一对应关系。

该原则是核酸中碱基数量计算的基础。

根据碱基互补配对原则,可推知多条用于碱基计算的规律。

(2)碱基互补配对原则的一般规律规律一:一个双链DNA 分子中,A =T 、C =G 、A +G =C +T ,即嘌呤碱基总数等于嘧啶碱基总数。

规律二:在双链DNA 分子中,互补的两碱基和(A +T 或C +G )占全部碱基的比等于其任何一条单链中该种碱基比例的比值,且等于其转录形成的mRNA 中该种比例的比值。

规律三:DNA 分于一条链中的(A +G )/(C +T )比值的倒数等于其互补链中该种碱基的比值。

即:(A 1+G 1)/(C 1+T 1)=(C 2+T 2)/(A 2+G 2)规律四:DNA 分子一条链中的(A +T )/(G +C )比值等于其互补链和整个DNA 分子中该种比例的比值。

即:(A 1+T 1)/(G 1+C 1)=(A 2+T 2)/(G 2+C 2)=(A 1+A 2+T 1+T 2)/ G 1+G 2+C 1+C 2)2.复制、转录和翻译的相互关系A 1 A 2 G 1 C 2 T 2 T 1 G 2C 1 DNAmRNA A ˊ T ˊG ˊ C ˊ1 23.基因分离定律中的解题思路分离定律的习题主要有两类:一类是正推类型,即已知双亲的基因型或表现型,推后代的基因型或表现型及比例,此类型比较简单。

二是逆推类型,即根据后代的表现型或基因型推双亲的基因型,这类题最多见也较复杂,下面结合实例谈谈推导思路和方法。

(1)方法一:隐性纯合突破法例如:绵羊的白色由显性基因(B)控制,黑色由隐性基因(b)控制。

现有一只白色公羊与一只白色母羊,生了一只黑色小羊。

试问:公羊和母羊的基因型分别是什么?它们生的那只小羊又是什么基因型?①根据题意列出遗传图式:因为白色(B)为显性,黑色(b)为隐性。

双亲为白羊,生下一只黑色小羊,有:②从遗传图式中出现的隐性纯合子突破:因为子代为黑色小羊,基因型必为bb,它是由精子和卵细胞受精后发育形成的,所以双亲中都有一个b基因,因此双亲基因型均为Bb。

(2)方法二:根据后代分离比解题①若后代性状分离比为显∶隐=3∶1,则双亲一定都是杂合子。

即Bb×Bb →3B ∶1bb。

②若后代性状分离比为显性∶隐性=1∶1,则双亲一定是测交类型。

即Bb×bb→1Bb∶1bb。

③若后代性状只有显性性状,则双亲至少有一方为显性纯合子。

即BB×BB→BB、BB×Bb→1BB∶1Bb或BB×bb→1Bb。

4.用分离定律解决自由组合定律问题自由组合定律是以分离规律为基础的,因而可用分离定理的知识解决自由组合定律的问题,且用分离定律解决自由组合定律的问题显得简单易行。

其基本策略是:(1)首先将自由组合问题转化为若干个分离定律问题。

在独立遗传的情况下,有几对基因就可以分解为几个分离定律问题。

如AaBb×Aabb可分解为:Aa×Aa、Bb×bb。

(2)用分离定律解决自由组合的不同类型的问题。

①配子类型的问题例:某生物雄性个体的基因型为AaBbcc,这三对基因为独立遗传,则它产生的精子的种类有:Aa Bb cc↓↓↓2 × 2 ×1 =4种②基因型类型的问题例:AaBbCc与AaBBCc杂交,其后代有多少种基因型?先将问题分解为分离定律问题:Aa×Aa →后代有3种基因型(1AA∶2Aa∶1aa);Bb×BB →后代有2种基因型(1BB∶1Bb);Cc×Cc →后代有3种基因型(1CC∶2Cc∶1cc)。

因而AaBbCc与AaBBCc杂交,其后代有3×2×3=18种基因型。

③表现型类型的问题例:AaBbCc与AabbCc杂交,其后代有多少种表现型?先将问题分解为分离定律问题:Aa×Aa →后代有2种表现型;Bb×BB →后代有2种表现型;Cc×Cc →后代有2种表现型。

因而AaBbCc与AabbCc杂交,其后代有2×2×2=8种表现型。

5.遗传系谱图中遗传病的确定(1)首先先确定系谱图中的遗传病是显性遗传还是隐性遗传:①“无中生有”为隐性遗传病。

即双亲都正常,其子代有患者,则一定是隐性遗传病。

②“有中生无”为显性遗传病。

即双亲都表现患病,其子代有表现正常者,则一定是显性遗传病。

(2)其次确定是常染色体遗传还是伴性遗传:①在已确定隐性遗传病的系谱中:a.父亲正常,女儿患病,一定是常染色体隐性遗传;b.母亲患病,儿子正常,一定不是伴x染色体隐性遗传,必定是常染色体隐性遗传。

②在已确定显性遗传病的系谱中:a.父亲患病,女儿正常,一定是常染色体显性遗传;b.母亲正常,儿子患病,一定不是伴x染色体显性遗传,必定是常染色体显性遗传。

(3)人类遗传病判定口诀:无中生有为隐性,有中生无为显性;隐性遗传看女病,女病父正非伴性;显性遗传看男病,男病母正非伴性。

6.减数分裂与遗传基本规律间的关系对于真核生物而言,减数分裂是遗传基本规律的基础,基因的分离定律、基因的自由组合定律都是减数分裂过程中,随着染色体的规律性变化,染色体上的基因亦随之进行规律变化的结果。

在减数分裂第—次分裂过程中,联会的同源染色体的非姐妹染色单体之间对应片段的部分发生的交叉互换,结果会使每条染色体上都会有对方的染色体片段,这是基因互换的基础,后期,当同源染色体被纺锤蝗丝牵引移向两极时,位于同源染色体上的等位基因,也随着同源染色体分开而分离,分别进入到不同的子细胞,这是基因分离定律的基础,在等位基因分离的同时非同源染色体上的非等位基因随着非同源染色体的组合而自由组合,这是自由组合定律的基础。

7.人类遗传病的5种遗传方式及其特点人类遗传病的遗传方式主要有5种:常染色体隐性遗传、常显性遗传、伴X染色体隐性遗传、伴X显性遗传和伴Y染色体遗传。

这5种遗传方式的遗传特点见表。

里介绍一下:细胞质遗传和从性遗传。

细胞质遗传是由细胞质中的遗传物质控制的性状遗传方式。

与核遗传不同,不遵循遗传的基本规律。

细胞质基因控制的性状在遗传中,后代总是表现出母本相似的性状。

其原因是受精卵细胞质中的遗传物质都是来自卵细胞,即受精卵中的细胞质都是来自母方,父方不提供细胞质中的遗传物质,只提供细胞核中的遗传物质,雄配子对此性状不发生影响。

在研究细胞质遗传时,正交和反交的结果是不同的。

如果假定甲品种作父本和乙品种作母本相交定为正交,则以乙品种作父本和甲品种作母本相交则为反交,如果正反交结果不同,可判断为细胞质遗传。

从性遗传是指由常染色体上基因控制的性状,在表现型上受个体性别影响的现象。

如绵羊的有角和无角受常染色体上一对等位基因控制,有角基因H为显性,无角基因h为隐性,在杂合体(Hh)中,公羊表现为有角,母羊则无角,这说明在杂合体中,有角基因H的表现是受性别影响的。

见下表。

这种影响是通过性激素起作用的。

但它们是两种截然不同的遗传方式,伴性遗传的基因位于性染色体上,而从性遗传的基因位于常染色体上。

三高考真题体验例1(2004年全国卷Ⅰ)一个初级精母细胞在减数分裂的第一次分裂时,有一对同源染色体不发生分离,所形成的次级精母细胞的第二次分裂正常。

另一个初级精母细胞减数分裂的第一次分裂正常,减数第二次分裂时,在两个次级精母细胞中,有一个次级精母细胞的1条染色体的姐妹染色单体没有分开。

以上两个初级精母细胞可产生染色体数目不正常的配子(以下简称不正常配子)。

上述两个初级减数分裂的最终结果应当是A.两者产生的配子全部都不正常B.前者产生一半不正常的配子,后者产生的配子都不正常C.两者都只产生一半不正常的配子D.前者产生的配子都不正常,后者产生一半不正常的配子指点迷津要解答此题,最根本的是要掌握减数分裂的过程。

初级精母细胞的减数分裂的第一次分裂过程,是同源染色体分离,分别进入两个次级精母细胞。

若此过程中有一对同源染色体不发生分离,则形成的两个次级精母细胞中,一个会多一条染色体,一个会少一条染色体,最终形成的四个配子(精子)都不正常。

次级精母细胞进行的减数分裂第二次分裂,是姐妹染色单体的分开,平均分配到两个配子(精子)中,若此过程中有一条姐妹染色单体不发生分开,则最终形成的两配子(精子)都不正常。

例2(2005全国卷Ⅰ)人体神经细胞与肝细胞的形态结构和功能不同,其根本原因是这两种细胞的A、DNA碱基排列顺序不同B、核糖体不同C、转运RNA 不同D、信使RNA不同指点迷津人体神经细胞和肝细胞都是由受精卵细胞分化而来的,因此这种细胞中的遗传物质或基因及核糖体是相同的,但在人体不同部位的细胞表现出的性状不同,主要原因是DNA 分子上的基因选择性表达的结果,即在两类细胞中,虽含有相同基因,但不同的细胞表达不同的基因,因而通过转录形成的信使RNA也不同。

例3(2005江苏生物)下列有关遗传信息的叙述,错误的是()A、遗传信息可以通过DNA复制传递给后代B、遗传信息控制蛋白质的分子结构C、遗传信息是指DNA分子的脱氧核甘酸的排列顺序D、遗传信息全部以密码于的方式体现出来例4(2005全国卷Ⅰ)已知牛的有角与无角为一对相对性状,由常染色体上的等位基因A与a控制。

在自由放养多年的一群牛中(无角的基因频率与有角的基因频率相等),随机选出1头无角公牛和6头有角母牛分别交配,每头母牛只产了1头小牛。

在6头小牛中,3头有角,3头无角。

相关文档
最新文档