2017重庆中考数学试题及答案A卷
2017年重庆市中考数学试题A卷及答案

2017年重庆市中考数学试题A卷及答案一、选择题(每题3分,共30分)1. 下列各数中,最小的数是()A. -3B. -2C. -1D. 0答案:A2. 计算下列算式的结果,正确的是()A. 3^2 = 9B. 2^3 = 6C. 4^2 = 16D. 5^3 = 125答案:C3. 下列各组数中,互为相反数的是()A. 3和-3B. 5和-5C. 2和-2D. 1和-1答案:A4. 已知一个等腰三角形的两边长分别为5和8,那么这个三角形的周长是()A. 18B. 21C. 26D. 30答案:B5. 一个数的平方是25,那么这个数是()A. 5B. -5C. 5或-5D. 以上都不对答案:C6. 已知一个角的度数是30°,那么它的补角是()A. 60°B. 90°C. 120°D. 150°答案:C7. 计算下列算式的结果,正确的是()A. (-2)^2 = 4B. (-2)^3 = -8C. (-2)^4 = 16D. (-2)^5 = -32答案:B8. 已知一个数的绝对值是4,那么这个数是()A. 4B. -4C. ±4D. 以上都不对答案:C9. 一个数的相反数是-3,那么这个数是()A. 3B. -3C. 0D. 6答案:A10. 计算下列算式的结果,正确的是()A. 3 + (-2) = 1B. 3 - (-2) = 5C. 3 × (-2) = -6D. 3 ÷ (-2) = -1.5答案:B二、填空题(每题3分,共30分)1. 一个数的平方根是4,则这个数是______。
答案:162. 已知一个数的立方是-8,则这个数是______。
答案:-23. 一个数的倒数是1/3,则这个数是______。
答案:34. 已知一个数的绝对值是5,则这个数是______。
答案:±55. 一个角的补角是120°,则这个角是______。
2017年中考数学试卷-重庆市中考数学试卷A卷解析版

2017年重庆市中考数学试卷(A卷)满分:120分版本:人教版一、选择题(每小题4分,共12小题,合计48分)1.(2017重庆,1,4分)在实数-3,2,0,-4中,最大的数是()A.-3 B.2 C.0 D.-4答案:B解析:∵2是正数,-3,-4是负数,根据“正数大于一切负数”和“正数都大于0”知-4<-3<0<2,故选B.2.(2017重庆,2,4分)下列图形是轴对称图形的是( )A.B.C.D.答案:C解析:C选项,沿着如图所示的虚线折叠,直线两旁的部分能够完全重合,故A 选项正确,A、B、D选项均无法找到这样的一条直线,使得沿着这条直线折叠之后,直线两旁的部分能完全重合,故选择C.3.(2017重庆,3,4分)计算x6÷x2正确的是( )A.3 B.x3C.x4D.x8答案:C解析:先判断题目属于两个同底数幂相除,然后根据“同底数幂的除法:底数不变,指数相减”,得x6÷x2=x6-2=x4.4.(2017重庆,4,4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机防水功能的调查D.对某校九年级3班学生肺活量情况的调查答案:D解析:选项A对重庆市初中学生每天阅读时间的调查,工作量大,适合于抽样调查;选项B对对端午节期间市场上粽子质量情况的调查,工作量较大,适合于抽样调查;选项C对对某批次手机防水功能的调查,破坏性比较强,所以适合抽样调查;选项D对对某校九年级3班学生肺活量情况的调查,工作量不大,适合于全面调查,故选择D.10+的值应在()5.(2017重庆,5,4分)估计1A.3和4之间B.4和5之间C.5和6之间D.6和7之间答案:B解析:先找出与10相邻的两个完全平方数,然后开方,可以确定10在被夹的这10+的取值范围.∵9<9<10,∴两个数之间,之后再利用不等式性质①确定出116109<<,则3<10<4 ,∴3+1<110+<4+1,即4<110+<5,故110+在4与5之间,故选择B .6.(2017重庆,6,4分)若x =31-, y =4,则代数式3x +y -3的值为( ) A . -6B .0C .2D .6答案:B 解析:把字母x , y 的值代入要求的代数式,然后按代数式指明的运算顺序进行计算.把x =31-, y =4代入3x +y -3,得3×(31-)+4-3=-1+4-3=0,故选择B . 7.(2017重庆,7,4分)要使分式34-x 有意义,x 应满足的条件是( ) A . 3>xB .3=xC .3<xD .3≠x答案:D 解析:先根据分式有意义的条件“分母不等于0”,得到关于x 的方程,解这个方程,问题获解.由分式的意义,知03≠-x ,解得3≠x ,故答案为D .8.(2017重庆,8,4分)若△ABC ∽△DEF ,相似比为3:2,则对应高的比为( ) A .3:2B .3:5C .9:4D .4:9答案:A 解析:因为△ABC ∽△DEF ,根据相似三角形的性质“相似三角形对应高之比等于相似比,故选择A .9.(2017重庆,9,4分)如图,矩形ABCD 的边AB =1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是( ) A .42π-B .423π-C . 82π-D .823π-答案:B 解析:∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC ,∠ABC =90゜,∵BE 平分∠ABC ,∴∠ABE =∠CBE =45゜,∵AD ∥BC ,∴∠AEB =∠CBE =45゜,∴AB =AE ,又∵AB =1,E 是AD 的中点,∴AE =1,AD =2,∴S矩形=1×2=2,S ∆ABE =21×1×1=21;在Rt ∆ABE 中,∠BAD =90゜,AB =AE =1,BE =21122=+,∴S 扇形=()24523604π︒⨯π⨯=︒,∴S 阴影= S 矩形-S ∆ABE -S 扇形=2-21-4π=324π-.10.(2017重庆,10,4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为( )A .73B .81C . 91D .109答案C 解析:整个图形可以看作是由两部分组成:上半部分是菱形,下半部分是由菱形组成的一条线段,各自的变化规律我们可以用一个表格来呈现: 第①个 第②个 第③个 第④个 … 第n 个 上半部分 1=12 4=22 9=32 16=42 … n 2 下半部分 2=1+13=2+14=3+15=4+1…n +1=91,∴第⑨个图形中菱形的个数为91.11.(2017重庆,11,4分)如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为40゜,若DE =3米,CE =2米,CE 平行于江面AB ,迎水坡BC 的坡度i =1:0.75,坡长BC =10米,则此时AB 的长约为( )(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)A .5.1米B .6.3米C . 7.1米D .9.2米答案:A 解析:①过点C 作CG ⊥AB ,垂足为点G ,∵i =1:0.75,∴75.01=BG CG ,即CG BG 43=,∵坡长BC =10米,∴BG 2+CG 2=BC 2,10016922=+CG CG ,解得CG =8,∴BG =6; ②过点E 作EF ⊥AB ,垂足为点F ,易知EF ∥CG ,又CE ∥AB ,∴四边形CEFG 为平行四边形,又∵EF ⊥AB ,∴□CEFG 为矩形,∴EF =CG =8,CE =GF =2,又∵DE =3,∴DF =11,在Rt ∆ADF 中,∠A =40゜,∴tan 40°=AF DF,即84.011=AF,解得:AF ≈13.10,∴AB =13.10-6-2≈5.1(米).12.(2017重庆,12,4分)若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤->-+021232a y yy 的解集为y 2-<,则符合条件的所有整数a 的和为( ) A .10B .12C . 14D .16答案:A 解析:①解关于x 的分式方程,由它的解为正数,求得a 的取值范围.4112=-+-xa x 去分母,得:2-a =4(x -1) 去括号,移项,得: 4x =6-a系数化为1,得:x =46a- ∵x 0>且x ≠1,∴46a -0>,且46a-≠1,解得a 6<且a ≠2; ②通过求解于y 的不等式组,判断出a 的取值范围.()⎪⎩⎪⎨⎧≤->-+021232a y yy 解不等式①,得y 2-<; 解不等式②,得y ≤a ;∵不等式组的解集为y 2-<,∴a 2-≥;③由a 6<且a ≠2和a 2-≥,可推断出a 的取值范围:62<≤-a ,且a ≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A . 二、填空题:(每小题4分,共6小题,合计24分) 13.(2017重庆,13,4分) “渝新欧”国际铁路联运大通道全长超过11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 .答案:1.1×104千米,解析:11 000是大于10的数,科学记数法的表示形式为a ×10n 的形式,其中1≤a <10,n 为整数,∵11000是五位数,∴n =5-1=4,a =1.1,∴11 000= 1.1×10000=1.1×104千米.14.(2017重庆,14,4分)计算:()213-+-= .答案:4 解析:先由绝对值的意义求出3-=-(-3)=3,再由乘方的意义得()21-=(-1)×(-1)=1,最后利用有理数的加法运算法则计算即可.解:原式=-(-3)+(-1)×(-1)=3+1=4.15.(2017重庆,15,4分)如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB =64゜,则∠ACB = 度.答案:32 解析:从图形中可以看出,∠AOB 、∠C 分别是⊙O 中弧AB 所对的圆心角、圆周角,利用圆周角定理可得∠AOB =2∠C ,代入∠AOB 的度数即可得∠C 的度数.解:∵∠AOB 、∠C 分别是⊙O 中弧AB 所对的圆心角、圆周角,∴∠AOB =2∠C .∵∠AOB =64°,∴∠C =32°.16.(2017重庆,16,4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 小时.答案:11 解析:从折线统计图中可以发现:一周锻炼时间为9小时的有6人,一周锻炼时间为10小时的有9人,一周锻炼时间为11小时的有10人,一周锻炼时间为12小时的有8人,一周锻炼时间为13小时的有7人,该班共有学生6+9+10+8+7=40(人),将这组数据按从小到大顺序排列后,可以发现中位数应该是位于第20、21个数的平均数,而第20、21个数均为11,故中位数为1121111=+(小时). 17.(2017重庆,17,4分)A 、B 两地之间的路程为2380米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走.甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示.则乙到达A 地时,甲与A 地相距的路程是 米.答案:180 解析:①观察图象,知甲先出发5分钟,走了2380-2080=300米,所以甲的速度为300÷5=60(米/分钟);②第14分钟时,两人相距910米,甲走过的路程为60×14=840(米);设乙的速度为a 米/分钟,则乙晚出发5分钟,故此时乙走过的时间为14-5=9(分钟),路程为9a 米,∴840+910+9a =2380,解得a =70;③设两人经过b 小时,在A 、B 之间的C 地相遇,相遇时甲走过的路程为60(5+b )米,乙走过的路程为70b 米,易列得方程60(5+b )+70b =2380,解得b =16,此时A 地与相遇地C 之间的距离为60(5+b )=60(5+16)=1260(米);④乙从相遇地C 到达A 地需用的时间为1260÷70=18(分钟),此时甲走过的路程为18×60=1080(米),甲与A 地相距的路程是1260-1080=180(米).18.(2017重庆18,4分)如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将∆EFG 沿EF 翻折,得到∆EFM ,连接DM ,交EF 于点N ,若点F 是AB 边的中点,则∆EMN 的周长是 .答案:21025+ 解析:①连接GM 交EF 于点H ,∵将∆EFG 沿EF 翻折,得到∆EFM ,∴EM =EG ,EF 垂直且平分GM ,∵EF ⊥ED ,∴GM ∥DE ;②在正方形ABCD 中,AD =4,∴AB =AD =CD =4,∠DAB =∠ADC =90゜,AB ∥CD ,∴AC =244422=+,∵F 是AB 的中点,∴AF =2,∴DF =522422=+;又∵AF ∥CD ,∴21===CD AF CG AG DG GF ,∴DG =354,FG =352,AG =324;③∵∠DAF =∠DEF =90゜,∴A 、D 、E 、F 四点共圆,∴∠EDF =∠EAF =45゜,∴∆DEF 是等腰直角三角形,∴()22252=+FE DE ,∴10==EF DE ,∵GH ∥DE ,∴31===EF FH DE GH DF GF ,∴310=FH ,3102=EH ;又∵GH =HM ,HM ∥DE ,∴31===EN HN DN MN DE HM ,∴21043==EH EN ,∵∠DEN =90゜,DE =10,∴DN =()2252101022=⎪⎪⎭⎫ ⎝⎛+,∴MN =625;④∵∠DGE =∠AGF ,∠EDG =∠GAF =45゜,∴∆DGE ∽∆AGF ,∴DG FG EG AG ⋅=⋅,∵DG =354,FG =352,AG =324,∴EG =325=EM ; ⑤∵210=EN ,MN =625, EM =325,∴∆EMN 的周长=210+625+325=21025+.三、解答题:(本大题共2个小题,每小题8分,共16分) 19.(2017重庆,19,8分)(本小题满分8分)如图,AB ∥CD ,点E 是CD 上一点,∠AEC =42゜,EF 平分∠AED 交AB 于点F ,求∠AFE 的度数.思路分析:①由∠AEC =42゜,利用“两直线平行,内错角相等”,计算∠A 的度数;②利用“两直线平行,同旁内角互补”计算∠AED 的度数;③由EF 平分∠AED 求出∠FED 度数;④最后利用“两直线平行,内错角相等”,计算∠AFE 的度数.解:∵AB ∥CD ,∠AEC =42゜,∴∠A =∠AEC =42゜,∴∠A +∠AED =180゜,∴∠AED =180゜-42゜=138゜,∵EF 平分∠AED ,∴∠FED =21∠AED =69゜,又∵AB ∥CD ,∴∠AFE =∠FED =69゜.20.(2017重庆,20,8分)(本小题满分8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛.该校将收到的参赛作文进行分年级统计,绘制了如图1和图2两幅不完整的统计图.根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (2)经过评审,全校共有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.思路分析:(1)由两个统计图可知,七年级有20篇参赛作文,占20%,九年级有35篇参赛作文,∴收到的参赛作文篇数为20÷20%=100篇,∴九年级参赛作文篇数对应的圆心角是360°×10035=126°;收到八年级的参赛作文篇数为100-20-35=45篇,据此可补全条形统计图.(2)通过列表法或树状图求出事件发生的所有可能结果,再找出七年级特等奖作文被选登在校刊上的结果数,根据P (A )=A 事件包含的可能结果数所有可能结果数可求出相应的概率.解:(1)126,45;(2)假设4篇荣获特等奖的作文分别为A 、B 、C 、D ,其中A 代表七年级获奖的特等作文.列表法:A B C D A (A ,B )(A ,C ) (A ,D ) B (B ,A ) (B ,C )(B ,D ) C (C ,A ) (C ,B ) (C ,D )D(D ,A )(D ,B )(D ,C )∴212==P .四、解答题:(本大题共4个小题,每小题10分,共40分) 21.(2017重庆,21,10分)(本小题满分10分)计算:(1)x (x -2y ) -(x +y )2思路分析:①分别根据完单项式乘以多项式的法则及全平方公式计算x (x -2y )与(x +y )2;②把所得结果合并同类项求和.解:原式= x 2-2 x y -(x 2+2 x y +y 2)= x 2-2 x y -x 2-2 x y -y 2=-4 x y -y 2.(2)2122232++-÷⎪⎭⎫ ⎝⎛-++a a a a a思路分析:①把括号内的a -2看作一个整体,将这两项通分并利用同分母分式的加法法则计算;②同时将分式中2122++-a a a 的分子因式分解后再利用除法法则变形,约分后利用分式乘法法则进行计算.解:原式=()()()()1112211212423222-+=-+⋅+-+=+-÷⎪⎪⎭⎫⎝⎛+-++aaaaaaaaaaaa.22.(2017重庆,22,10分)(本小题满分10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数xky=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=22,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.思路分析:(1)①利用勾股定理在等腰Rt∆OMB中计算出OB、BM的长度,从而得到B点的坐标,将B点坐标代入xky=即可求得反比例函数关系式;②由反比例函数关系式求出A点坐标,再将A、B两点坐标代入一次函数解析式中,问题即可获解;(2)先求出一次函数与y轴交点C的坐标,可得线段OC的长度,再由“一组对边平行且相等的四边形是平行四边形”可推断四边形MBOC为平行四边形,利用公式S=ah可求得该平行四边形面积。
重庆市2017年中考数学真题试题(A卷,含答案)

2017重庆中考数学试题(A 卷)一、选择题1、在实数-3,2,0,-4,最大的数是( )A 、-3B 、2C 、0D 、-4 2、下列图形中是轴对称图形的是( )A B C D 3、计算26x x ÷正确的解果是( )A 、3B 、3xC 、4x D 、8x 4、下列调查中,最适合采用全面调查(普查)方式的是( ) A 、对重庆市初中学生每天阅读时间的调查 B 、对端午节期间市场上粽子质量情况的调查 C 、对某批次手机的防水功能的调查 D 、对某校九年级3班学生肺活量情况的调查 5、估计110+的值应在( )A 、3和4之间B 、4和5之间C 、5和6之间D 、6和7之间 6、若4,31-==y x ,则代数式33-+y x 的值为( ) A 、-6 B 、0 C 、2 D 、6 7、要使分式34-x 有意义,x 应满足的条件是( )A 、3 xB 、3=xC 、3 xD 、3≠x8、若ABC∆DEF ∆,相似比为3:2,则对应高的比为( )A 、3:2B 、3:5C 、9:4D 、4:99、如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( ) π3ππ3π10、下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,。
,按此规律排列下去,第⑨个图形中菱形的个数为( )A 、73B 、81C 、91D 、10911、如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( )(参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A 、5.1米B 、6.3米C 、7.1米D 、9.2米12、若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤--+021232a y yy 的解集为2- y ,则符合条件的所有整数a 的和为( ) A 、10 B 、12 C 、14 D 、1613、“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。
重庆2017年中考数学试题a卷及答案

重庆2017年中考数学试题a卷及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列哪个数是无理数?A. 2B. $\sqrt{4}$C. $\sqrt{2}$D. 0.33333...2. 以下哪个表达式等于 $x^2 - 4x + 4$?A. $(x-2)^2$B. $(x+2)^2$C. $x^2 - 2x + 4$D. $x^2 + 2x + 4$3. 如果一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 15π厘米C. 20π厘米D. 25π厘米4. 以下哪个图形是轴对称图形?A. 平行四边形B. 等腰三角形C. 任意四边形D. 不规则多边形5. 一个正数的算术平方根是3,那么这个正数是多少?A. 6B. 9C. 12D. 156. 以下哪个函数是一次函数?A. $y = x^2$B. $y = \frac{1}{x}$C. $y = 2x + 3$D. $y = x^3$7. 如果一个角的补角是120°,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 75°8. 以下哪个选项是不等式 $2x - 3 < 7$ 的解集?A. $x < 5$B. $x > 5$C. $x < 10$D. $x > 10$9. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么它的高是多少?A. 4厘米B. 5厘米C. 6厘米D. 7厘米10. 以下哪个选项是方程 $x^2 - 5x + 6 = 0$ 的解?A. 2和3B. 2和-3C. 3和-2D. -2和-3二、填空题(本题共5小题,每小题4分,共20分。
)11. 一个数的相反数是-5,那么这个数是____。
12. 如果一个角的正弦值是 $\frac{1}{2}$,那么这个角的度数可能是____。
2017年重庆市中考数学试卷(a卷)

2017年重庆市中考数学试卷(A卷)一、选择题(本大题共12个小题,每小题4分,共48分)1.(4分)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣42.(4分)下列图形中是轴对称图形的是()A.B.C.D.3.(4分)计算x6÷x2正确的是()A.3 B.x3C.x4D.x84.(4分)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查5.(4分)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间6.(4分)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.67.(4分)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠38.(4分)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:99.(4分)如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,若点E 是AD的中点,以点B为圆心,BE长为半径画弧,交BC于点F,则图中阴影部分的面积是()A.B.C.D.10.(4分)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.10911.(4分)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米12.(4分)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()A.10 B.12 C.14 D.16二、填空题(每小题4分,共24分)13.(4分)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.(4分)计算:|﹣3|+(﹣1)2=.15.(4分)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=.16.(4分)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是小时.17.(4分)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是米.18.(4分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EMN的周长是.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB 于点F,求∠AFE的度数.20.(8分)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.四、解答题:(本大题4个小题,每小题10分,共40分)21.(10分)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.22.(10分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.23.(10分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.24.(10分)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.五、解答题:(本大题共2个小题,25小题10分,26小题12分,共22分)25.(10分)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=,当F(s)+F(t)=18时,求k的最大值.26.(12分)如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.2017年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,共48分)1.(4分)(2017•重庆)在实数﹣3,2,0,﹣4中,最大的数是()A.﹣3 B.2 C.0 D.﹣4【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:∵﹣4<﹣3<0<2,∴四个实数中,最大的实数是2.故选:B.【点评】本题考查了实数大小比较,关键要熟记:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.2.(4分)(2017•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不合题意.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4分)(2017•重庆)计算x6÷x2正确的是()A.3 B.x3C.x4D.x8【分析】直接利用同底数幂的除法运算法则计算得出答案.【解答】解:x6÷x2=x4.故选:C.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.4.(4分)(2017•重庆)下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4分)(2017•重庆)估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】首先得出的取值范围,进而得出答案.【解答】解:∵3<<4,∴4<+1<5.故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.6.(4分)(2017•重庆)若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.6【分析】直接将x,y的值代入求出答案.【解答】解:∵x=﹣,y=4,∴代数式3x+y﹣3=3×(﹣)+4﹣3=0.故选:B.【点评】此题主要考查了代数式求值,正确计算是解题关键.7.(4分)(2017•重庆)要使分式有意义,x应满足的条件是()A.x>3 B.x=3 C.x<3 D.x≠3【分析】根据分式有意义的条件:分母≠0,列式解出即可.【解答】解:当x﹣3≠0时,分式有意义,即当x≠3时,分式有意义,故选D.【点评】本题考查的知识点为:分式有意义,分母不为0.8.(4分)(2017•重庆)若△ABC~△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:9【分析】直接利用相似三角形对应高的比等于相似比进而得出答案.【解答】解:∵△ABC~△DEF,相似比为3:2,∴对应高的比为:3:2.故选:A.【点评】此题主要考查了相似三角形的性质,正确记忆相关性质是解题关键.9.(4分)(2017•重庆)如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 长为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A .B .C .D .【分析】利用矩形的性质以及结合角平分线的性质分别求出AE ,BE 的长以及∠EBF 的度数,进而利用图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF ,求出答案.【解答】解:∵矩形ABCD 的边AB=1,BE 平分∠ABC ,∴∠ABE=∠EBF=45°,AD ∥BC ,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E 是AD 的中点,∴AE=ED=1,∴图中阴影部分的面积=S 矩形ABCD ﹣S △ABE ﹣S 扇形EBF=1×2﹣×1×1﹣=﹣. 故选:B .【点评】此题主要考查了扇形面积求法以及矩形的性质等知识,正确得出BE 的长以及∠EBC 的度数是解题关键.10.(4分)(2017•重庆)下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.109【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑨个图形中菱形的个数.【解答】解:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=91.故选:C.【点评】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.11.(4分)(2017•重庆)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为()(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).A.5.1米B.6.3米C.7.1米D.9.2米【分析】延长DE交AB延长线于点P,作CQ⊥AP,可得CE=PQ=2、CQ=PE,由i===可设CQ=4x、BQ=3x,根据BQ2+CQ2=BC2求得x的值,即可知DP=11,由AP==结合AB=AP﹣BQ﹣PQ可得答案.【解答】解:如图,延长DE交AB延长线于点P,作CQ⊥AP于点Q,∵CE∥AP,∴DP⊥AP,∴四边形CEPQ为矩形,∴CE=PQ=2,CQ=PE,∵i===,∴设CQ=4x、BQ=3x,由BQ2+CQ2=BC2可得(4x)2+(3x)2=102,解得:x=2或x=﹣2(舍),则CQ=PE=8,BQ=6,∴DP=DE+PE=11,在Rt△ADP中,∵AP==≈13.1,∴AB=AP﹣BQ﹣PQ=13.1﹣6﹣2=5.1,故选:A.【点评】此题考查了俯角与坡度的知识.注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键.12.(4分)(2017•重庆)若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a 的和为()A.10 B.12 C.14 D.16【分析】根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<﹣2,即可得出a≥﹣2,找出﹣2≤a<6且a≠2中所有的整数,将其相加即可得出结论.【解答】解:分式方程+=4的解为x=且x≠1,∵关于x的分式方程+=4的解为正数,∴>0且≠1,∴a<6且a≠2.,解不等式①得:y<﹣2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<﹣2,∴a≥﹣2.∴﹣2≤a<6且a≠2.∵a为整数,∴a=﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10.故选A.【点评】本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<﹣2,找出﹣2≤a<6且a≠2是解题的关键.二、填空题(每小题4分,共24分)13.(4分)(2017•重庆)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于11000有5位,所以可以确定n=5﹣1=4.【解答】解:11000=1.1×104.故答案为:1.1×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.14.(4分)(2017•重庆)计算:|﹣3|+(﹣1)2=4.【分析】利用有理数的乘方法则,以及绝对值的代数意义化简即可得到结果.【解答】解:|﹣3|+(﹣1)2=4,故答案为:4.【点评】此题考查了有理数的混合运算以及绝对值,熟练掌握运算法则是解本题的关键.15.(4分)(2017•重庆)如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=64°,则∠ACB=32°.【分析】根据AO=OC,可得:∠ACB=∠OAC,然后根据∠AOB=64°,求出∠ACB 的度数是多少即可.【解答】解:∵AO=OC,∴∠ACB=∠OAC,∵∠AOB=64°,∴∠ACB+∠OAC=64°,∴∠ACB=64°÷2=32°.故答案为:32°.【点评】此题主要考查了圆周角定理的应用,以及圆的特征和应用,要熟练掌握.16.(4分)(2017•重庆)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11小时.【分析】根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.【解答】解:由统计图可知,一共有:6+9+10+8+7=40(人),∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,∴该班这些学生一周锻炼时间的中位数是11,故答案为:11.【点评】本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.(4分)(2017•重庆)A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B 之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180米.【分析】根据题意和函数图象中的数据可以求得甲乙的速度和各段用的时间,从而可以求得乙到达A地时,甲与A地相距的路程.【解答】解:由题意可得,甲的速度为:(2380﹣2080)÷5=60米/分,乙的速度为:(2080﹣910)÷(14﹣5)﹣60=70米/分,则乙从B到A地用的时间为:2380÷70=34分钟,他们相遇的时间为:2080÷(60+70)=16分钟,∴甲从开始到停止用的时间为:(16+5)×2=42分钟,∴乙到达A地时,甲与A地相距的路程是:60×(42﹣34﹣5)=60×3=180米,故答案为:180.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)(2017•重庆)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG 沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EMN的周长是.【分析】解法一:如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,△DEF是等腰直角三角形,利用勾理计算DE=EF=,PD==3,如图2,由平行相似证明△DGC∽△FGA,列比例式可得FG 和CG的长,从而得EG的长,根据△GHF是等腰直角三角形,得GH和FH的长,利用DE∥GM证明△DEN∽△MNH,则,得EN=,从而计算出△EMN 各边的长,相加可得周长.解法二,将解法一中用相似得出的FG和CG的长,利用面积法计算得出,其它解法相同.解法三:作辅助线构建正方形和全等三角形,设EP=x,则DQ=4﹣x=FP=x﹣2,求x的值得到PF=1,AE的长;由△DGC和△FGA相似,求AG和GE的长;证△GHF 和△FKM全等,所以GH=FK=4/3,HF=MK=2/3,ML=AK=10/3,DL=AD﹣MK=10/3,即DL=LM,所以DM在正方形对角线DB上,设NI=y,列比例式可得NI的长,分别求MN和EN的长,相加可得结论.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,∵DE⊥EF,∴△DEF是等腰直角三角形,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,PD=4﹣1=3,Rt△DAF中,DF==2,DE=EF=,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键.三、解答题(本大题共2小题,每小题8分,共16分)19.(8分)(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.【点评】本题考查的是平行线的性质以及角平分线的定义.熟练掌握平行线的性质,求出∠DEF的度数是解决问题的关键.20.(8分)(2017•重庆)重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是126度,并补全条形统计图;(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.【分析】(1)求出总的作文篇数,即可得出九年级参赛作文篇数对应的圆心角的度数;求出八年级的作文篇数,补全条形统计图即可:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.用画树状图法,即可得出答案.【解答】解:(1)20÷20%=100,九年级参赛作文篇数对应的圆心角=360°×=126°;故答案为:126;100﹣20﹣35=45,补全条形统计图如图所示:(2)假设4篇荣获特等奖的作文分别为A、B、C、D,其中A代表七年级获奖的特等奖作文.画树状图法:共有12种可能的结果,七年级特等奖作文被选登在校刊上的结果有6种,∴P(七年级特等奖作文被选登在校刊上)==.【点评】此题考查了扇形统计图和条形统计图、列表法与树状图法的应用;从统计图中、扇形图中获取信息、画出树状图是解决问题的关键.四、解答题:(本大题4个小题,每小题10分,共40分)21.(10分)(2017•重庆)计算:(1)x(x﹣2y)﹣(x+y)2(2)(+a﹣2)÷.【分析】(1)先去括号,再合并同类项;(2)先将括号里的进行通分,再将除法化为乘法,分解因式后进行约分.【解答】解:(1)x(x﹣2y)﹣(x+y)2,=x2﹣2xy﹣x2﹣2xy﹣y2,=﹣4xy﹣y2;(2)(+a﹣2)÷.=[+],=,=.【点评】此题考查了分式和整式的混合运算,熟练掌握运算法则是解本题的关键.22.(10分)(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m ≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.【分析】(1)根据题意可以求得点B的坐标,从而可以求得反比例函数的解析式,进而求得点A的坐标,从而可以求得一次函数的解析式;(2)根据(1)中的函数解析式可以求得点C,点M、点B、点O的坐标,从而可以求得四边形MBOC的面积.【解答】解:(1)由题意可得,BM=OM,OB=2,∴BM=OM=2,∴点B的坐标为(﹣2,﹣2),设反比例函数的解析式为y=,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交与点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC的面积是:==4.【点评】本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和反比例函数的性质解答.23.(10分)(2017•重庆)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【分析】(1)利用枇杷的产量不超过樱桃产量的7倍,表示出两种水果的质量,进而得出不等式求出答案;(2)根据果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同得出等式,进而得出答案.【解答】解:(1)设该果农今年收获樱桃x千克,根据题意得:400﹣x≤7x,解得:x≥50,答:该果农今年收获樱桃至少50千克;(2)由题意可得:100(1﹣m%)×30+200×(1+2m%)×20(1﹣m%)=100×30+200×20,令m%=y,原方程可化为:3000(1﹣y)+4000(1+2y)(1﹣y)=7000,整理可得:8y2﹣y=0解得:y1=0,y2=0.125∴m1=0(舍去),m2=12.5∴m2=12.5,答:m的值为12.5.【点评】此题主要考查了一元一次不等式的应用以及一元二次方程的应用,正确表示出水果的销售总金额是解题关键.24.(10分)(2017•重庆)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.【点评】本题主要考查全等三角形的判定与性质及勾股定理、等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.五、解答题:(本大题共2个小题,25小题10分,26小题12分,共22分)25.(10分)(2017•重庆)对任意一个三位数n,如果n满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);。
2017重庆中考数学试题及答案A卷Word版

重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答.2.作答前认真阅读答题卡上的注意事项.3.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( B )A .-3B .2C .0D .-42.下列图形中是轴对称图形的是( C )A B C D3.计算26x x ÷正确的结果是( C )A .3B .3xC .4xD .8x 4.下列调查中,最适合采用全面调查(普查)方式的是( D )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5.估计110+的值应在( B )A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.若13x =-,4y =,则代数式33-+y x 的值为( B )A .-6B .0C .2D .6 7.要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B .3=x C .3<x D .3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A )A .3:2B .3:5C .9:4D .4:99.如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A .4-2πB .4-23πC .8-2π D .8-23π 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( C )A .73B .81C .91D .109 11题图11.如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为400,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB 的长约为( A ) (参考数据:sin400≈0.64,cos400≈0.77,tan400≈0.84) A .5.1米 B .6.3米 C .7.1米 D .9.2米12.若数a 使关于x 的分式方程4112=-+-x a x 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤->-+021232a y y y 的解集为2-<y ,则符合条件的所有整数a 的和为( A ) A .10 B .12 C .14 D .16二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 1.1×104 .14.计算:|-3|+(-1)2= 4 .15.如图,BC 是⊙O 的直径,点A 在圆上,连接AO ,AC ,∠AOB=640,则∠ACB= 32 度.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是 11 小时.18题图17.A 、B 两地之间的路程为2380米,甲、乙两人分别从A 、B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A 、B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行.甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y (米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是 180 米.18.如图,正方形ABCD 中,AD=4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 的中点,则△EMN 的周长是 .三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 19.如图,AB//CD ,点E 是CD 上一点,∠AEC=420,EF 平分∠AED 交AB 于点F.求∠AFE 的度数.20.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 126 度,并补全条形统计图; 45(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.解:(2)假设4篇荣获特等奖的作文分别为A 、B 、C 、D ,其中A 代表七年级获奖的特等奖作文.列表法:61122P == 四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.计算:(1)()()22y x y x x +--; (2)2122232++-÷⎪⎭⎫ ⎝⎛-++a a a a a22.如图,在平面直角坐标系中,一次函数)0(≠+=m n mx 的图像与反比例函数()0≠=k xk y 的图像交于第一、三象限内的A ,B 两点,与y 轴交于点C .过点B 作BM ⊥x 轴,垂足为M ,BM=OM ,OB=22,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC ,求四边形MBOC 的面积. 解:(1)由题意可得,BM=OM ,OB=22,∴BM=OM=2,∴点B 的坐标为(﹣2,﹣2),∵反比例函数的解析式为(0)k y k x =≠,∴22k -=-,∴4k =,∴反比例函数的解析式为4y x=, ∵点A 的纵坐标是4,∴44x =,得1x =,∴点A 的坐标为(1,4), ∵一次函数(0)y mx n m =+≠的图象过点A(1,4)、点B(﹣2,﹣2),∴422m n m n +=⎧⎨-+=-⎩,得22m n =⎧⎨=⎩,即一次函数的解析式为22y x =+;(2)∵22y x =+与y 轴交与点C ,∴点C 的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC 的面积为:1111222242222RtCOM Rt BOM S S OM OC OM MB +=⨯⨯+⨯⨯=⨯⨯+⨯⨯=.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.解:(1)设该果农今年收获樱桃x千克,根据题意得400-x≤7x,解得x≥50.(2)100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为:3000(1-y)+4000(1+2y)(1-y)=7000,整理可得:8y2-y=0,解得:y1=0,y2=0.125,∴m1=0(舍去),m2=12.5,∴m=12.5.24.在△ABC中,∠ABM=450,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图一,若AB=32,BC=5,求AC的长;(2)如图二,点D是线段AM上一点,MD=MC,点E 是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点.求证:∠BDF=∠CEF.五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()t FsFk=,当()()18=+tFsF时,求k的最大值.解:(1)F(243)=(423+342+234)÷111=9,F(617)=(176+716+671)÷111=14.26.如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 时CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标,若不存在,请说明理由.解:(1)当0y =时,即2333033x x -=. 解这个方程,得11x =-,23x =.∴点A (-1,0),B (3,0). 当4x =时,232353443n =-= ∴点E (453).……(2分) ∴直线AE 的解析式为33y x =+.……(3分) (2)令0x =,得3y =∴点C (0,3又∵点E (453), ∴直线CE 的解析式为2333y x =-过点P 作PF ∥y 轴,交CE 于点F ,如图1. 设点P 的坐标为(t ,2323333-,则F(t ,2333, ∴22233233433(3)-=,∴221134323834()223333PCE E C S x x PH t t t t =-⨯=⨯⨯-+=-+△. 又∵抛物线开口向下,04t <<,∴当2t =时,PCE S △取得最大值.此时,点P 为(2,3-).……(5分)如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴K(32,﹣32).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,﹣332). ∵点G 与点K 关于CD 对称,∴点G(0,0),∴KM+MN+NK=MH+MN+GN .当点O 、N 、M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH ,∴22333()()22+=3, ∴KM+MN+NK 的最小值为3.……(8分)(3)点Q 的坐标为(343221-+),(343221--,(3,23,(3,23). (写对一个点的坐标得1分)……(12分)如图3所示:∵y ′经过点D ,y ′的顶点为点F ,∴F(3,43). ∵点G 为CE 的中点,∴FG=22532211()33+=, ∴①当FG=FQ 时,点Q(3,43213-), Q ′(3,43213-). ②当GF=GQ 时,点F 与点Q ″关于3y =对称,∴点Q ″(3,3③当QG=QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:224331()33a a +=+-解得:23a =.∴点Q 1的坐标为(3,23). 综上所述,点Q 的坐标为(3,32213-),(3,3213-),(3,23,(3,235-).。
重庆2017年中考数学试题a卷及答案

重庆2017年中考数学试题a卷及答案一、选择题(每题3分,共30分)1. 下列选项中,哪一个是偶数?A. 2B. 3C. 5D. 7答案:A2. 计算下列表达式的结果:A. \(3^2 - 2^2\)B. \((3-2)^2\)C. \(3^2 + 2^2\)D. \(3^2\times 2^2\)答案:A3. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 2答案:A5. 下列哪个选项是不等式?A. \(2x + 3 = 7\)B. \(2x - 3 > 7\)C. \(2x + 3 < 7\)D. \(2x + 3\)答案:B6. 计算下列表达式的结果:A. \((-3)^2\)B. \(-3^2\)C. \((-3) \times (-3)\)D. \(-3\times 3\)答案:A7. 已知一个圆的半径为5,那么它的周长是多少?A. 10πB. 20πC. 30πD. 40π答案:B8. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 10D. -10答案:A9. 下列哪个选项是等式?A. \(2x + 3 > 7\)B. \(2x - 3 < 7\)C. \(2x + 3 = 7\)D. \(2x + 3\)答案:C10. 已知一个正方体的表面积为24平方厘米,那么它的一个面的面积是多少?A. 4平方厘米B. 6平方厘米C. 8平方厘米D. 12平方厘米答案:A二、填空题(每题3分,共30分)11. 一个数的绝对值是5,那么这个数可以是______或______。
答案:5或-512. 一个数的倒数是1/2,那么这个数是______。
答案:213. 计算 \((-2) \times (-3)\) 的结果是______。
2017重庆A卷中考数学试题及答案

2017重庆A卷中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2的平方等于4B. 3的平方等于9C. 4的平方等于16D. 5的平方等于25答案:B2. 计算下列哪个表达式的结果为正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-3)答案:A3. 哪个选项是等腰三角形?A. 两边相等的三角形B. 三边相等的三角形C. 三角形的内角和为360度D. 三角形的外角和为360度答案:A4. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 正弦曲线D. 圆答案:B5. 计算下列哪个表达式的结果是0?A. 3 + 2B. 3 - 3C. 3 × 0D. 3 ÷ 3答案:C6. 哪个选项是圆的周长公式?A. C = 2πrB. C = πrC. C = 4rD. C = r²答案:A7. 下列哪个选项是正确的比例关系?A. 2:3 = 4:6B. 2:3 = 3:4C. 2:3 = 3:5D. 2:3 = 4:5答案:A8. 计算下列哪个表达式的结果为负数?A. (-2) + 3B. (-2) × 3C. (-2) ÷ 3D. (-2) - 3答案:D9. 下列哪个选项是正确的几何定理?A. 两直线平行,内错角相等B. 两直线相交,内错角互补C. 两直线平行,同位角相等D. 两直线相交,同位角互补答案:C10. 计算下列哪个表达式的结果是正数?A. (-3) × (-2)B. (-3) × 2C. 3 × (-2)D. (-3) × (-3)答案:A二、填空题(每题3分,共15分)1. 一个数的平方等于9,这个数是______。
答案:±32. 一个数的立方等于8,这个数是______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答.2.作答前认真阅读答题卡上的注意事项.3.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( B )A .-3 D .-42.下列图形中是轴对称图形的是( C )A B C D3.计算26x x ÷正确的结果是( C )B .3xC .4xD .8x 4.下列调查中,最适合采用全面调查(普查)方式的是( D )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5.估计110+的值应在( B )和4之间 和5之间 和6之间 和7之间6.若13x =-,4y =,则代数式33-+y x 的值为( B )A .-6 7.要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B .3=x C .3<x D .3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A ):2 :5 :4 :99.如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A .4-2πB .4-23πC .8-2π D .8-23π 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( C )11题图11.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为400,若DE=3米,CE=2米,CE 平行于江面AB,迎水坡BC的坡度75.0:1=i,坡长BC=10米,则此时AB的长约为( A ) (参考数据:sin400≈,cos400≈,tan400≈米米米米12.若数a使关于x的分式方程4112=-+-xax的解为正数,且使关于y的不等式组()⎪⎩⎪⎨⎧≤->-+21232ayyy的解集为2-<y,则符合条件的所有整数a的和为( A )二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为×104.14.计算:|-3|+(-1)2= 4 .15.如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=640,则∠ACB= 32 度.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11 小时.18题图、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是180 米.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB 于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F 是AB的中点,则△EMN的周长是.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上.19.如图,AB∠AFE的度数.20.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 126 度,并补全条形统计图; 45(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.解:(2)假设4篇荣获特等奖的作文分别为A 、B 、C 、D ,其中A 代表七年级获奖的特等奖作文.列表法:61122P == 四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.计算:(1)()()22y x y x x +--; (2)2122232++-÷⎪⎭⎫ ⎝⎛-++a a a a a22.如图,在平面直角坐标系中,一次函数)0(≠+=m n mx 的图像与反比例函数()0≠=k xk y 的图像交于第一、三象限内的A ,B 两点,与y 轴交于点C .过点B 作BM ⊥x 轴,垂足为M ,BM=OM ,OB=22,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC ,求四边形MBOC 的面积. 解:(1)由题意可得,BM=OM ,OB=22,∴BM=OM=2,∴点B 的坐标为(﹣2,﹣2),∵反比例函数的解析式为(0)k y k x =≠,∴22k -=-,∴4k =,∴反比例函数的解析式为4y x=, ∵点A 的纵坐标是4,∴44x =,得1x =,∴点A 的坐标为(1,4), ∵一次函数(0)y mx n m =+≠的图象过点A(1,4)、点B(﹣2,﹣2),∴422m n m n +=⎧⎨-+=-⎩,得22m n =⎧⎨=⎩,即一次函数的解析式为22y x =+;(2)∵22y x =+与y 轴交与点C ,∴点C 的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC 的面积为:1111222242222Rt COM Rt BOM S S OM OC OM MB +=⨯⨯+⨯⨯=⨯⨯+⨯⨯=V V .23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.解:(1)设该果农今年收获樱桃x千克,根据题意得400-x≤7x,解得x≥50.(2)100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为:3000(1-y)+4000(1+2y)(1-y)=7000,整理可得:8y2-y=0,解得:y1=0,y2=,∴m1=0(舍去),m2=,∴m=.24.在△ABC中,∠ABM=450,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图一,若AB=32,BC=5,求AC的长;(2)如图二,点D是线段AM上一点,MD=MC,点E 是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点.求证:∠BDF=∠CEF.五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()t FsFk=,当()()18=+tFsF时,求k的最大值.解:(1)F(243)=(423+342+234)÷111=9,F(617)=(176+716+671)÷111=14.26.如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 时CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标,若不存在,请说明理由.解:(1)当0y =时,即2333033x x -=. 解这个方程,得11x =-,23x =.∴点A (-1,0),B (3,0). 当4x =时,232353443n =-= ∴点E (453).……(2分) ∴直线AE 的解析式为33y =+……(3分) (2)令0x =,得3y =∴点C (0,3又∵点E (453), ∴直线CE 的解析式为2333y x =-过点P 作PF ∥y 轴,交CE 于点F ,如图1. 设点P 的坐标为(t ,2323333-,则F(t ,333t -, ∴22233233433(3)=+,∴221134323834()22PCE E C S x x PH t t t t =-⨯=⨯⨯-+=-+△. 又∵抛物线开口向下,04t <<,∴当2t =时,PCE S △取得最大值.此时,点P 为(2,3-).……(5分)如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴K(32,﹣3).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,﹣33). ∵点G 与点K 关于CD 对称,∴点G(0,0),∴KM+MN+NK=MH+MN+GN .当点O 、N 、M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH ,∴GH=22333()()22+=3, ∴KM+MN+NK 的最小值为3.……(8分)(3)点Q 的坐标为(343221-+),(343221--,(3,23,(3,23). (写对一个点的坐标得1分)……(12分)如图3所示:∵y ′经过点D ,y ′的顶点为点F ,∴F(3,43). ∵点G 为CE 的中点,∴FG=22532211()33+=, ∴①当FG=FQ 时,点Q(3,43213-), Q ′(3,43213-). ②当GF=GQ 时,点F 与点Q ″关于3y =对称,∴点Q ″(3,3③当QG=QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:224331()33a a +=+-解得:23a =.∴点Q 1的坐标为(3,23). 综上所述,点Q 的坐标为(3,32213-),(3,3213-),(3,23,(3,235-).。