人教版高一数学必修一第一章单元检测试题及答案
最新版人教a版高中数学必修一第一章测试题含答案资料

第一章 章末检测题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3}且∁U A ={0,2},则集合A 的真子集共有( ) A.3个 B.4个 C.5个 D.6个答案 A2.设S ,T 是两个非空集合,且它们互不包含,那么S ∪(S ∩T)等于( ) A.S ∩T B.S C.∅ D.T答案 B解析 ∵S ∩T ⊆S ,∴S ∪(S ∩T)=S.3.已知全集U =Z ,A ={-1,0,1,2},B ={x|x 2=x},则A ∩(∁U B)为( ) A.{-1,2} B.{-1,0} C.{0,1} D.{1,2}答案 A4.已知A ={0,1},B ={-1,0,1},f 是从A 到B 的映射,则满足f(0)>f(1)的映射有( ) A.3个 B.4个 C.5个 D.2个答案 A5.已知f(x)=⎩⎪⎨⎪⎧x -5x 2(x ≤5),f (x -2) (x>5),则f(8)的函数值为( )A.-312B.-174C.174D.-76答案 D6.已知函数y =f(x)在区间[-5,5]上是增函数,那么下列不等式中成立的是( ) A.f(4)>f(-π)>f(3) B.f(π)>f(4)>f(3) C.f(4)>f(3)>f(π) D.f(-3)>f(-π)>f(-4)答案 D7.设f(x)是R 上的偶函数,且当x ∈(0,+∞)时,f(x)=x(1+3x),则当x ∈(-∞,0)时,f(x)等于( )A.x(1+3x) B.-x(1+3x) C.-x(1-3x) D.x(1-3x)答案 C8.当1≤x ≤3时,函数f(x)=2x 2-6x +c 的值域为( ) A.[f(1),f(3)] B.[f(1),f(32)]C.[f(32),f(3)]D.[c ,f(3)]答案 C9.已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( ) A.5个 B.6个 C.7个 D.8个答案 B解析 M 可能为∅,{7},{4},{8},{7,4},{7,8}共6个.10.若函数f(x)的定义域是[0,2],则函数g(x)=f (2x )x -1的定义域是( )A.[0,2]B.(1,2]C.[0,1)D.以上都不对答案 C11.已知二次函数f(x)=x 2-2x +m ,对任意x ∈R 有( ) A.f(1-x)=f(1+x) B.f(-1-x)=f(-1+x) C.f(x -1)=f(x +1) D.f(-x)=f(x)答案 A12.已知f(x)=3-2|x|,g(x)=x 2-2x ,F(x)=⎩⎪⎨⎪⎧g (x ),若f (x )≥g (x ),f (x ),若f (x )<g (x ).则F(x)的最值是( )A.最大值为3,最小值-1B.最大值为7-27,无最小值C.最大值为3,无最小值D.既无最大值,又无最小值答案 B二、填空题(本大题共4小题,每小题5分,共20分)13.已知集合A ={x ∈N |82-x ∈N }用列举法表示A ,则A =________.答案 {0,1}解析 由82-x ∈N ,知2-x =1,2,4,8,又x ∈N ,∴x =1或0.14.已知集合A ={1,3,m},B ={3,4},A ∪B ={1,2,3,4},则m =________. 答案 215.国家规定个人稿费的纳税办法是:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元的14%纳税;超过4 000元的按全部稿酬的11%纳税.某人出版了一本书,共纳税420元,则这个人的稿费为________元. 答案 3 80016.若直线y =1与曲线y =x 2-|x|+a 有四个交点,则a 的取值范围是________.答案 1<a<54解析 由图知a>1且抛物线顶点的纵坐标小于1.即⎩⎨⎧a>1,4a -14<1⇒1<a<54.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知全集U ={x|x -2≥0或x -1≤0},A ={x|x<1或x>3},B ={x|x ≤1或x>2},求A ∩B ,A ∪B ,(∁U A)∩(∁U B),(∁U A)∪(∁U B).解析 全集U ={x|x ≥2或x ≤1},∴A ∩B =A ={x|x<1或x>3}; A ∪B =B ={x|x ≤1或x>2};(∁U A)∩(∁U B)=∁U (A ∪B)={2}; (∁U A)∪(∁U B)=∁U (A ∩B)={x|2≤x ≤3或x =1}.18.(12分)设A ={-3,4},B ={x|x 2-2ax +b =0},B ≠∅,且A ∩B =B ,求a ,b 的值. 解析 ∵A ∩B =B ,∴B ⊆A ,∴B =∅或{-3}或{4}或{-3,4}. (1)若B =∅,不满足题意.∴舍去.(2)若B ={-3},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b =0,9+6a +b =0,解得⎩⎪⎨⎪⎧a =-3,b =9.(3)若B ={4},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b =0,16-8a +b =0,解得⎩⎪⎨⎪⎧a =4,b =16.(4)若B ={-3,4},则⎩⎪⎨⎪⎧Δ=(-2a )2-4b>0,9+6a +b =0,16-8a +b =0,解得⎩⎪⎨⎪⎧a =12,b =-12.19.(12分)已知函数f(x)=11+x 2.(1)判断函数f(x)在(-∞,0)上的单调性,并证明你的结论; (2)求出函数f(x)在[-3,-1]上的最大值与最小值.解析 (1)设任意x 1,x 2∈(-∞,0),且x 1<x 2,而f(x 1)-f(x 2)=11+x 12-11+x 22=(x 2+x 1)(x 2-x 1)(1+x 12)(1+x 22),由x 1+x 2<0,x 2-x 1>0,得f(x 1)-f(x 2)<0,得f(x 1)<f(x 2),故函数f(x)=11+x 2在(-∞,0)上为单调递增函数. (2)f(x)min =f(-3)=110,f(x)max =f(-1)=12, 故f(x)在[-3,-1]上的最大值为12,最小值为110.20.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价为60元,该厂为鼓励销售订购,决定当一次订量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数P =f(x)的表达式; (3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元(工厂售出一个零件的利润=实际出厂单价-成本价)?解析 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550. 因此,当一次订购量为550个时,每个零件的实际出厂价格为51元.(2)当0<x ≤100时,P =60.当100<x<550时,P =60-0.02(x -100)=62-x50.当x ≥550时,P =51.所以P =f(x)=⎩⎪⎨⎪⎧60,0<x ≤10062-x50,100<x<550,x ∈N 51,x ≥550.(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则 L =(P -40)x =⎩⎪⎨⎪⎧20x ,0<x ≤10022x -x250,100<x<550,(x ∈N )11x ,x ≥550.当x =500时,L =6 000; 当x =1 000时,L =11 000.因此,当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果订购1 000个,利润是11 000元.21.(12分)求函数f(x)=x 2-2ax -1在区间[0,2]上的最值. 解析 f(x)=x 2-2ax -1=(x -a)2-a 2-1,(1)当a ≤0时,f(x)在[0,2]上为增函数,∴f(x)的最小值为f(0)=-1,最大值为f(2)=3-4a. (2)当0<a ≤1,f(x)在[0,a]上为减函数,在[a ,2]上为增函数,且f(2)>f(0).∴f(x)的最大值为f(2)=3-4a ,f(x)的最小值为-a 2-1.(3)当1<a<2时,f(x)在[0,a]上为减函数,在[a ,2]上为增函数,且f(0)>f(2),∴f(x)的最大值为f(0)=-1,f(x)的最小值为f(a)=-a 2-1.(4)当a ≥2时,f(x)在[0,2]上为减函数,f(x)的最大值为f(0)=-1,f(x)的最小值为3-4a. 22.(12分)已知函数f(x)的定义域是(0,+∞), 当x>1时,f(x)>0,且f(x·y)=f(x)+f(y). (1)求f(1);(2)证明f(x)在定义域上是增函数;(3)如果f(13)=-1,求满足不等式f(x)-f(x -2)≥2的x 的取值范围.解析 (1)令x =y =1,得f(1)=2f(1),故f(1)=0.(2)证明:令y =1x ,得f(1)=f(x)+f(1x )=0,故f(1x )=-f(x).任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 2)-f(x 1)=f(x 2)+f(1x 1)=f(x 2x 1).由于x 2x 1>1,故f(x 2x 1)>0,从而f(x 2)>f(x 1).∴f(x)在(0,+∞)上是增函数.(3)由于f(13)=-1,而f(13)=-f(3),故f(3)=1.在f(x·y)=f(x)+f(y)中,令x =y =3,得f(9)=f(3)+f(3)=2.故所给不等式可化为f(x)-f(x -2)≥f(9),∴f(x)≥f[9(x -2)],∴x ≤94.又⎩⎪⎨⎪⎧x>0,x -2>0,∴2<x ≤94.∴x 的取值范围是(2,94].1.已知集合A ={x|x>1},B ={x|-1<x<2},则A ∩B 等于( )A.{x|-1<x<2}B.{x|x>-1}C.{x|-1<x<1}D.{x|1<x<2}答案 D2.已知函数f :A →B(A ,B 为非空数集),定义域为M ,值域为N ,则A ,B ,M ,N 的关系是( )A.M =A ,N =BB.M ⊆A ,N =BC.M =A ,N ⊆BD.M ⊆A ,N ⊆B 答案 C解析 值域N 应为集合B 的子集,即N ⊆B ,而不一定有N =B.3.根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天t ∈N *)的关系满足下图,日销售Q(件)与时间t(天)之间的关系是Q =-t +40(t ∈N *).(1)写出该产品每件销售价格P 与时间t 的函数关系;(2)在这30天内,哪一天的日销售金额最大?(日销售金额=每件产品销售价格×日销量)解析 (1)根据图像,每件销售价格P 与时间t 的函数关系为:P =⎩⎪⎨⎪⎧t +30 (0<t ≤20,t ∈N *),50 (20<t ≤30,t ∈N *).(2)设日销售金额为y 元,则y =⎩⎪⎨⎪⎧(t +30)(-t +40)(0<t ≤20,t ∈N *),-50t +2 000 (20<t ≤30,t ∈N *)=⎩⎪⎨⎪⎧-t 2+10t +1 200(0<t ≤20,t ∈N *),-50t +2 000 (20<t ≤30,t ∈N *).若0<t ≤20,t ∈N *时,y =-t 2+10t +1 200=-(t -5)2+1 225,∴当t =5时,y max =1 225;若20<t ≤30,t ∈N *时,y =-50t +2 000是减函数.∴y<-50×20+2 000=1 000,因此,这种产品在第5天的日销售金额最大,最大日销售金额是1 225元.4.若函数f(x)=12x 2-x +32的定义域和值域都是[1,b],求b 的值.解析 由条件知,f(b)=b ,且b>1,即12b 2-b +32=b.解得b =3.。
人教版A版高中数学必修第一册 第一章综合测试01试题试卷含答案 答案在前

第一章综合测试答案解析一、 1.【答案】A【解析】A 显然正确;0不是集合,不能用符号“⊆”,B 错误;∅不是M 中的元素,C 错误;M 为无限集,D 错误. 2.【答案】D【解析】{}=0469B ,,,,B ∴的子集的个数为42=16. 3.【答案】D【解析】对于①,当=4a 为正整数;对于②,当=1x 时,为正整数;对于③,当=1y 时,为正整数,故选D .4.【答案】A【解析】由1231x --<<,得12x <<,即{}|12x x x ∈<<,由30x x -()<,得03x <<,即{}|03x x x ∈<<,{}|12x x <<是{}|03x x <<的真子集,{}|03x x <<不是{}|12x x <<的子集,故选A .5.【答案】D【解析】两个集合的交集其实就是曲线和直线的交点,注意结果是两对有序实数对. 6.【答案】B【解析】{=|=0A B x x 或}1x ≥,A 错误;{}=12A B ,,B 正确;{}{}R =|1=0A B x x B ()< ,C 错误;{}R =|0A B x x ()≠ ,D 错误.7.【答案】B【解析】方法一:11a a ⇒⇒>,1011a a ⇒-⇒)>>,∴甲是乙的充要条件,故选B .方法二:20a a a a ⎧⇔⎨⎩>,>,,1a ∴>,故选B .8.【答案】C【解析】由题意得N M ⊆,由Venn 图(图略)可知选C . 9.【答案】C【解析】由题意知,0=2bx a-为函数2=y ax bx c ++图象的对称轴方程,所以0y 为函数y 的最小值,即对所有的实数x ,都有0y y ≥,因此对任意x ∈R ,0y y ≤是错误的,故选C .10.【答案】D【解析】{}=|1U B x x - > ,{}=|0U A B x x ∴ > .{}=|0U A x x ≤ ,{}=|1U B A x x ∴- ≤ .{=|0U U A B B A x x ∴ ()()> 或}1x -≤.11.【答案】A【解析】一元二次方程2=0x x m ++有实数解1=1404m m ⇔∆-⇔≥≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立.故“14m <”是“一元二次方程2=0x x m ++有实数解”的充分不必要条件.12.【答案】C【解析】A C A B ⊇ ()(),U U A C A B∴⊆ ()() ,∴①为真命题.A C A B ⊆ ()(),U U A C A B∴⊇ ()() ,即U U U U A C A B ⊇ ()() ,∴②为真命题.由Venn 图(图略)可知,③为假命题.故选C . 二、13.【答案】x ∀∈R ,210x +≥【解析】存在量词命题的否定是全称量词命题. 14.【答案】0【解析】依题意得,23=3m m ,所以=0m 或=1m .当=1m 时,违反集合中元素的互异性(舍去). 15.【答案】充分不必要【解析】由=2a 能得到1)(2)0(=a a --,但由1)(2)0(=a a --得到=1a 或=2a ,而不是=2a ,所以=2a 是1)(2)0(=a a --的充分不必要条件. 16.【答案】12【解析】设全集U 为某班30人,集合A 为喜爱篮球运动的15人,集合B 为喜爱乒乓球运动的10人,如图.设所求人数为x ,则108=30x ++,解得=12x . 三、17.【答案】(1)命题的否定:有的正方形不是矩形,假命题(2.5分) (2)命题的否定:不存在实数x ,使31=0x +,假命题.(5分) (3)命题的否定:x ∀∈R ,2220x x ++>,真命题.(7.5分)(4)命题的否定:存在0x ,0y ∈R ,00110x y ++-<,假命题.(10分)18.【答案】(1){=|1U A x x - < 或1x ≥,{=|12U A B x x ∴()≤≤ .(6分) (2){}=|01A B x x <<,{=|0U A Bx x ∴ ()≤ 或}1x ≥.(12分) 19.【答案】①若=A ∅,则2=240p ∆+-()<,解得40p -<<.(4分)②若方程的两个根均为非正实数,则12120=200.10.=x x p p x x ∆⎧⎪+-+⎨⎪⎩≥,()≤,解得≥>(10分) 综上所述,p 的取值范围是{}|4p p ->.(12分) 20.【答案】证明:①充分性:若存在0x ∈R ,使00ay <,则2220004=4b ab b a y ax bx ----() 222000=444b abx a x ay ++-200=240b ax ay +-()>,∴方程=0y 有两个不等实数根.(6分)②必要性:若方程=0y 有两个不等实数根. 则240b ab ->,设0=2bx a-, 则20=22b b ay a a b c a a ⎡⎤-+-+⎢⎥⎣⎦()() 2224==0424b b ac b ac --+<(10分) 由①②知,“方程=0y 有两个不等实根”的充要条件是“存在0x ∈R ,使00ay <”.(12分) 21.【答案】(1)当=2a 时,{}=|17A x x ≤≤,{}=|27AUB x x -≤≤,(3分){R =|1A x x < 或}7x >,{}R =|21A B x x - ()≤< .(6分)(2)=A B A ,A B ∴⊆.①若=A ∅,则123a a -+>,解得4a -<;(8分)②若A ∅≠,则12311212234.a a a a a -+⎧⎪⎪---⎨⎪+⎪⎩≤,≥,解得≤≤≤,(10分)综上可知,a 的取值范围是1|412a a a ⎧⎫--⎨⎬⎩⎭<或≤≤.(12分)22.【答案】设选修甲、乙、丙三门课的同学分别组成集合A ,B ,C ,全班同学组成的集合为U ,则由已知可画出Venn 图如图所示.(2分)选甲、乙而不选丙的有2924=5-(人), 选甲、丙而不选乙的有2824=4-(人), 选乙、丙而不选甲的有2624=2-(人),(6分) 仅选甲的有382454=5---(人), 仅选乙的有352452=4---(人), 仅选丙的有312442=1---(人),(8分)所以至少选一门的人数为24542541=45++++++,(10分) 所以三门均未选的人数为5045=5-.(12分)第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}=|23M x x -<<,则下列结论正确的是( ) A .2.5M ∈ B .0M ⊆C .M ∅∈D .集合M 是有限集2.已知集合{}=023A ,,,{}=|=B x x ab a b A ∈,,,则集合B 的子集的个数是( ) A .4B .8C .15D .163.下列存在量词命题中,真命题的个数是( )①存在一个实数a 为正整数;②存在一个实数x ,使为正整数;③存在一个实数y 为正整数. A .0B .1C .2D .34.已知1231p x --:<<,30q x x -:()<,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设集合{}2=|=+M x y y x x (,),{}N=|=+16x y y x (,),则M N 等于( ) A .416(,)或412-(,)B .{420,,}412-, C .{412(,),}420-(,)D .{420(,),}412-(,)6.若集合{}=|1A x x ≥,{}=012B ,,,则下列结论正确的是( ) A .{}=|0A B x x ≥B .{}=12A B ,C .{}R =01A B (),D .{}R =|1A B x x()≥7.甲:“1a >”是乙:“a ”的( ) A .既不充分也不必要条件 B .充要条件 C .充分不必要条件D .必要不充分条件8.已知全集*=U N ,集合{}*=|=2M x x n n ∈N ,,{}*=|=4N x x n n ∈N ,,则( )A .=U M NB .=U U M N ()C .=U U M N ()D .=U U M N ()9.已知0a >,函数2=++y ax bx c .若0x 满足关于x 的方程2+b=0ax ,则下列选项中的命题为假命题的是( )A .存在x ∈R ,y y 0≤B .存在x ∈R ,0y y ≥C .对任意x ∈R ,y y 0≤D .对任意x ∈R ,0y y ≥10.已知=U R ,{}=|0A x x >,{}=|1B x x -≤,则U U A B B A ()() 等于( )A .∅B .{}|0x x ≤C .{}|1x x ->D .{|0x x >或}1x -≤11.“14m <”是“一元二次方程2++=0x x m 有实数解”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件12.已知U 为全集,A ,B ,C 是U 的子集,A C A B ⊆ ()(),A C A B ⊇ ()(),则下列命题中,正确的个数是( )①U U A C A B ⊆ ()() ; ②U U U U A C A B ⊇ ()() ;③C B ⊆. A .0B .1C .2D .3二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.命题:“0x ∃∈R ,2+10x <”的否定是________.14.设集合{}2=33A m ,,{}=33B m ,,且=A B ,则实数m 的值是________. 15.若a ∈R ,则“=2a ”是“(1)(2)=0a a --”的________条件.16.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)至少有一个实数0x 使3+1=0x ;(3)0x ∃∈R ,2+2+20x x ≤;(4)任意x ,y ∈R ,+1+10x y -≥.18.(本小题满分12分)设全集=U R ,集合{}=|11A x x -≤<,{}=|02B x x <≤.(1)求U A B () ;(2)求U A B() .19.(本小题满分12分)已知{}2=|+2++1=0A x x p x x ∈Z (),,若{}|0=A x x ∅ >,求p 的取值范围.20.(本小题满分12分)已知2=0y ax bx c a b c a ++∈R (,,,且≠).证明:“方程=0y 有两个不相等的实数根”的充要条件是“存在0x ∈R ,使00ay <”.21.(本小题满分12分)已知集合{}=|12+3A x a x a -≤≤,{}=|24B x x -≤≤,全集=.U R(1)当=2a 时,求A B 和R A B () ;(2)若=A B A ,求实数a 的取值范围.22.(本小题满分12分)某班有学生50人,学校开设了甲、乙、丙三门选修课,选修甲的有38人,选修乙的有35人,选修丙的有31人,兼选甲、乙两门的有29人,兼选甲、丙两门的有28人,兼选乙、丙两门的有26人,甲、乙、丙三门均选的有24人,那么这三门均未选的有多少人?。
人教版高中数学必修一第一章单元测试(含答案)

高中数学《必修一》第一章教学质量检测卷佛冈中学全校学生家长的全体 1、下列各组对象中不能构成集合的是()A 、佛冈中学高一(20)班的全体男生B 、C 、李明的所有家人D 王明的所有好朋友 选择 (将 题的 填入2、 已知集合A x R|x 5 ,B x R x 1 ,那么AI B 等于3、4、5、 A 、6、 7、 A. C. {2, 2,3,4,5 3,4} D.B.2, 3,4,12,3,4,5,6,7,8 ,集合 A {1,2,315}, 设全集U 则图中的阴影部分表示的集合为()A. 2B. 4,6C. 1,3,5D. 4,6,7,8 下列四组函数中表示同一函数的是 A. f(x) x , g(x) (Tx )2B. f (x) C. f (x)廉,g(x) |x|D. f(x) 函数 f(x)= 2x 2- 1 , x? (0,3) o1B 1C 、2D B {2,4,6} ()x 2,g(x) x 1 0 , g(x) < x 1 ■. 1 x若f (a )= 7,则a 的值是() x 2,(x 0)血 设f(x) !,(x 0),则f[f(1)]() A 3B 1C.0D.-1 函数f (x ) = . x + 3的值域为() A 、[3 , +x ) B 、(一x, 3]C 、[0 , +x )D R 8、下列四个图像中,不可能是函数图像的是 () 9、设f (x )是R上 的偶函数,且在 [0,+ x )上单调 递增,则f(-2),f(3),f(- )的大小顺序是:() A f(- )>f(3)>f(-2)B 、f(- )>f(-2)>f(3) C 、f(-2)>f(3)>f(- )D 、f(3)>f(-2)>f(- ) 10、在集合{a , b , c , d }上定义两种运算 和 如下:那么 b (a c)() A. aB. bC. cD. d二、填空题(本大题共4小题,每小题5分,共20分) 11、 函数y 1 (x 3)0的定义域为12、 函数f(x) x 2 6x 10在区间[0,4]的最大值是Q I /'13、 若 A { 2,2,3,4} , B {x|x t 2,t A},用列举法表示 B 是.14、 下列命题:①集合a,b,c,d 的子集个数有16个;②定义在R 上的奇函数f(x)必满足f (0) 0 ; ③f(x) 2x 1 2 2 2x 1既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤f(x)」x在 ,0 U 0, 上是减函数。
高一数学人教版必修一第一章《集合与函数概念》单元测试题(含答案)

三、解答题 :每小题 12 分,共 60 分
16、设 A { x Z || x | 6} , B 1,2,3 , C
3,4,5,6 ,求:
(题目有错漏,需修改,要么改为① A { x Z x 6} ,要么改为② C { 3,4,5} )
( 1) A (B C ) ;( 2) A C A (B C )
的元素 ( 1,2) 对应的 B 中的元素为(
A)
(A ) ( 3,1)
( B) (1,3)
( C) ( 1, 3)
(D ) (3,1)
5、下列各组函数 f ( x)与 g (x) 的图象相同的是( D )
(A ) f ( x) x, g( x) ( x ) 2
(B ) f ( x) x2 , g(x) (x 1) 2
第一章 《集合与函数概念》单元测试题
姓名:
班别:
学号:
一、选择题:每小题 4 分,共 40 分
1、在“①高一数学课本中的难题;②所有的正三角形;
2
③方程 x 2 0 的实数解”中,能够
表示成集合的是 ( A )
(A )② ( C )②③
( B)③ ( D)①②③
2、若 A x | 0 x 2 , B x |1 x 2 ,则 A B ( D )
元?
解: 设每天从报社买进 x 份,每月所获的利润为 f( x),则
① 当每天购入少于或等于 250 份的报纸的时候,全部都卖光了,则
f( x) =( 1-0.9) *30*x
故 f ( x)在 x
x 0 的值域为
,2
综上得, f ( x)的值域为 2,
,2
19、中山市的一家报刊摊点,从报社买进《南方都市报》的价格是每份
人教版高一数学必修一-第一章练习测试题与参考答案

集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是()14.函数y =1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20.已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1第一章集合测试集合测试参考答案:一、1~5CABCB6~10ABACC11~12cB二、13[0,43],(-∞,-43) 14(-∞,-1),(-1,+∞)15-11603|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;三、17所以f x >3或x 19.. f (x 当x < ∴f (20. ∴1=m .。
人教版高一数学必修一第一章单元检测试题及答案

高一数学第一章集合与函数概念单元检测试题一、选择题:共12题每题5分共60分1.已知函数的图象如下图所示,则函数的图象为2.下列各组函数为相等函数的是A. B.C. D.==3.函数上为非减函数.设函数的上为非减函数②③等于A. B. C. D.4.设函数则A.??????????C.?????????D.5.函数f(4x+A.(3,11]6.若函数在区间上单调则实数的取值范围为A. B.C. D.7.=,如A.R8.A.{x|x<1}9.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f()的x的取值范围是()A.(,)B.[,)C.(,)D.[,)10.某部队练习发射炮弹,炮弹的高度与时间(秒)的函数关系式是,则炮弹在发射几秒后最高呢?A. B. C. D.11.已知,且,则等于A. B. C. D.12.已知集合和集合,则两个集合间的关系是A. B. C. D.M,P互不包含二、填空题:共4题每题5分共20分13.已知函数f(x)=a﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,则实数的取值范围是A.14.?15.?(1)f(x)=-x)=((3)f(x)=x216.若函数轴对称,则的单调减区间为三、解答题:共6题共7017.(本题函数”.(1)(2)若函数≤(注:18.(本题记函数的定义域为集合,集合(1)求和;(2)若,求实数的取值范围19.(本题12分)设全集U={x|0<x<9,且x∈Z},集合S={1,3,5},T={3,6},求:(1)S∩T;(2).20.(本题12分)已知函数f(x)=.(1)用定义证明f(x)在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.21.(本题12分)定义在非零实数集上的函数对任意非零实数满足:,且当时.(Ⅰ)求及的值;(Ⅱ)求证:是偶函数;(Ⅲ)解不等式:.22.(本题(2)证明:参考答案1.B【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在y轴右侧图象在x 轴上方,在y轴左侧的图象在x轴的下方,而函数在x>0时图象保持不变,因此排除C,D,对于选项A,由于在时偶函数,故在y轴左侧的图象与y轴右侧的图象关于y轴对称,故选B.=可得由可得令则理===令则==同理====.非减函数的性质当时,都有.因为所以所以=函数【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线x=2,∴f(x)在[1,2]上单调递减,在(2,5)上单调递增,∴f(x)的值域是[2,11).故选B.【备注】无6.C【解析】本题主要考查二次函数.依题意,函数在区间上单调,则函数的对称轴或,得或,故选C.【备注】无7.C【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知f(x)=2x*2-x=,结合图象知其值域为(0,1].故选C.【备注】无8.A)=f()①或解①得≤x<,解②得<x<.综上可得<x<,的取值范围是(,).【备注】无,故炮弹在发射后最高,故选因为,设,,,,解得,故选B.12.D【解析】无【备注】无13.D【解析】本题主要考查二次函数的图像与性质,考查了逻辑推理能力与计算能力.因为函数f(x)=a ﹣x2(1≤x≤2)与的图象上存在关于轴对称的点,所以函数f(x)=a﹣x2(1≤x≤2)与的图象上存在交点,所以有解,令,则,求解可得,故答案为D. 【备注】无14.④【解析】图①中函数的定义域是[0,1];图②中函数的定义域是[-1,2];图③中对任意的x∈(0,2],其对应的y值不唯一.故①②③均不能构成从集合M到集合N的函数,图④满足题意., |||【备注】无16.【解析】本题考查函数的图象若函数的图像关于的单调减区间为.-x(-x-x,x∈[0,1]是x<;≥时[0,1],(0)=f≤≤=x1-x2+1≤-+1=.所以对任意的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤成立.【解析】无【备注】无18.由条件可得{|2}A x x =>, (1)={|23}x x <≤,{|3}A B x x ⋃=≥-;(2){|}C x x p =>,由可得2p ≥.【解析】本题考查函数的定义域与集合的运算.(1)先求出函数的定义域,再进行运算即可;(2)利用数轴进行分析即可得出结论.【备注】与不等式有关的集合运算或集合之间的关系问题通常可以借助数轴进行求解.)=-=.∴x 1-x 2<0,(x 1+1)(x 2+1)>0, =f(4)===f(2)==.是偶函数2不等式的解集为【解析】本题主要考查特殊函数的性质的判断与应用以及一元二次不等式的解法.(1)分别令x =1与x=—1即可求出结果;(2)利用函数奇偶性的定义即可证明;(3)根据题意与f (1)=0,f (-1)=0,原不等式可化为-1≤2x 2-1<0或0<2x 2-1≤1然后求解即可.【备注】无22.(1)设x 1,x 2是(-∞,0)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=-.因为x1,x2∈(-∞,0),所以x1x2>0,又因为x1<x2,所以x2-x1>0,则>0.于是f(x1)-f(x2)>0,即f(x1)>f(x2).因此函数f(x)=在(-∞,0)上是减函数.(2)设x1,x2是R上的任意两个实数,且x1<x2,则x2-x1>0,而f(x2)-f(x1)=(+x2)-(+x1)=(x2-x1)(+x2x1+)+(x2-x1)+)[(x+++1>0,因此函数f)=x3+x且x。
人教版高一数学必修一第一章测试题含答案

人教版高一数学必修一第一章测试题含答案一、选择题1.下列数中,是正数且有理数的是____。
A.根号2B.根号3C.-0.8D.- 3/4答案:D2.在数轴上,数-3,-2,0,2所在的点的次序是____。
A.-2 < -3 < 0 < 2B.-3 < -2 < 2 < 0C.-3 < -2 < 0 < 2D.-2 < -3 < 2 < 0答案:C3.下列各数中,最小的是____。
A.-0.8B.-1/2C.-1D.-0.9999答案:C4.已知-3<x<5,则-2x的取值范围是____。
A.6<x<30B.15<x<30C.-30<x<-6D.-30<x<15答案:D二、填空题1.将-0.25用分数表示为________。
答案:-1/42.-13的绝对值是________。
答案:133.已知-5<x<4,那么|x+7|的取值范围是________。
答案:2<|x+7|<124.如果a>b>0,那么a²和b²的大小关系是________。
答案:a²>b²三、解答题1.已知x<2y,2y≤4z,z≤5,求满足以上条件的x的取值范围。
解:由条件可得:x<2y≤4z≤20故x<20。
2.已知-2<x<3,求满足0<2x-1<5的x的取值范围。
解:0<2x-1<51<2x<6由x的取值范围-2<x<3得1/2<x<3,故满足条件的x的取值范围为1/2<x<3。
3.小明的体重是58kg,如果减轻了1/8,减轻后的体重是多少?解:减轻了1/8,体重减轻的量为1/8×58=7.25kg。
减轻后的体重为58-7.25=50.75kg。
新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题集合与常用逻辑用语注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此. 4.下列命题中正确的是( ){}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}A B =-29a =3a =±A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z 223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个.2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N ={(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意; ②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2).3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+={}10B x ax =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求: (1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a a <≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 x>0 时图象保持不变,因此排
除 C,D,对于选项 A,由于在 于 y 轴对称,故选 B.
时偶函数,故在 y 轴左侧的图象与 y 轴右侧的图象关
【备注】无
2.C 【解析】本题主要考查相等函数、函数的定义域、值域与对应关系.A.因为这两个函数的值域不 同,所以这两个函数不是相等函数;B.这两个函数的定义域不同,所以这两个函数不是相等函数;C. 这两个函数的定义域、值域与对应关系均相同,所以这两个函数为相等函数;D.这两个函数的定义 域不同,所以这两个函数不是相等函数. 【备注】无
5.B 【解析】f(x)=x2-4x+6=(x-2)2+2.∵f(x)图象的对称轴是直线 x=2,∴f(x)在[1,2]上单调递减,在(2,5)上 单调递增,∴f(x)的值域是[2,11).故选 B. 【备注】无
6.C
【解析】本题主要考查二次函数.依题意,函数
调,则函数的对称轴 【备注】无
或
,得
在区间
整理文本
高一数学第一章集合与函数概念单元检测试题
一、选择题:共 12 题 每题 5 分 共 60 分
1.已知函数
的图象如下图所示,则函数
的图象为
2.下列各组函数为相等函数的是
A.
B.
C.
D.
=
=
3.函数 的定义域为 若对于任意的
当
时,都有
则称函数 在 上为非减函数.设函数 的 上为非减函数,且满足以下三个条
3.D 【解析】本题主要考查新定义问题、函数的性质及其综合应用.由题意,令 x=0,由
=
可得
由
可得
令
则
=
同理
=
=
=
=
=令
则
=
=
同理
非减函数的性质:当
时,都有
=
=
.因为
=
=.
所以
【备注】无 4.A
所以
=.
.
整理文本
【解析】本题主要考查分段函数的最值问题.由题意,函数
的图象如图所示:
红色图象即为所求解的函数的图象,可知最小值为 0. 【备注】无
的顺序排列为
.
(1)f(x)=- x2;(2)f(x)= (x+5)2;
(3)f(x)= x2-6;(4)f(x)=-5(x-8)2+9.
16.若函数
的图像关于 y 轴对称,则 的单调减区间为
.
三、解答题:共 6 题 共 70 分 17.(本题 10 分)如果对函数 f(x)定义域内任意的 x1,x2 都有|f(x1)-f(x2)|≤|x1-x2|成立,就称 函数 f(x)是定义域上的“平缓函数”. (1)判断函数 f(x)=x2-x,x∈[0,1]是否为“平缓函数”; (2)若函数 f(x)是闭区间[0,1]上的“平缓函数”,且 f(0)=f(1),证明:对任意的 x1,x2∈[0,1],都有
13.已知函数 f(x)=a﹣x2(1≤x ≤2)与
的图象上存在关于 轴对称的点,
则实数 的取值范围是
A.
C.
14.设集合 M={x|0≤x≤2},N={y|0≤y≤2}.给出下列四个图,其中能构成从集合 M 到集
合 N 的函数关系的是
.
15.给出下列二次函数,将其图象画在同一平面直角坐标系中,则图象的开口按从小到大
(Ⅲ)解不等式:
.
22.(本题 12 分)(1)证明:函数 f(x)= 在(-∞,0)上是减函数; (2)证明:函数 f(x)=x3+x 在 R 上是增函数.
.
整理文本
参考答案
1.B 【解析】本试题主要考查函数的图象.根据题意,由于函数图象可知,函数在 y 轴右侧图象在 x
轴上方,在 y 轴左侧的图象在 x 轴的下方,而函数
偶函数,所以 f(-x)=f(x),则 f(- )= f( ).
由 f(2x-1)<f( )得
①或
②,
解①得 ≤x< ,解②得 <x< .
综上可得 <x< ,故 x 的取值范围是( , ). 【备注】无
10.C 【解析】本题主要考查二次函数.依题意,根据二次函数得性质,函数的开口向下,对称轴为
或
,故选 C.
上单
7.C 【解析】本题主要考查在新型定义的前提下函数值域的求解.根据题目定义知
f(x)=2x*2-x= 【备注】无
,结合图象知其值域为(0,1].故选 C.
.
整理文本
8.A 【解析】由题意知 E={x|2-x≥0}={x|x≤2},F⊆ E,观察选项知应选 A. 【备注】无
9.A 【解析】偶函数 f(x)在区间[0,+∞)上单调递增,所以函数 f(x)在区间(-∞,0]上单调递减.由于 f(x)是
件:① A.
② B.
③
=
C.
则
等于
D.
4.设函数
,则
的最小值为
A.
B.
C.
D.
5.函数 f(x)=x2-4x+6(x∈[1,5))的值域是
A.(3,11]
B.[2,11)
C.[3,11)
.
D.(2,11]
6.若函数 A. C.
整理文本
在区间 B. D.
上单调,则实数 的取值范围为
.
整理文本
7.定义运算:a*b=
|f(x1)-f(x2)|≤ 成立. (注:可参考绝对值的基本性质①|ab|≤|a||b|,②|a+b|≤|a|+|b|)
.
整理文本
18.(本题 12 分)记函数
的定义域为集合 ,集合
.
(1)求
和
;
(2) 若
,求实数 的取值范围.
19.(本题 12 分)设全集 U={x|0<x<9,且 x∈Z},集合 S={1,3,5},T={3,6},求:
,如 1*2=1,则函数 f(x)=2x*2-x 的值域为
A.R
B.(0,+∞)
C.(0,1]
D.[1,+∞)
8.已知集合 E={x|2-x≥0},若 F⊆ E,则集合 F 可以是
A.{x|x<1}
B.{x|x>2}
C.{x|x>3}
D.{x|1<x<3}
9.已知偶函数 f(x)在区间[0,+∞)上单调递增,则满足 f(2x-1)<f( )的 x 的取值范围是( )
A.( , )
B.[ , )
C.( , )
D.[ , )
10.某部队练习发射炮弹,炮弹的高度 与时间 (秒)的函数关系式是
,则炮弹在发射几秒后最高呢?
A.
B.
C.Leabharlann D.11.已知,且
,则 等于
A.
B.
12.已知集合 个集合间的关系是
A.
B.
C. 和集合
C.
D. ,则两
D.M,P 互不包含
.
整理文本
二、填空题:共 4 题 每题 5 分 共 20 分
.
(1)S∩T;
(2)
.
整理文本
20.(本题 12 分)已知函数 f(x)=
.
(1)用定义证明 f(x)在区间[1,+∞)上是增函数; (2)求该函数在区间[2,4]上的最大值与最小值.
21.(本题 12 分)定义在非零实数集上的函数
对任意非零实数 满
足:
,且当
时
.
(Ⅰ)求
及 的值;
(Ⅱ)求证: 是偶函数;