离散数学讲义

合集下载

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件第一章:离散数学简介1.1 离散数学的定义与意义离散数学的定义离散数学在计算机科学中的应用1.2 离散数学的基本概念集合逻辑函数图论1.3 离散数学的研究方法形式化方法归纳法构造法第二章:集合与逻辑2.1 集合的基本概念与运算集合的定义与表示方法集合的运算(并、交、差、补)2.2 逻辑基本概念命题与联结词逻辑推理规则(蕴涵、逆否、德摩根定律)2.3 命题逻辑与谓词逻辑命题逻辑的形式化表示与推理谓词逻辑的形式化表示与推理第三章:函数与图论3.1 函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性3.2 图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)3.3 树的基本概念与应用树与图的关系树的结构性质与应用(二叉树、堆、平衡树)第四章:组合数学4.1 组合数学的基本概念排列组合的定义与公式组合数学的应用(计数原理、图论)4.2 组合数学的计算方法直接法、间接法、递推法、函数法4.3 组合数学在计算机科学中的应用算法设计与分析(动态规划、贪心算法)程序语言中的组合类型(类型系统、类型检查)第五章:数理逻辑与计算复杂性5.1 数理逻辑的基本概念命题逻辑的数学模型(布尔代数、逻辑函数)谓词逻辑的数学模型(一阶逻辑、描述逻辑)5.2 计算复杂性的基本概念与分类计算复杂性的定义与度量(时间复杂性、空间复杂性)计算复杂性的分类(P与NP问题、整数分解问题)5.3 离散数学在算法设计与分析中的应用算法设计与分析的基本原则离散数学在算法优化与分析中的作用第六章:关系与映射6.1 关系的基本概念关系的定义与性质关系的类型(对称性、传递性、反身性)6.2 关系的闭包与简化关系的闭包概念关系的简化与规范化6.3 函数与二元关系函数与关系的联系与区别二元组与二元关系的应用第七章:代数结构7.1 代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用7.2 群与群作用群的定义与运算群作用与群同态7.3 环与域环的定义与性质域的特殊性质与应用第八章:数理逻辑与计算理论8.1 数理逻辑的进一步应用命题逻辑与谓词逻辑的推理规则数理逻辑在计算机科学中的应用8.2 计算理论的基本概念计算模型的定义与分类计算复杂性的理论基础8.3 离散数学在计算理论中的应用计算理论中的逻辑与证明离散数学在算法设计与分析中的作用第九章:组合设计与计数原理9.1 组合设计的基本概念组合设计的定义与类型组合设计在编码理论中的应用9.2 计数原理的基本概念鸽巢原理、包含-排除原理函数的方法与应用9.3 图论与网络流图的遍历与路径问题网络流与最优化问题第十章:离散数学的综合应用10.1 离散数学在计算机科学中的应用算法设计与分析数据结构与程序语言设计10.2 离散数学在数学与应用数学中的作用组合数学在概率论与数论中的应用图论在网络科学与社会网络分析中的应用10.3 离散数学在未来科技发展中的展望量子计算与离散数学与逻辑推理重点和难点解析重点环节一:集合的基本概念与运算集合的表示方法(列举法、描述法)集合的运算(并、交、差、补)重点环节二:逻辑基本概念与推理命题与联结词(且、或、非)逻辑推理规则(蕴涵、逆否、德摩根定律)重点环节三:函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性重点环节四:图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)重点环节五:组合数学的基本概念与计数原理排列组合的定义与公式组合数学的应用(计数原理、图论)重点环节六:关系与映射关系的定义与性质关系的类型(对称性、传递性、反身性)重点环节七:代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用重点环节八:数理逻辑与计算理论数理逻辑的推理规则计算理论的基本概念(计算模型、计算复杂性)重点环节九:组合设计与计数原理组合设计的定义与类型计数原理的应用(鸽巢原理、包含-排除原理)重点环节十:离散数学的综合应用离散数学在计算机科学中的应用(算法设计与分析、数据结构与程序语言设计)离散数学在数学与应用数学中的作用(组合数学在概率论与数论中的应用、图论在网络科学与社会网络分析中的应用)全文总结和概括:本《离散数学教案》课件涵盖了离散数学的基本概念、逻辑推理、函数与图论、组合数学、数理逻辑与计算理论、组合设计与计数原理等多个重要环节。

离散数学(第四版)讲义1

离散数学(第四版)讲义1

引言Discrete Math.离散数学研究离散对象及其相互间关系的一门数学学科。

研究离散结构的数学分支。

(辞海)计算机科学、信息科学、数字化科学的数学基础离散数学的内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)组合论(Combination)线性代数(Linear Algebra)概率论(Probability Theory)……与高等数学的区别教学内容:数理逻辑(Mathematics Logic)集合论(Sets)代数结构(Algebra Structure)图论(Graph Theory)离散数学的由来与发展:一、古老历史:计数:自然数发展:图论:Konigsberg七桥问题二、年青新生:计算机:二进制运算离散数学课程设置:计算机系核心课程信息类专业必修课程其它类专业的重要选修课程离散数学的后继课程:数据结构、编译技术、算法分析与设计、人工智能、数据库、……离散数学课程的学习方法:强调:逻辑性、抽象性;注重:概念、方法与应用参考教材:1、离散数学(耿素云,屈婉玲,北大版)2、离散数学(方世昌,西安电子科大版)3、离散数学结构(第三版、影印版)(Bernard Kolman、Robert C.Busby、Sharon Ross,清华版)4、离散数学提要与范例(阮传概、卢友清,北京广播学院版)第一章命题逻辑(Proposition Logic)1、命题符号化及联结词2、命题公式及分类3、等值演算4、联结词全功能集5、对偶与范式6、推理理论逻辑学:研究推理的一门学科数理逻辑:用数学方法研究推理的一门数学学科——一套符号体系+ 一组规则数理逻辑的内容:古典数理逻辑:命题逻辑、谓词逻辑现代数理逻辑:逻辑演算、公理化集合论、递归论、模型论、证明论1、命题符号化及联结词命题(Proposition):一个有确定真或假意义的语句。

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。

《离散数学》讲义(胡盛)

《离散数学》讲义(胡盛)

小结
合式公式(命题公式)及其判定 自然语言的翻译(符号化形式)
列出原子命题,并符号化 不同的原子命题使用不同的符号,符号使用最少 选择合适的联结词,根据命题表达的真实含义,而不 拘泥于形式
离散数学
30
1-3 命题公式与翻译
P12(3)(5)ad(7)
离散数学
31
第一章 数理逻辑 1-4 真值表与等价公式
(PQ) (PQ) T F F T
35
1、真值表
例题4 给出(PQ)(PQ)的真值表 公式不论命题变元做何种指派,其真值永为真, 我们把这类公式记为T。
P Q PQ (PQ) P Q PQ T T T F F T F F T F F F F T T T F F T T F T F T F T T T (PQ)( PQ) T T T T
定义1-5.1
给定一命题公式,若无论对分量作怎样的指派,其对 应的真值永为T,则称该命题公式为重言式或永真公 式。 例如:表1-4.4
明天下雨
2. 我们去看电影
房间里有十张凳子
二元运算
离散数学 17
1-2 联结词
析取(),其定义可用如下真值表表示
P T T F Q T F T PQ T T T 今天我在家看电视或去剧场看戏
她可能是100米或400米赛跑的冠军
他昨天作了二十或三十道习题 可兼或
F
F
F
排斥或
二元运算
离散数学 18
它可以是有意义的一般论证,也可以是科学理论中的数学证 明或结论。建立逻辑学的主要目的在于探索出一套完整的规 则,按照这些规则,就可以确定任何特定论证是否有效。这 些规则,通常称为推理规则。
离散数学
6

左孝凌离散数学PPT课件

左孝凌离散数学PPT课件
25
第一章 命题逻辑(Propositional Logic) 1.2逻辑
联结词(Logical Connectives)
例3. 将下列命题符号化.
(1) 李平既聪明又用功.
(2) 李平虽然聪明, 但不用功.
(3)李平不但聪明,而且用功.
(4)李平不是不聪明,而是不用功.
解: 设 P:李平聪明. Q:李平用功.
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示方法
• 1.1.1 命题(Proposition) • 1.1.2 命题的表示方法 • 1.1.3 命题的分类
第一章 命题逻辑(Propositional Logic)
1.1 命题及其表示方法
1.1.1 命题
数理逻辑研究的中心问题是推理(inference),而 推理的前提和结论都是表达判断的陈述句,因而表达
第一部分 数理逻辑(Mathematical Logic)
❖1931年Godel不完全性定理的提出,以及递 归 函 数 可 计 算 性 的 引 入 , 促 使 了 1936 年 Turing 机 的 产 生 , 十 年 后 , 第 一 台 电 子 计 算机问世。
❖从 广 义 上 讲 , 数 理 逻 辑 包 括 四 论 、 两 演 算——即集合论、模型论、递归论、证明 论和命题演算、谓词演算,但现在提到数 理逻辑,一般是指命题演算和谓词演算。 本书也只研究这两个演算。
逻辑可分为:1. 形式逻辑(通过数学方法) 数理逻辑 2. 辩证逻辑 指引进一套符号体系的方法。
辩证逻辑是研究反映客观世界辩证发展过程的人类思 维的形态的。
第一部分 数理逻辑(Mathematical Logic)
❖ 形式逻辑是研究思维的形式结构和规律的科学,它撇 开具体的、个别的思维内容,从形式结构方面研究概 念、判断和推理及其正确联系的规律。

《离散数学》总复习上课讲义

《离散数学》总复习上课讲义
不是闭式的公式在某些解释下也可能是命题. 公式类型. 换名规则与代替规则
第3章 集合的基本概念和运算
3.1 集合的基本概念 3.2 集合的基本运算(重点) 3.3 集合中元素的计数(容斥原理是重点)
3.1 集合的基本概念
元素x与集合A的关系:属于xA,不属于xA 集合A与集合B的关系:习题3.2, 3.8, 3.12, 3.16
构造性二难
(AB)(AB)(AA) B 构造性二难(特殊形式)
(AB)(CD)( BD) (AC) 破坏性二难
习题1.18, 1.21, 1.17(2)。六1
注意事项1:命题
只有能确定真假(但不能可真可假)的陈述句才是 命题. 不管是正确的观点, 还是错误的观点, 都 是命题. 猜想和预言是命题, 如哥德巴赫猜想.
pq为假当且仅当 p 为真 q 为假,即 当p为假时,pq为真(不管q为真, 还是为假); 当q为真时,pq为真(不管p为真, 还是为假). 习题1.5(6)(7)
了解概念、掌握方法
真值表、命题公式类型 所有等值的含n个命题变项的公式对应同一
个n元真值函数F:{0,1}n{0,1};哑元 最小联结词组 对偶式与对偶原理 简单析取式、简单合取式 析取范式与合取范式 附加前提证明法、反证法
x(A(x)B)xA(x)B x(A(x)B)xA(x)B x(BA(x))BxA(x)
x(A(x)B(x))xA(x)xB(x)
x(A(x)B(x))xA(x)xB(x)
注意事项1:前束范式(重点)
设A为一个一阶逻辑公式, 若A具有如下形式 Q(11xi1Qk2)x为2…或Qkx,kBB, 则为称不A含为量前词束的范公式式, 其. 中Qi
重要的推理定律 第一组 命题逻辑推理定律代换实例 第二组 由基本等值式生成(置换规则) 第三组 xA(x)xB(x)x(A(x)B(x))

离散数学讲义第2章

离散数学讲义第2章
例2:H(x, y):“x比y长得高”,l:“李四”,c:“张 三则” H(l, c):“李四不比张三长得高”; H(l, c) H(c, l):“李四不比张三长得高且张三不比 李四长得高”,即“李四与张三一样高”。
10
2-2 命题函数与量词(续)
例3:Q(x, y):“x比y重” 当x,y指人或物时,它是一个命题,若x,y为实数时, Q(x, y)不是命题。
b) (x)(P(x)(y) R(x,y)) (x)的作用域是:(P(x)(y)(R(x,y)), (y)的作用域是:R(x,y)。 x,y为约束变元。
22
2-4 变元的约束(续)
c) (x)(y)(P(x,y)Q(y,z))(x)P(x,y) (x)(y)的作用域是:(P(x,y)Q(y,z)) x,y为约束变元,z是自由变元。 (x)的作用域是P(x,y) x为约束变元,y是自由变元。
例2:没有不犯错误的人。(F(x), M(x)) 解: (x)(M(x) F(x))
且该命题与“任何人都会犯错误”意义相同: (x)(M(x) F(x))
例3:尽管有些人聪明,但未必一切人都聪明。(P(x),M(x)) 解: (x)(M(x) P(x)) ((x)(M(x) P(x)))
18
某些为假。
例5:(P(x, y) P(y, z)) P(x, z)。考虑P(x, y)的解释: (1)“x小于y”,则P(x, y)永真。 (2)“x为y的儿子”,则P(x, y)永假。 (3)“x距离y10米”,则P(x, y)可能为真或假。
12
2-2 命题函数与量词(续)
个体变元:函数P(x)中的x。
(z)(P(z)R(z,y)) Q(x,y) 但不可换名为
(y)(P(y)R(y,y)) Q(x,y) 或

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》PPT课件第一章:离散数学简介1.1 离散数学的定义离散数学是研究离散结构及其相互关系的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用离散数学在计算机科学、信息技术、密码学等领域有广泛应用。

学习离散数学能够为编程、算法设计、数据结构等课程打下基础。

第二章:集合与逻辑2.1 集合的基本概念集合是由明确定义的元素组成的整体。

集合的表示方法:列举法、描述法、图示法等。

2.2 集合的基本运算集合的并、交、差运算。

集合的幂集、子集、真子集等概念。

2.3 逻辑基本概念命题:可以判断真假的陈述句。

逻辑联结词:与、或、非等。

逻辑等价式与蕴含式。

第三章:图论基础3.1 图的基本概念图是由点集合及连接这些点的边集合组成的数学结构。

图的表示方法:邻接矩阵、邻接表等。

3.2 图的基本运算图的邻接、关联、度等概念。

图的遍历:深度优先搜索、广度优先搜索。

3.3 图的应用图在社交网络、路径规划、网络结构等领域有广泛应用。

学习图论能够帮助我们理解和解决现实世界中的问题。

第四章:组合数学4.1 排列与组合排列:从n个不同元素中取出m个元素的有序组合。

组合:从n个不同元素中取出m个元素的无序组合。

4.2 计数原理分类计数原理、分步计数原理。

函数:求排列组合问题的有效工具。

4.3 鸽巢原理与包含-排除原理包含-排除原理:解决计数问题时,通过加减来排除某些情况。

第五章:命题逻辑与谓词逻辑5.1 命题逻辑命题逻辑关注命题及其逻辑关系。

命题逻辑的基本运算:联结词、逻辑等价式、蕴含式等。

5.2 谓词逻辑谓词逻辑是命题逻辑的推广,引入量词和谓词。

谓词逻辑的基本结构:个体、谓词、量词、逻辑运算等。

5.3 谓词逻辑的应用谓词逻辑在计算机科学中用于描述和验证程序正确性。

学习谓词逻辑能够提高对问题本质的理解和表达能力。

第六章:组合设计6.1 组合设计的基本概念组合设计是指从给定的有限集合中按照一定规则选取元素,构成满足特定条件的组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
历史上著名的悖论
NO.1 说谎者悖论(1iar paradox or Epimenides’ paradox) 最古老的语义悖论。公元前6世纪古希腊哲学家伊壁孟德 所创的四个悖论之一。是关于“我正在撒谎”的悖论。具 体为:如果他的确正在撒谎,那么这句话是真的,所以伊 壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的, 因而伊壁孟德正在撒谎。
其内容较广,主要包括数理逻辑、 集合 论、图论、代数结构等四个基本部分。
7
什么是离散数学?
离散数学将日常的概念、判断、 推理用数学符号来表示,用数学方法 进行思维。其目标是掌握严密的思维 方法、严格证明的推理能力和演算能 力,掌握处理各种具有离散结构的事 物的描述工具与方法,适应学习其他 专业课程的各种需要,为学习其它计 算机课程提供必要的数学工具。
12
1-1 命题及其表示法
命题:能够判断真假的陈述语句。
例:‘中国是一个国家’, ‘9为素数’。
原子命题:不能分解成更简单的陈述语 句的命题。
复合命题:由连结词、标点符号和原子 命题复合构成的命题。
一般用字母“T”表示“真”,“F”表示 “假”。也经常用“1”表示“真”, “0”表示“假”。
2
课程概况
选修课/必修课:选修 周学时:3(学时) 上课周:1-16周 总学时 数理逻辑(14学时)
第一章 命题逻辑(8) 第二章 谓词逻辑(6)
第二篇 集合论(12学时)
第三章 集合(4) 第四章 二元关系与函数(8)
第四篇 图论(14学时)
第七章 图论(8) 第八章 一些特殊图(4) 第九章 树 (2)
19
NO.2 伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖 论。由古希腊斯多亚学派提出。它的基本内容是:伊勒克 特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列 斯特是她的哥哥.但她并不认识站在她面前的这个男人。 写成一个推理.即: 伊勒克持拉不知道站在她面前的这个人是她的哥哥。 伊勒克持拉知道奥列期特是她的哥哥。 站在她面前的人是奥列期特。
13
1-1 命题及其表示法(续)
习惯上,命题用小写字母p,q,r,…, 或用带下标小写字母表示。
例如:
命题p:中国人们是伟大的。 命题q:别的星球上有生物。 命题p1:1+101=102(在十进制或二进制数范围内)。 命题P2:今天下雨。 命题r:我去看电影。
14
1-1 命题及其表示法(续)
判断下列句子哪些是命题?
棍游戏(一种在小方格中插小木条的游戏)时分析问题的
乐趣。
17
希尔伯特证明了切割几何图形中的许多重要定理。冯·纽 曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英 国著名数学家康威发明的。爱因斯坦也收藏了整整一书架 关于数学游戏和数学谜的书。 古今中外有不少著名的悖论,它们震撼了逻辑和数学的基 础,激发了人们求知和精密的思考,吸引了古往今来许多 思想家和爱好者的注意力。解决悖论难题需要创造性的思 考,悖论的解决又往往可以给人带来全新的观念。
• 太阳明天会出来。
是命题,它的真值是唯一确 定的,只是目前人们不知道
是命题,它的真值是唯一确 定的,到明天就知道了。
再次注意:命题是具有唯一真值的陈述句。
16
我正在说谎
悖论(paradox)是一种矛盾命题。悖论是自相矛盾的命题。 即如果承认这个命题成立,就可推出它的否定命题成立; 反之,如果承认这个命题的否定命题成立,又可推出这个 命题成立。
• 地球是圆的。
是命题,真值为T
• 2+3=5
是命题,真值为T
• 2+3=6 • 你会讲英语吗? • 3-x=5
是命题,真值为F 不是命题(疑问句不是命题)。 不是命题,它的真值不确定。
15
1-1 命题及其表示法(续)
判断下列句子哪些是命题(续)?
• 请关上门!
不是命题,祈使句不是命题。
• 除地球外的星球 有生物。
18
例如比较有名的理发师悖论:某乡村有一位理发师,一天 他宣布:只给不自己刮胡子的人刮胡子。这里就产生了问 题:理发师给不给自己刮胡子?如果他给自己刮胡子,他 就是自己刮胡子的人,按照他的原则,他不能给自己刮胡 子;如果他不给自己刮胡子,他就是不自己刮胡子的人, 按照他的原则,他就应该给自己刮胡子。这就产生了矛盾
paradox来自希腊语“para+dokein”,意思是“多想一 想”。
悖论是属于领域广阔、定义严格的数学分支的一个组成部
分,这一分支以“趣味数学”知名于世。这就是说它带有
强烈的游戏色彩。然而,切莫以为大数学家都看不起“趣
味数学”问题。欧拉就是通过对bridge-crossing之谜的分
析打下了拓扑学的基础。莱布尼茨也写到过他在独自玩插
基本内容是:命题逻辑(演算)和 谓词逻辑(演算)。
11
第一章 命题逻辑
命题演算是数理逻辑的基本组成部分,是谓词演算的基础。 本章包括以下内容:
1-1 命题及其表示法 1-2 连结词 1-3 命题公式及翻译 1-4 真值表与等价公式 1-5 其它连结词 1-6 对偶与范式 1-7 重言式与蕴涵式 1-8 推理理论 1-9 应用
8
什么是离散数学?
本课程将学习数理逻辑、集合论以 及图论、代数系统的部分内容。
数理逻辑的重点是公式演 算 与推理证明;集合论的重点是关系 理论与映射的描述;图论则着重于 讨论结点之间的关系以及图论方法 的各种实际应用。
9
课程内容
第一篇
数理逻辑
10
第一篇 数理逻辑
数理逻辑是用数学方法来研究推理 过程的科学。主要是指引进一套符 号体系的方法,因此数理逻辑一般 又叫符号逻辑。
4
课程考核
第四篇 代数系统(8学时)
第5、6章 图论(8)
考核方式:
闭卷笔试
5
课程要求
(1)上课认真听讲 (2)课后及时复习 (3)独立、认真地完成作业 (4)有问题及时提出,不要积累问题
6
什么是离散数学?
• 是研究离散对象和它们之间的关系 的现代数学。
• 它为计算机科学中的数据结构、编 译理论、操作系统、算法分析、人 工智能等提供了必要的数学知识。
离散数学讲义(电子版)
Discrete Mathematics
课程概况
教材:
《离散数学(第三版)》,耿素云等编著 清华大学出版社,2004年3月
参考书:
(1) 《离散数学(第二版)》及其配套参考书《离散 数学题解》作者:屈婉玲,耿素云,张立昂 清华大学出版社
(2) 《离散数学》焦占亚主编 电子工业出版社 2005年1月
相关文档
最新文档