智能充电器设计

合集下载

基于51单片机的智能充电器的设计.doc

基于51单片机的智能充电器的设计.doc

基于51单片机的智能充电器的设计1. 引言智能充电器的设计是将充电器与微控制器相结合,实现充电过程的自动化和优化。

本文将介绍一种基于51单片机的智能充电器的设计方案。

该充电器能够根据电池的状态智能调整充电电流和充电时间,提高充电效率和电池寿命。

2. 设计方案智能充电器的设计方案如下:2.1 硬件设计充电器的硬件主要包括电源模块、控制模块、显示模块和充电模块。

2.1.1 电源模块电源模块提供稳定的直流电源供给整个系统,可以使用变压器和整流电路来获得所需要的直流电压。

2.1.2 控制模块控制模块使用51单片机作为主控芯片,通过各种传感器检测充电电流、充电电压和电池状态。

根据检测结果,控制模块可以自动调整充电电流和充电时间,以最佳的方式完成充电过程。

2.1.3 显示模块显示模块用于显示充电器的状态信息,可以使用液晶显示屏或LED灯来实现。

2.1.4 充电模块充电模块是将电能传输到电池上进行充电的部分,可以采用一定的充电控制电路来控制充电过程。

2.2 软件设计智能充电器的软件设计主要包括充电算法和控制逻辑。

2.2.1 充电算法充电算法根据电池的充电状态和特性,计算出最佳的充电电流和充电时间。

常见的充电算法包括恒压充电、恒流充电和多段充电等。

2.2.2 控制逻辑控制逻辑负责监测电池的电压、充电电流和充电时间,并根据充电算法决定是否需要调整充电参数。

控制逻辑还可以实现保护功能,比如过流保护、过温保护和反接保护等。

3. 实现过程智能充电器的实现过程可以分为硬件设计和软件开发两个步骤。

3.1 硬件设计在硬件设计阶段,需要根据设计方案选择合适的电源模块、传感器、显示模块和充电模块。

然后进行硬件电路的布局和连接,确保电路正常工作。

3.2 软件开发在软件开发阶段,首先需要编写51单片机的控制程序。

根据充电算法和控制逻辑编写相关的代码,并与硬件进行连接和测试。

然后进行功能测试和性能优化,确保系统的稳定性和可靠性。

4. 总结本文介绍了一种基于51单片机的智能充电器的设计方案。

电动自行车智能充电器的设计

电动自行车智能充电器的设计

电动自行车智能充电器的设计1硬件电路本智能充电器的硬件电路如图1所示,整个电路分为开关电源部分、以单片机为主的控制电路和以UC3842为核心的脉宽调制电路三部分。

图○11.1开关电源设计本设计采用电流控制型脉宽调制方式。

其整个工作过程是将交流输入经滤波、整流后变为直流高压,再由开关管斩波、高频变压器降压后得到高频矩形电压,最后经过输出整流滤波获得所需要的直流输出电压。

系统对开关电源的要求是其交流输入电压范围为90~270V,能同时输出+5V(作为控制部分电源)及12~60V(主回路)的电压。

输出电流为1~3A。

1.2单片机控制电路设计单片机控制电路主要由单片机AT89S52、ADC(TLC0832)、多路选择开关(CD4051)、数字电位器(X9C102)、数字温度传感器DS18B20、取样电阻RS和RW、2×4键盘、液晶显示(CON16)等组成。

本部分设计时应先根据蓄电池的型号参数,来通过键盘设计与之对应的充电电流、充电电压以及充电时间,当电路接上蓄电池后,充电过程开始,此后由单片机通过取样电阻RM检测电池电压,若检测到蓄电池因过渡放电而使电压低于正常范围,那么,为了避免充电电流过大而造成蓄电池损坏,应先对蓄电池实行稳定的小电流充电(本设计程序中设为1/5的设定充电电流),同时,单片机开始计时,之后单片机将不断检测电池电压和充电电流并显示在液晶屏上,随着充电的进行,电池电压不断上升,当上升到正常范围时,单片机可通过控制数字电位器来调节输出电压,从而转入大电流恒流充电(即设定电流)方式,此后,单片机一直保持不停地检测电池电压,当电压达到设定值时,单片机发出指令,以增大数字电位器的阻值,并通过脉宽调制减小输出电压,从而使充电电流减小,当充电电流减小到1/5的设定电流时,再转为涓流充电,最后在充电时间到时关闭电源,这样就避免了因电池温升过快或严重极化而影响充电质量,提高蓄电池的使用寿命。

当检测到电池电压、充电电流和温度超过设定值的1/10倍时(由程序设定),单片机立即输出报警信号报警,同时使继电器动作并切断总电源,以提高充电的安全性和可靠性。

毕业设计_基于MAX1898的智能充电器设计

毕业设计_基于MAX1898的智能充电器设计

基于MAX1898的智能充电器设计在人们日常工作和生活中,充电器的使用越来越广泛。

从随身听到数码相机,从手机到笔记本电脑,几乎所有用到电池的电器设备都需要用到充电器。

充电器为人们的外出旅行和出差办公提供了极大的方便。

单片机在电池充电器领域也有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。

充电器各类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。

1 实例说明随着手机在世界范围内的普及使用,手机电池充电器的使用也越来越广泛。

本章将通过一个典型实例介绍51单片机在实现手机电池充电器方面的应用。

实例所实现的充电器是一种智能充电器,它在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。

实例的功能模块如下。

●单片机模块:实现充电器的智能化控制,比如自动断电、充电完成报警提示等。

●充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。

●充电电压提供模块:采用电压转换芯片将外部+12V 电压转换为需要的+5V电压,该电压在送给充电控制模块之前还需经过一个光耦模块。

●C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电的状态给出有关的输出指示。

2 设计思路分析要实现智能化充电器,需要从下面两个方面着手。

(1)充电的实现。

它包括两部分:一是充电过程的控制;二是需要提供基本的充电电压。

(2)智能化的实现。

在充电器电路中引入单片机的控制。

2.1 为何需要实现充电器的智能化充电器实现的方式不同会导致充电效果的不同。

由于充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。

一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电。

手机电池的使用寿命和单次使用时间与充电过程密切相关。

锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比、具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。

基于单片机的智能电池充电器的设计

基于单片机的智能电池充电器的设计

基于单片机的智能电池充电器的设计智能电池充电器是一种能够智能识别电池类型和状态,并能根据电池需求实现快充和慢充的充电器。

本文将介绍一种基于单片机的智能电池充电器的设计。

一、设计原理智能电池充电器采用了单片机作为控制核心,通过对电源和电池状态进行实时监测以及控制充电电流和电压等参数,从而实现对电池的智能化管理。

二、主要功能1.电池类型识别:通过检测电池的电压和电流波形,智能电池充电器能够自动识别电池的类型,包括锂电池、铅酸电池等等。

2.电池状态检测:充电器能够实时监测电池的电流、电压以及温度等参数,通过这些参数的变化,判断电池的充电、放电状态,从而保证电池的安全和寿命。

3.充电控制:智能电池充电器可以根据电池类型和状态,动态调整充电电压和电流,以实现快充和慢充的切换,从而提高电池的充电效率和安全性。

4.过充保护:当电池充电至预设的电压值时,充电器能够自动停止充电,防止过充,保护电池安全。

5.温度保护:当电池温度过高时,充电器会自动停止充电,保护电池不受损坏。

三、硬件设计智能电池充电器的硬件设计包括电源电路、电流电压检测电路、控制电路和显示电路四个主要部分。

1.电源电路:充电器所需的电源电压一般为DC12V或AC220V,通过整流和滤波电路将交流电转化为直流电,并通过稳压电路将电压稳定在适合电池充电的范围内。

2.电流电压检测电路:用于实时检测电池的电流和电压值,通常采用放大电路和模数转换电路将模拟信号转化为数字信号,以供单片机进行处理。

3.控制电路:包括单片机和相关外围电路,单片机根据检测到的电池类型和状态,通过控制电源电压和电流调整电池的充电方式和速度。

4.显示电路:用于显示电池的充电状态、电流、电压等相关信息,通常采用数码管、LCD等显示器件。

四、软件设计智能电池充电器的软件设计主要包括单片机的程序设计和算法设计。

1.程序设计:根据单片机的指令系统和硬件接口进行开发,程序主要包括电池类型识别、电池状态检测、充电控制和保护控制等功能。

智能手机充电器的设计与研究

智能手机充电器的设计与研究

智能手机充电器的设计与研究智能手机充电器是普遍存在于现代社会中的电子产品,它作为智能手机必备的配件之一,让用户能够方便快捷地给手机充电。

然而,随着智能手机的出现和发展,充电器的设计和研究也要不断地跟上时代的步伐。

本文将从充电器的设计与研究两个方面进行探讨。

一、充电器的设计方案1. USB接口设计随着智能手机的快速发展和普及,市场上的充电器种类也越发繁多,其中最为常见的设计便是基于USB接口的充电器。

随着USB接口的不断更新和升级,充电器的设计方案也在不断地进化。

目前市面上的USB接口分为Type-A、Type-B、Type-C等多种类型,而Type-C接口由于其快速充电、高速传输等优点,成为当前充电器设计的主流方案之一。

2. 充电器功率设计在设计充电器的功率方案时,需要根据手机电池的容量和充电速度需求进行合理安排,以充分利用电源资源,同时也要避免因充电器功率过高造成的损坏和安全隐患。

目前,市场上常见的智能手机充电器功率集中在5W-18W之间,而随着5G网络的开通和手机的功能升级,未来充电器的功率需求将会进一步提升。

3. 多合一充电器设计为了方便用户同时给多个设备充电,一些充电器设计师提出了多合一的设计方案。

这种充电器在设计时会增加多个接口和多种输出功率,使得用户能够一次性给多个设备进行快速充电。

而在设计多合一充电器时,还需要考虑设备之间的兼容性和功率分配等问题,确保用户的充电体验得到最大的优化。

二、充电器的研究方向1. 快速充电技术随着手机功能的不断升级,对充电速度的需求也日益提高。

因此,现代充电器研究已经聚焦于如何实现更快速的充电。

目前快速充电技术主要分为表面充电、直流快充、无线充电等多种方式。

然而,这种技术的快速充电与电池寿命的平衡也是研究该领域的一个主要方向。

2. 绿色环保技术在充电器研发领域,绿色环保技术也逐渐成为广泛关注的方向之一。

充电器的生产、使用和处理过程中都会产生一定的污染和影响环境的因素,因此如何减少该类问题也成为研究的重点。

可自动断电的智能无线充电器设计

可自动断电的智能无线充电器设计

可自动断电的智能无线充电器设计因不同的类型产品需要用法不同的充电器,充电时还要寻觅合适的插口和理顺接线,笔者利用电磁感应原理,设计了智能器。

该具有自动感应充电和弥漫电后智能断电功能,不仅适用于各种不同充电和容量的电子产品,而且能够对多台不同的电子产品同时举行充电。

作品采纳智能无线充电的设计思想,具有用法便利、适用面广的优点,有较高的推广应用价值。

1.系统概述1.1 当前充电模式状况在电子科技技术高速进展的今日,全球范围内的手机用户数量已经达到了33亿,再加上MP3、MP4等其他周边电子产品,平均不到2人就拥有一个需要充电的便携式电子产品。

目前普遍用法的都是数据线插接式充电,这种充电方式数据线接口用久了通常会有触不良等现象,而且单个充电器适应面不广,因不同的类型电子产品需要用法不同的充电器,充电时还要寻觅合适的插口和理顺接线,真可谓费时费劲;各种便携式电子产品的充电是一件令人头痛的棘手事。

为了改良上面的现象,研发智能无线充电器是很有须要的。

1.2 作品简介及优点智能无线充电器利用电磁感应原理,是非接触充电系统,不再通过导线(充电线)传输电能,而是无线传输方式充电。

没有充电所用的物理接口,与普通充电器相比,避开了插线或拔电池的棘手,具有普通充电器的工作原理;作品采纳一(充电器)对多(感应负载)充电、智能充电的设计思想;无线充电器对负载充电时,指示灯将由绿灯转换为七彩灯,手机也正确显示充电状态并智能完成充过程(试验产品为手机)。

本充电器可以同时对多个负载充电,可以自动感应是否有负载充电,达到自动充电,弥漫电后10秒自动断电,达到智能化;从而大大便利了用户。

智能无线充电器用法非常便利、一个充电器就可以满足一个家庭的需要,具有较高的推广应用价值、成本低廉(与普通充电器价格相差不多)等优点,现在世界上许多大公司(如Sony,Intel,apple,飞利普等)也正在火热讨论中;智能无线充电必将是取代物理直插的进展方向,将绝对受到人们的欢迎和重视。

智能充电器设计

智能充电器设计

摘要随着便携式电子设备的普及和充电电池的广泛应用,充电器的使用也越来越广泛,但其性能却跟不上电池的发展要求,其电路设计存在较大的缺陷。

针对目前市售充电器的技术缺陷,本文应市场需求设计了一款智能镍氢电池充电器。

本智能充电器具有检测镍氢电池的状态;自动切换电路组态以满足充电电池的充电需要;充电器短路保护功能;以恒压充电方式进入维护充电模式;充电状态显示的功能。

本文充分考虑了国内外的设计方案,在设计中针对市场需求,在功能上进行了适当调整,以满足用户对高性价比的需要。

功能适用、价格低廉、电路简化是本设计的重点。

关键词:维护充电、充电电池、智能充电AbstractAlong with the prevalence of the portable devices and cells used widely, chargers are implicated in more fields than before. But the performance of the chargers is far too behind the requirement of the developing cells. With the demerit of the available chargers, this paper designs an intelligent Ni-Mn cells charger. The features of the intelligent charger are depicted as follows, detecting the state of the recharge cells, automatically switching the module of the circuit to meet the demand of the cells, short protection for the charger, maintenance charge module with constant voltage and current, state showing. This paper considers designations from home and abroad fully and adjusts a few functions of the circuit to satisfy the user requirement of high performance-price ratio. The focus of this designation in this paper is proper function, low-cost, and simplified circuit.KeyWords:maintenance charge module、Rechargeable batteries、intelligent charge目录1 绪论 (1)1.1概述 (1)1.1.1 充电器的设计背景 (1)1.1.2 常见充电电池特性及其充电方式 (2)1.1.3 市场需求情况及发展趋势 (3)2 镍氢电池特性 (5)2.1镍氢电池化学特性 (5)2.2镍氢电池重要参数 (6)2.3镍氢\镉电池的充放电特性 (6)2.4镍氢电池的充电状态 (7)3 设计方案分析 (8)3.1最普通的充电器电路 (8)3.2多功能充电器 (9)3.3智能充电器典型电路 (10)3.4本设计采用的充电器设计方案 (10)4 硬件电路设计 (12)4.1系统功能模块分析 (12)4.2充电器工作原理 (13)4.3硬件电路实现 (13)5 硬件电路参数分析 (18)5.1 智能充电器硬件参数分析 (18)5.1.1 市电输入保护电路 (18)5.1.2 电压变送电路 (19)5.1.3 电流输出控制电路 (21)5.1.4 电压检测电路 (24)5.1.5 过流保护和显示电路 (25)总结 (26)谢辞参考文献附录1充电器电路全图附表2元器件的数量、规格、封装1 绪论1.1 概述1.1.1 充电器的设计背景如今,随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。

智能充电器毕业设计

智能充电器毕业设计

智能恒压充电器设计内容摘要:电子技术的快速发展使得各种各样的电子产品都朝着便携式和小型轻量化的方向发展,也使得更多的电气化产品采用基于电池的供电系统。

目前,较多使用的电池有镍镉、镍氢、铅蓄电池和锂电池。

它们的各自特点决定了它们将在相当长的时期内共存发展。

由于不同类型电池的充电特性不同,通常对不同类型,甚至不同电压、容量等级的电池使用不同的充电器,但这在实际使用中有诸多不便。

本课题设计是一种基于单片机的锂离子电池充电器,在设计上,选择了简洁、高效的硬件,设计稳定可靠的软件,详细说明了系统的硬件组成,包括单片机电路、充电控制电路、电压转换及光耦隔离电路,并对本充电器的核心器件—MAX1898充电芯片、AT89C51单片机进行了较详细的介绍。

阐述了系统的软硬件设计。

以C语言为开发工具,进行了详细设计和编码。

实现了系统的可靠性、稳定性、安全性和经济性。

该智能充电器具有检测锂离子电池的状态;自动切换充电模式以满足充电电池的充电需要;充电器短路保护功能;充电状态显示的功能。

在生活中更好的维护了充电电池,延长了它的使用寿命。

关键字:智能恒压充电器锂电池MAX1898Design of intelligent constant voltage chargerAbstract:the rapid development of electronic technology makes a wide variety of electronic products towards portable and compact lightweight direction, more electrical products based on battery power supply system. At present, the use of more batteries nickel-cadmium, nickel-metal hydride, lead battery and lithium battery. Their respective characteristic decided they would in a fairly long period of coexistence. Due to the different characteristics of different types of charge of the battery, usually of different types, and even different voltage, high-capacity battery using different charger, but it has a lot of inconvenience in practical use. The design is based on a single-chip Li-ion battery charger, in the design, selection, a simple and efficient hardware design, stable and reliable software, a detailed description of the hardware structure of the system, including single chip circuit, a charging control circuit, voltage conversion and optically coupled isolation circuit, and the charger core devices - MAX1898 charging chip, AT89C51 chip are introduced in detail. Elaborated the system hardware and software design. Using the development tool of C language, a detailed design and coding. Realization of the system reliability, stability, security and economy. The intelligent charger with detecting lithium ion battery condition; automatic switching charging mode to meet the need of the charger rechargeable battery charging; short circuit protection; the charging state display function. In life the better maintenance of rechargeable batteries, prolongs its service life.Keywords: intelligent constant voltage charger lithium battery MAX1898目录前言 (1)1 实例说明 (1)2 设计思路分析 (1)2.1要实现智能化充电器,需要从下面两个方面着手。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由于镍氢电池具有功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可免维护等优点,在便携式电子产品中的应用越来越广泛。

如何合理的对镍氢电池进行充电管理是目前电池领域中研究的热门课题。

基于这样的背景下我们设计开发了快速智能充电器。

本智能充电器可以同时对1~4节镍氢电池进行充电管理,并根据待充电电池的电压和温度情况,进行合理的充电电流设置。

图1 充电器系统框图
系统结构如图1所示。

硬件设计
1 单片机选择
SH69P48 是一种先进的CMOS 4位单片机。

它具有以下特性: 4K 双字节OTP ROM, 253 个半字节RAM空间, 8位定时/计数器, 10位A/D转换器, 8+2位高速PWM 信号输出, 内建振荡器时钟电路, 内建看门狗定时器, 低电压复位功能且支持省电方式以节约电能。

10位A/D转换器可以使得Delta-V的检测精度达到
2mV/cell;利用单片机自带的PWM端口结合TL494控制充电电流;用8位定时/计数器进行0.5s定时,在出现坏电池时,LED进行1Hz闪烁指示。

系统时钟采用单片机内部的4MHz的RC时钟,降低系统的成本,但由于RC时钟的偏差会比较大,所以0.5s定时会存在误差。

内建看门狗定时器可用软件控制以加强单片机的抗干扰能力。

在软件出现问题时,可以对单片机进行复位,重新执行程序,防止程序死锁现象的发生。

2 单片机脚位安排
根据功能的要求,对单片机的管脚安排如表2。

3 PWM技术控制充电电流
因单片机的工作频率为4MHz,单片机自带的PWM可以达到的最大频率为15.625 kHz,无法满足对充电电流的控制精度,所以采用了外部硬件PWM与单片机 PWM 进行结合处理的方法。

外部PWM控制芯片选择TL494,其PWM频率可以达到200 kHz 以上,对充电的电池可以进行恒流和限压处理。

设计时用外部PWM芯片控制充电电流的精度,用单片机自带的PWM去控制TL494电流比较器输入端口上的电压,从而控制总充电电流的大小。

图2 低通滤波原理
图2是低通滤波电路拓扑。

其中,V
o(t)
是经低通平滑后的输出电压,加到外部PWM
的电流控制比较器上。

Voh是单片机输出逻辑“1”对应的高电平电压。

V
oh 与V
o(t)
的关系是由如公式(1)确定的。

显然,输出电压V
o(t)
与PWM输出的占空比t成指数关系,T为RC低通时间常数。

当T≥5RC时,V
o(t)就近似等于V
oh
,此时控制的充电电流最大。

合理选择t的数
值,就可以设定多种充电电流。

4 硬件抗干扰技术
在单片机的V
和GND之间接10μf的铝电解电容和0.1μf的瓷片电容,可以ref
很好的消除Vref电压上的纹波,保证Vref的电压在2.0V上稳定可靠,对提高Delta-V的检测精度是非常重要的。

在PORTA.1 4路电池的电压检测AD端口要加5.1V TVS瞬变电压抑制管。

对该端口进行保护处理,确保加到本端口上的电压不要超过5.5V以上。

在所用的AD输入端口都要加一个低通滤波网络,该滤波网络的R取10kΩ以下,C取0.01~0.1μf之间的任何数值均可。

开启单片机内部的watchdog定时器,防止单片机因干扰或程序运行异常而产生的运行错误,保护外围电路不被损坏。

充电结束技术
本智能充电器集成了4种充电结束技术:Delta-V技术、Delta-T技术、最大充电时间技术和最大温度保护技术。

本文主要介绍Delta-V和Delta-T的处理方法。

图3 delta-v曲线
1 Delta-V
由于电池电压的负增量与电池的绝对电压关系不大,而且不受环境温度和充电速率等因素影响,因此可以比较准确地判断电池已充足。

程序每隔1s将对每个电池的电压进行采样,用该采样值作为电池状态判断的依据。

在充电状态正常且充电没有结束时,每隔18s对电池进行多次采样,经过数
字滤波技术处理后,作为Delta-V处理的电压依据,若电池的电压下降2mV时,充电结束。

镍氢电池的充电曲线如图3所示。

2 Delta-T/Delta-t
镍氢电池充足电后,电池温度迅速上升,温度上升变化率用Delta-T/Delta-t
衡量,通常认为当Delta-T/Delta-t大于1℃/min时,应立即终止快速充电。

由于NTC的电阻与温度之间是非线性关系,所以在单片机的rom区建立30~60℃范围内的温度值与温度检测端口电压之间的关系表格,利用线性插值法查表实现Delta-T的检测处理。

图4 delta-T/delta曲线
软件设计
软件是整个智能快速充电器的核心,主要完成充电时间定时、LED显示处理、电池状态检测、4种充电结束技术、通道选择等工作。

其中软件的核心部分是软件抗干扰的设计处理。

没有好的软件抗干扰处理方法就可能出现以下不良问题。

A 电池充电不足
B 充电状态指示错误
C 程序运行混乱。

采用的软件抗干扰措施如下。

1 watchdog定时器
watchdog是一种软硬件结合的抗干扰技术,当程序正常运行时,每隔一段时间对watchdog定时器进行一次清零,不要让watchdog发生溢出。

具体清零时间的选择是由程序的循环运行时间和watchdog定时器的定时时间决定的,一般清零时间要小于watchdog定时时间的1/3。

2 数字滤波技术
在读去电池电压时,采用了中位值平均滤波法,又称防脉冲干扰平均滤波法,相当于“中位值滤波法”+“算术平均滤波法。

该方法就是对被测参数进行多组采样,采样的组数选择一般是取2的M次幂,然后把2的M次幂的和进行算术平均后作为本次采样值。

对每一组数据用中位值平均滤波法进行处理,即对被测参数进行连续采样N次(N是必须为奇数),然后把N次采样值进行大小冒泡排序,取中间值作为本组采样值。

中位值平均滤波法可有效克服因偶然因素引起的波动干扰,尤其是对在某一数值范围附近上下波动的随机干扰信号具有很好的滤波作用。

因电池在充电过程中的电压信号就具有这样的特点,经合理选择M和N的数值很好解决了Delta-V的精度问题。

本智能充电器经测试评价,充电保护措施可靠,充电状态准确,充电效率可以达到92%以上。

相关文档
最新文档