《运筹学心得体会》

合集下载

运筹学学习心得

运筹学学习心得

运筹学学习心得一、引言运筹学是一门研究如何进行决策和优化的学科,它在现代管理和工程领域具有重要的应用价值。

在学习运筹学的过程中,我深刻体会到了它的理论基础和实践应用,下面将就我的学习心得进行总结。

二、运筹学的基本概念运筹学是一门综合性学科,它涵盖了数学、统计学、计算机科学等多个学科的知识。

在学习运筹学的过程中,我了解到了运筹学的基本概念,包括决策分析、线性规划、整数规划、动态规划等。

这些概念对于解决实际问题具有重要的指导意义。

三、运筹学的理论基础在学习运筹学的过程中,我深入学习了运筹学的理论基础,包括数学规划理论、随机过程理论、图论等。

这些理论为解决实际问题提供了强大的工具和方法。

例如,线性规划可以用于求解最优化问题,动态规划可以用于求解最短路径问题,图论可以用于求解网络流问题等。

四、运筹学的实践应用运筹学在现代管理和工程领域具有广泛的应用。

在学习运筹学的过程中,我了解到了一些实践应用案例。

例如,运筹学可以应用于生产调度问题,通过优化生产计划和资源分配,提高生产效率和利润;运筹学可以应用于物流配送问题,通过优化配送路线和货物分配,降低物流成本和配送时间;运筹学可以应用于金融投资问题,通过优化投资组合和风险控制,提高投资收益和降低风险等。

五、运筹学的挑战与思考在学习运筹学的过程中,我也面临了一些挑战。

首先,运筹学的理论知识较为抽象和复杂,需要具备扎实的数学基础和逻辑思维能力。

其次,实际问题往往具有多个约束条件和目标函数,需要综合考虑各种因素进行决策。

最后,运筹学的应用需要结合实际情况进行具体分析和实施,需要具备良好的沟通和协调能力。

在面对这些挑战时,我思考了如何提高自己的能力。

首先,我加强了数学和统计学的学习,提高了自己的数学建模和分析能力。

其次,我积极参与实践项目,通过实际操作和解决问题,提升了自己的实践能力。

最后,我与同学们进行交流和讨论,共同解决问题,提高了自己的团队合作和沟通能力。

六、结语通过学习运筹学,我深刻理解了它的理论基础和实践应用,认识到了它在现代管理和工程领域的重要性。

运筹学学习的心得体会5则范文

运筹学学习的心得体会5则范文

运筹学学习的心得体会5则范文第一篇:运筹学学习的心得体会浅谈我对运筹学的认识《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜于千里之外”。

先从运筹学的名字谈起。

运筹学的英文原名叫做Operations Research,从名字就可以看出,运筹学主要就是“研究(Research)”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。

中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。

这就极为恰当地概括了这门学科的精髓。

当我首次听说这门课程时,心里充满了畏惧与神圣感,畏惧是因为我对这门课还未收悉,看名字就觉得很难很高深;神圣感则是因为自己可以学习这门高深的课程。

粗略的翻过课本与听了老师的简介之后,我觉得自己大致明白了这门课的方向,主要还是将数学运用到生活中,运用到管理活动中。

所以我就将这门课定义为了数学与管理的一个综合。

慢慢的经过一学期的学习,我认识到运筹学不仅是数学与管理活动的结合,还是数学和经济活动、生态、技术,甚至于政治的结合。

下面引用一段资料我国运筹学的应用是在1957年始于建筑业和纺织业。

1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。

在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。

从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。

1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。

从70年代起,在全国大部分省市推广优选法。

70年代中期最优化方法在工程设计界得到广泛的重视。

在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。

70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。

学习运筹学的心得[5篇范文]

学习运筹学的心得[5篇范文]

学习运筹学的心得[5篇范文]第一篇:学习运筹学的心得学习运筹学的心得一直以来就对经济类很感兴趣,但是被分配到机械专业,不过我也一直都在关注有关经济,所以这次选修课,我毫不犹豫的选了运筹学,对于运筹学,我还是有一些了解的,知道他同我这机械专业的联系,运筹学在生活中的应用非常广泛,工程,物流,人事安排等很多方面都牵扯到运筹。

基本上需要资源优化配置的都有运筹学的影响。

你在家里面做个简单的事情安排都由运筹学的影响。

比如家务安排,怎么安排最节省人力时间,就运用到了运筹学。

运筹学是从生活实践中总结发展出来的学科,影响很广泛,很多人没有接触过运筹学,不知道什么是运筹学,但是在处理问题的时候都用到了运筹学。

刚开始学运筹学对我来说也许有点难度,但我还是会拿起那本厚厚的书静静的看下去,不知不觉就喜欢上它了,觉得它是我学习的课程最有用的一门学科。

也许不光是课程本身的实用性吧!每次看完一点我都要慢慢去体会,原来如此复杂的问题这样就解决了,有点不可思议!晚上休息的时候也会不知不觉就想起,以至与舍友说我是运筹学学疯了,也许吧!最近发觉自己有个毛病,总会把运筹学和人生联系到一起,不知不觉就会想到它学习理论的目的就是为了解决实际问题,下面就谈谈我对运筹学的理解及我学习运筹学的心得。

其实,运筹思想和方法,早在我国上古就曾闪烁过光辉。

《孙子兵法》十分强调决策信息作用,“知己知彼,百战不殆”。

我国历史上运筹思想及其应用,在军事上和工程上都有过不少光辉范例。

“赤壁鏖兵”、“火烧连营”、“淝水之战”,都因运筹有方,结果以寡胜众。

“都江堰水利工程”和北宋修复皇宫“一举三济”的故事,至今仍广为传颂。

运筹学是研究各种广义资源的运用、筹划以及相关决策等问题的,其目的是根据问题的需求,通过数学的分析和运算,做出综合性的、合理的优化安排,以便更有效地发展有限资源的效益。

在学习运筹学前我们必须理解这么学科到底是做什么的,并且学习时我们要知道如何运用它达到所需的目的。

运筹学学习心得

运筹学学习心得

运筹学学习心得运筹学是一门研究如何做出最优决策的学科,它主要涉及数学、统计学和计算机科学等领域。

通过学习运筹学,我深刻认识到它在解决实际问题中的重要性和应用广泛性。

以下是我对运筹学学习的心得体会。

一、运筹学的基本概念和原理运筹学的核心概念是最优化,即在给定的约束条件下,找到使目标函数取得最优值的决策变量。

它涉及到线性规划、整数规划、动态规划、网络优化等方法和技术。

通过学习这些方法,我了解到如何建立数学模型,并运用相应的算法求解最优解。

二、线性规划的应用线性规划是运筹学中最基础和最常用的方法之一。

它适用于许多实际问题,如生产计划、资源分配、物流运输等。

通过学习线性规划,我学会了如何将实际问题转化为数学模型,并运用单纯形法、对偶理论等方法求解最优解。

例如,在生产计划中,通过线性规划可以确定每个产品的生产数量,以最大化利润或最小化成本。

三、整数规划的求解在一些实际问题中,决策变量需要取整数值,这就涉及到整数规划。

整数规划的求解相对复杂,需要运用分支定界法、割平面法等高级算法。

通过学习整数规划,我了解到如何处理这类问题,并掌握了相应的求解技巧。

例如,在物流配送中,整数规划可以帮助确定最佳的配送路线和车辆调度方案。

四、动态规划的思想和应用动态规划是一种通过递推关系求解最优化问题的方法。

它适用于具有重叠子问题和最优子结构性质的问题。

通过学习动态规划,我了解到如何分析问题的结构,并构造递推方程求解最优解。

例如,在投资决策中,动态规划可以帮助确定最佳的投资策略,以最大化收益或最小化风险。

五、网络优化的应用网络优化是运筹学中的一个重要分支,它主要研究网络流问题和图论相关的优化问题。

通过学习网络优化,我了解到如何建立网络模型,并运用最小生成树算法、最短路径算法等方法求解最优解。

例如,在交通规划中,网络优化可以帮助确定最佳的交通流分配方案,以提高交通效率和减少拥堵。

六、运筹学在实际问题中的应用运筹学作为一门应用学科,广泛应用于各个领域。

运筹学学习心得

运筹学学习心得

运筹学学习心得运筹学是一门研究如何在有限资源下做出最优决策的学科,它涉及到数学、统计学、经济学等多个领域的知识。

通过学习运筹学,我深刻认识到了它在实际生活和工作中的广泛应用,以及它对决策的重要性。

以下是我对运筹学学习的心得体会。

首先,运筹学的核心思想是优化。

它通过建立数学模型,利用数学方法来求解最优解。

在学习过程中,我了解到了各种常用的优化方法,如线性规划、整数规划、动态规划等。

这些方法可以帮助我们在决策过程中找到最优解,提高效率,降低成本。

例如,在生产调度中,我们可以利用线性规划来确定最佳的生产计划,以最大程度地利用资源,提高生产效率。

其次,运筹学还包括决策分析和风险管理。

在学习中,我了解到了多种决策分析方法,如决策树、灰色关联分析等。

这些方法可以帮助我们在面对多种选择时做出明智的决策。

同时,风险管理也是运筹学的重要内容之一。

通过学习风险管理,我了解到了如何通过评估和控制风险来降低决策的不确定性。

在实际工作中,我们可以利用风险管理的方法来制定风险应对策略,保证项目的顺利进行。

此外,运筹学还涉及到排队论、库存管理、供应链管理等内容。

通过学习这些内容,我了解到了如何通过合理的排队策略来提高服务效率,如何通过库存管理来平衡成本和服务水平,以及如何通过供应链管理来优化整个供应链的运作。

这些知识对于企业的运营和管理具有重要意义。

在学习运筹学的过程中,我也进行了一些实践应用。

例如,我利用线性规划方法解决了一个生产调度问题,通过优化生产计划,实现了资源的最大利用和生产效率的提高。

我还利用决策树方法对一个投资项目进行了评估,通过分析各种可能的结果和概率,帮助决策者做出了正确的决策。

这些实践应用让我更加深入地理解了运筹学的应用和意义。

在学习运筹学的过程中,我也遇到了一些困难和挑战。

例如,运筹学涉及到较多的数学和统计知识,需要一定的数学基础。

在遇到复杂的问题时,需要耐心和细心地分析和求解。

此外,运筹学的应用也需要一定的实践经验和业务理解。

运筹学实验的心得体会范文(通用3篇)

运筹学实验的心得体会范文(通用3篇)

运筹学实验的心得体会范文(通用3篇)运筹学实验的心得体会1古人作战讲“夫运筹帷幄之中,决胜千里之外”。

在现代商业社会中,更加讲求运筹学的应用。

作为一名物流管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。

即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。

本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。

是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。

线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。

简单的设计2个变量的线性规划问题可以直接运用图解法得到。

但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。

单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。

将所得的量的值代入目标函数,得出最优值。

遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。

对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。

对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。

非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。

运筹学学习心得

运筹学学习心得

运筹学学习心得运筹学是一门研究如何有效地做出决策的学科,它涉及到数学、统计学和计算机科学等多个领域。

在我的运筹学学习过程中,我深刻体会到了它的重要性和应用价值。

以下是我对运筹学学习的心得体会。

首先,运筹学的核心思想是优化。

无论是在工业生产中,还是在物流管理中,优化都是一个关键的目标。

通过学习运筹学,我了解到了各种优化方法和技术,如线性规划、整数规划、动态规划等。

这些方法可以帮助我们在面对复杂的问题时,找到最优解决方案,提高效率和效益。

其次,运筹学还包括决策分析和风险管理。

在现实生活中,我们经常需要做出各种决策,而这些决策往往伴随着风险和不确定性。

通过学习运筹学,我学会了如何进行决策分析,如何评估和管理风险。

这对于提高决策的准确性和可靠性非常重要。

另外,运筹学还与信息技术密切相关。

在现代社会中,信息的获取和处理变得越来越重要。

通过学习运筹学,我了解到了如何利用信息技术来支持决策和优化。

例如,运筹学中的决策支持系统可以帮助我们收集和分析大量的数据,从而提供决策的依据。

此外,运筹学还与团队合作密切相关。

在解决复杂问题时,往往需要多个人的合作和协调。

通过学习运筹学,我了解到了如何有效地组织和管理团队,如何分配任务和资源,以实现团队的协同工作。

这对于提高团队的工作效率和绩效非常重要。

在运筹学学习的过程中,我还参与了一些实践项目,通过实际操作来加深对运筹学理论的理解。

例如,我们在一个工厂中进行了生产线优化的项目。

通过对工厂的生产流程进行分析和优化,我们成功地提高了生产效率和产品质量。

这个项目不仅让我更好地理解了运筹学的应用,还培养了我团队合作和问题解决的能力。

总结起来,运筹学是一门非常实用和有价值的学科。

通过学习运筹学,我不仅学到了很多优化方法和技术,还培养了分析问题、决策和团队合作的能力。

我相信这些知识和技能在未来的工作和生活中都会对我产生积极的影响。

运筹学的学习让我更加深入地理解了如何做出有效的决策,如何优化资源和提高效率。

运筹学学习心得

运筹学学习心得

运筹学学习心得标题:运筹学学习心得引言概述:运筹学是一门研究如何优化决策和资源利用的学科,它的应用广泛,涉及到各个领域。

在学习运筹学的过程中,我深刻体味到了它的重要性和实用性。

本文将结合个人学习经验,从五个方面详细阐述我对运筹学的学习心得。

一、理论基础1.1 深入了解运筹学的定义和基本概念,明确其研究对象和目标。

1.2 学习运筹学的数学模型和方法,包括线性规划、整数规划、动态规划等。

1.3 掌握运筹学的基本原理和解题技巧,如对偶理论、灵敏度分析等。

二、实际应用2.1 学习如何将运筹学方法应用于实际问题的求解,如生产调度、物流配送等。

2.2 理解运筹学在供应链管理、项目管理等领域的应用,掌握实际案例分析方法。

2.3 了解运筹学在金融、交通、能源等行业中的重要性和应用前景。

三、决策优化3.1 学习如何进行决策优化,通过运筹学方法找到最优解决方案。

3.2 掌握运筹学在决策支持系统中的应用,提高决策效率和准确性。

3.3 理解决策风险与不确定性对运筹学决策的影响,学习相应的风险管理方法。

四、数据分析4.1 学习如何采集、整理和分析与运筹学相关的数据,为决策提供支持。

4.2 掌握运筹学中常用的数据处理和建模技巧,提高问题求解的准确性和效率。

4.3 了解数据挖掘和机器学习在运筹学中的应用,拓展运筹学的研究领域。

五、团队合作5.1 学习如何与团队成员合作,共同解决运筹学问题。

5.2 掌握团队决策的协调与沟通技巧,提高团队工作效率。

5.3 通过团队合作学习不同的解题思路和方法,培养创新能力和解决问题的能力。

总结:通过学习运筹学,我深刻认识到它在实际问题中的重要性和应用价值。

掌握运筹学的理论基础、实际应用、决策优化、数据分析和团队合作等方面的知识和技能,不仅可以提高问题求解的效率和准确性,还可以培养创新能力和团队合作精神。

我相信在今后的学习和工作中,运筹学将成为我解决问题的有力工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《运筹学心得体会》转载▼标签:杂谈古人作战讲“夫运筹帷幄之中,决胜千里之外”。

在现代商业社会中,更加讲求运筹学的应用。

作为一名物流管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。

即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。

本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。

是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。

线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。

简单的设计2个变量的线性规划问题可以直接运用图解法得到。

但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。

单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。

将所得的量的值代入目标函数,得出最优值。

遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。

对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。

对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。

非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。

因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。

灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。

可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。

如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性规划的内容。

运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。

根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。

表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。

其中沃格尔法得出的解最接近最优解。

然后利用闭回路法或对偶变量法对得到解进行最优性判别。

当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。

在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。

整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定解法。

整数规划中的0-1规划整数问题是一个非常有用的方法。

在实际问题中,该方法能够解决很多问题。

0-1整数规划的解决方法有枚举法和隐枚举法。

指派问题是0-1整数规划中的特例,现在采用的解法一般为匈牙利法,由于指派问题的特殊性,使用匈牙利法可以有效的减少计算量。

学习理论的目的就是为了解决实际问题。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。

那么我们就要寻找别的理论方法来解决问题,即:非线性规划。

关于非线性规划的理论还没有深入学习,暂将我的学习所得进行到此。

第二篇:应用运筹学心得体会应用相信大家都知道,田忌赛马的故事,从中我们不难发现在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。

可见,筹划安排是十分重要的。

古人作战讲“夫运筹帷幄之中,决胜千里之外”也就是这个道理。

运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。

从最直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。

”运筹学的具体内容包括。

规划论(包括线性规划、非线性规划、整数规划和动态规划)、库存论、图论、决策论、对策论、排队论、、博弈论、可靠性理论等。

而《应用运筹学》作为运筹学的一部分,则重点介绍了管理运筹的思想与建模方法,具体包括了线性规划及扩展问题模型、图与网络分析模型、项目管理技术、决策分析技术、库存模型和排队模型等运筹学的重要分支。

其主要特点是注重运筹学原理及方法在解决实际管理问题时应用,突出了管理问题的分析和运筹模型的构建过程,淡化了模型的理论推导和数学计算,借助于十分普及的excel软件来求解模型,使得运筹学模型的应用更加简明直观。

线性规划是运筹学的一个重要分支。

线性规划解决的是。

在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。

简单的设计2个变量的线性规划问题可以直接运用图解法得到。

但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。

单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。

将所得的量的值代入目标函数,得出最优值。

图论是一个古老的但又十分活跃的分支,它是网络技术的基础。

在日常生活和生产中,人们会经常碰到各种各样的图,如零件加工图、公路或铁路交通图、管网图等。

图论中图是上述各种类型图的抽象和概括,它用点表示研究对象,用边表示这些对象之间的联系。

而图与网络分析是近几十年来运筹学领域中发展迅速、而且十分灵活的一个分支。

由于它对实际问题的描述,具有直观性,故广泛应用与物理学、化学、信息论、控制论、计算机科学、社会科学、以及现代经济管理科学等许多科学领域。

项目管理技术就是在时间、成本、质量、风险、合同、采购、人力资源等各个方面对项目进行的计划和控制。

其中项目管理的核心思想是对进度的管理和成本的控制。

决策分析技术是属决策论的一部分。

主要是在研究决策问题。

所谓决策就是根据客观可能性,借助一定的理论、方法和工具,科学地选择最优方案的过程。

决策问题是由决策者和决策域构成的,而决策域又由决策空间、状态空间和结果函数构成。

研究决策理论与方法的科学就是决策科学。

库存模型则主要是对库存论的一种实际应用。

库存论是一种研究物质最优存储及存储控制的理论,物质存储时工业生产和经济运转的必然现象。

如果物质存储过多,则会占用大量仓储空间,增加保管费用,使物质过时报废从而造成经济损失;如果存储过少,则会因失去销售时机而减少利润,或因原料短缺而造成停产。

因而如何寻求一个恰当的采购,存储方案就成为库存论研究的对象。

排队模型在日常生活中的应用是相当广泛的,比如水库水量的调节、生产流水线的安排,铁路分成场的调度、电网的设计等等。

排队论又叫做随机服务系统理论。

它的研究目的是要回答如何改进服务机构或组织被服务的对象,使得某种指标达到最优的问题。

比如一个港口应该有多少个码头,一个工厂应该有多少维修人员等。

学习理论的目的就是为了解决实际问题。

图论为计算机领域也奠定了基础,运筹学的计算方法可以借用计算机来完成。

线性规划的理论对我们的实际生活指导意义很大。

当我们遇到一个问题,需要认真考察该问题。

如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。

但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。

那么我们就要寻找别的理论方法来解决问题。

通过对此次对应用运筹学的学习我掌握了运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。

应用运筹学对我们以后的生活也讲有不小的影响,将应用运筹学运用到实际问题上去,学以致用。

第三篇:学习运筹学的心得体会学习运筹学的体会与心得运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。

根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。

表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。

其中沃格尔法得出的解最接近最优解。

然后利用闭回路法或对偶变量法对得到解进行最优性判别。

当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。

在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。

整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。

整数规划中的0-1规划整数问题是一个非常有用的方法。

在实际问题中,该方法能够解决很多问题。

0-1整数规划的解决方法有枚举法和隐枚举法。

指派问题是0-1整数规划中的特例,古人作战讲“夫运筹帷幄之中,决胜千里之外”。

在现代商业社会中,更加讲求运筹学的应用。

作为一名测控的学生,更应该能够熟练的掌握、运用运筹学的精髓,用运筹学的思维思考问题。

即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。

本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。

是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。

线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。

其数学模型有目标函数和约束条件组成。

一个问题要满足一个条件时才能归结为线性规划的模型:(1)要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;(2)为达到这个目标存在很多种方案;(3)要达到的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。

解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。

简单的设计2个变量的线性规划问题可以直接运用图解法得到。

但是往往在现实生活中,线性规划问题设计到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。

相关文档
最新文档