(完整版)全国卷高考题汇编—平面向量
平面向量-高考真题文科数学分项汇编(原卷版)

专题 11平面向量1.【2020年高考全国Ⅱ卷文数】已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A .a+2bB .2a+bC .a –2bD .2a – b2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC=1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线3.【2020年新高考全国Ⅰ卷】已知 P 是边长为 2的正六边形 ABCDEF 内的一点,则 AP AB 的取值范围是A .(2,6) C .(2,4)B .(6,2) D .(4,6)4.【2019年高考全国 I 卷文数】已知非零向量 a ,b 满足|a | 2|b|,且(a b) b ,则 a 与 b 的夹角为πB . πA .C . 6 2π 3 5πD .365.【2019年高考全国 II 卷文数】已知向量 a=(2,3),b=(3,2),则|a-b|= A . 2 B .2 C .5 2D .506.【2018年高考全国 I 卷文数】在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB1A . AB1 AC3 B . AB3 AC4 3 44 1 4C .AB 1 AC D .AB 3 AC 4 44 47.【2018年高考全国 II 卷文数】已知向量 a ,b 满足|a | 1, a b 1,则 a (2a b)A .4 C .2B .3 D .08.【2018年高考浙江卷】已知 a ,b ,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 π3,向量 b 满足 b −4e·b+3=0,则|a −b|的最小值是2A . 3 −1 C .2B . 3 +1 D .2− 39.【 2018年高考天津卷文数】在如图的平面图形中,已知BC·OM的值为OM 1,ON 2,MON 120,BM 2MA,CN 2NA,则A .15C . 6B .9D.010.【2020年高考全国Ⅰ卷文数】设向量a (1,1),b (m 1,2m 4),若a b,则m11.【2020年高考天津】如图,在四边形ABCD 中, B 60, AB 3,BC 6,且.AD BC, AD AB 3,则实数的值为_________,若M,N是线段BC上的动点,且| MN2则DM DN的最小值为_________.12.【2020年高考北京】已知正方形ABCD的边长为2,点P满足AP 1 (AB AC),则| PD |_________;2PB PD _________.13.【2020年高考浙江】已知平面单位向量e1,e2满足| 2e 1 e2 | 2.设a e 1 e2,b 3e 1 e2,向量a,b 的夹角为,则cos的最小值是_______.14.【2020年高考江苏】在△ABC中,AB 4,AC 3,∠BAC=90,D在边BC上,延长AD到P,使得AP 2若PA mPB (3 m)PC(m为常数),则CD的长度是▲.215.【2019年高考北京卷文数】已知向量=(–4,3),=(6,m),且a b,则m=__________.a b16.【2019年高考全国III卷文数】已知向量a (2,2),b (8,6),则cos a,b___________.17.【2019年高考天津卷文数】在四边形ABCD中,AD∥BC, AB 2 3, AD 5, A 30,点E 在线段CB 的延长线上,且 AEBE ,则 BD AE _____________.18.【2019年高考江苏卷】如图,在△ABC 中,D 是 BC 的中点,E 在边 AB 上,BE=2EA ,AD 与 CE 交于点O .若 AB AC6AO EC ,则ABAC 的值是_____. 19.【2019年高考浙江卷】已知正方形 ABCD 的边长为 1,当每个i(i 1,2,3,4,5,6)取遍时,|1AB 2BC 3CD 4DA 5AC 6BD|的最小值是________;最大值是_______.20.【2018年高考全国 III 卷文数】已知向量a=1,2,b=2,2,c=1,λ.若c ∥2a + b ,则________.21.【2018年高考北京卷文数】设向量 a=(1,0),b=(−1,m ),若 a (mab),则 m=_________.22.【2018年高考上海卷】在平面直角坐标系中,已知点 A 1,0、 B2,0, E 、 F 是 y 轴上的两个动点,且|EF| 2 ,则 AE BF 的最小值为___________.23.【2018年高考江苏卷】在平面直角坐标系 xOy 中, A 为直线l : y 2x 上在第一象限内的点,B 5,0,以 AB 为直径的圆C 与直线l 交于另一点 D .若 AB CD0,则点 A 的横坐标为___________.。
高考数学真题汇编---平面向量(有解析)

高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。
高考数学(理)真题专题汇编:平面向量

高考数学(理)真题专题汇编:平面向量一、选择题1.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件2.【来源】2019年高考真题——理科数学(全国卷Ⅱ) 已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅= A .-3 B .-2C .2D .33.【来源】2019年高考真题——理科数学(全国卷Ⅰ) 已知非零向量a ,b 满足||2||=a b ,且()-a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π64.【来源】2018年高考真题——理科数学(天津卷)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅AE BE 的最小值为(A) 2116(B) 32(C) 2516(D) 35.【来源】2018年高考真题——理科数学(全国卷II ) 已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )= A .4B .3C .2D .06.【来源】2018年高考真题——理科数学(全国卷Ⅰ) 在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则=A.43AB -41ACB. 41AB -43AC C. 43AB +41AC D. 41AB +43AC7.【来源】2016年高考真题——理科数学(天津卷)已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( )(A )85-(B )81(C )41(D )8118.【来源】2017年高考真题——数学(浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记I 1=OB OA ⋅,I 2=OC OB ⋅,I 3=OD OC ⋅,则A .I 1<I 2<I 3B .I 1<I 3 <I 2C .I 3<I 1<I 2D . I 2<I 1<I 39.【来源】2017年高考真题——理科数学(全国Ⅲ卷)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为()A .3B .22C 5D .210.【来源】2017年高考真题——理科数学(全国Ⅱ卷)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是( )A.-2B.23-C. 43-D.-111.【来源】2016年高考真题——理科数学(新课标Ⅱ卷)12.【来源】2014高考真题理科数学(福建卷)在下列向量组中,可以把向量()2,3=a 表示出来的是( ) A.)2,1(),0,0(21==e e B .)2,5(),2,1(21-=-=e e C.)10,6(),5,3(21==e e D.)3,2(),3,2(21-=-=e e二、填空题13.【来源】2019年高考真题——数学(浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.14.【来源】2019年高考真题——理科数学(天津卷)在四边形ABCD 中,,23,5,30ADBC AB AD A ==∠=︒∥,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅= . 15.【来源】2019年高考真题——理科数学(全国卷Ⅲ)已知a ,b 为单位向量,且a ·b =0,若25=-c a b ,则cos ,<>=a c ___________. 16.【来源】2019年高考真题——理科数学(全国卷Ⅰ)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.17.【来源】2019年高考真题——数学(江苏卷)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.18.【来源】2018年高考真题——数学理(全国卷Ⅲ)已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________. 19.【来源】2018年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ . 20.【来源】2017年高考真题——数学(浙江卷)已知向量a ,b 满足|a |=1,|b |=2,则|a +b |+|a -b |的最小值是________,最大值是_______.21.【来源】2017年高考真题——数学(江苏卷)在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若20≤⋅PB PA ,则点P 的横坐标的取值范围是 .22.【来源】2017年高考真题——数学(江苏卷)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan α=7,OB 与OC 的夹角为45°。
平面向量高考试题精选(含详细答案)

平面向量高考试题精选(一)一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.213.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.64.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣26.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1] 9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.110.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.012.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.213.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.17.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则=.18.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为.19.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是.21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.平面向量高考试题精选(一)参考答案与试题解析一.选择题(共14小题)1.(2015•XX)设D为△ABC所在平面内一点,,则()A.B.C.D.解:由已知得到如图由===;故选:A.2.(2015•XX)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.3.(2015•XX)设四边形ABCD为平行四边形,||=6,||=4,若点M、N满足,,则=()A.20 B.15 C.9 D.6解:∵四边形ABCD为平行四边形,点M、N满足,,∴根据图形可得:=+=,==,∴=,∵=•()=2﹣,2=22,=22,||=6,||=4,∴=22=12﹣3=9故选:C4.(2015•XX)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.5.(2015•XX)对任意向量、,下列关系式中不恒成立的是()A.||≤|||| B.||≤|||﹣|||C.()2=||2D.()•()=2﹣2解:选项A正确,∵||=|||||cos<,>|,又|cos<,>|≤1,∴||≤||||恒成立;选项B错误,由三角形的三边关系和向量的几何意义可得||≥|||﹣|||;选项C正确,由向量数量积的运算可得()2=||2;选项D正确,由向量数量积的运算可得()•()=2﹣2.故选:B6.(2015•XX)若非零向量,满足||=||,且(﹣)⊥(3+2),则与的夹角为()A.B.C.D.π解:∵(﹣)⊥(3+2),∴(﹣)•(3+2)=0,即32﹣22﹣•=0,即•=32﹣22=2,∴cos<,>===,即<,>=,故选:A7.(2015•XX)已知非零向量满足||=4||,且⊥()则的夹角为()A.B.C.D.解:由已知非零向量满足||=4||,且⊥(),设两个非零向量的夹角为θ,所以•()=0,即2=0,所以cosθ=,θ∈[0,π],所以;故选C.8.(2014•XX)在平面直角坐标系中,O为原点,A(﹣1,0),B(0,),C(3,0),动点D满足||=1,则|++|的取值X围是()A.[4,6]B.[﹣1,+1]C.[2,2]D.[﹣1,+1]】解:∵动点D满足||=1,C(3,0),∴可设D(3+cosθ,sinθ)(θ∈[0,2π)).又A(﹣1,0),B(0,),∴++=.∴|++|===,(其中sinφ=,cosφ=)∵﹣1≤sin(θ+φ)≤1,∴=sin(θ+φ)≤=,∴|++|的取值X围是.故选:D.9.(2014•桃城区校级模拟)设向量,满足,,<>=60°,则||的最大值等于()A.2 B.C.D.1解:∵,∴的夹角为120°,设,则;=如图所示则∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2故选A10.(2014•XX)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.11.(2014•XX)设,为非零向量,||=2||,两组向量,,,和,,,,均由2个和2个排列而成,若•+•+•+•所有可能取值中的最小值为4||2,则与的夹角为()A.B.C.D.0解:由题意,设与的夹角为α,分类讨论可得①•+•+•+•=•+•+•+•=10||2,不满足②•+•+•+•=•+•+•+•=5||2+4||2cosα,不满足;③•+•+•+•=4•=8||2cosα=4||2,满足题意,此时cosα=∴与的夹角为.故选:B.12.(2014•XX)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=()A.﹣2 B.﹣1 C.1 D.2解:∵向量=(1,2),=(4,2),∴=m+=(m+4,2m+2),又∵与的夹角等于与的夹角,∴=,∴=,∴=,解得m=2,故选:D13.(2014•新课标I)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B. C.D.【解答】解:∵D,E,F分别为△ABC的三边BC,CA,AB的中点,∴+=(+)+(+)=+=(+)=,故选:A14.(2014•XX)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A.B.2C.3D.4解:∵O为任意一点,不妨把A点看成O点,则=,∵M是平行四边形ABCD的对角线的交点,∴=2=4故选:D.二.选择题(共8小题)15.(2013•XX)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.16.(2013•)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF与其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:317.(2012•XX)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则= 18.【解答】解:设AC与BD交于点O,则AC=2AO∵AP⊥BD,AP=3,在Rt△APO中,AOcos∠OAP=AP=3∴||cos∠OAP=2||×cos∠OAP=2||=6,由向量的数量积的定义可知,=||||cos∠PAO=3×6=18故答案为:1818.(2012•)己知正方形ABCD的边长为1,点E是AB边上的动点.则的值为1.【解答】解:因为====1.故答案为:119.(2011•XX)已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的动点,则的最小值为5.解:如图,以直线DA,DC分别为x,y轴建立平面直角坐标系,则A(2,0),B(1,a),C(0,a),D(0,0)设P(0,b)(0≤b≤a)则=(2,﹣b),=(1,a﹣b),∴=(5,3a﹣4b)∴=≥5.故答案为5.20.(2010•XX)已知平面向量满足,且与的夹角为120°,则||的取值X围是(0,].解:令用=、=,如下图所示:则由=,又∵与的夹角为120°,∴∠ABC=60°又由AC=由正弦定理得:||=≤∴||∈(0,]故||的取值X围是(0,]故答案:(0,]21.(2010•XX)如图,在△ABC中,AD⊥AB,,,则=.【解答】解:,∵,∴,∵,∴cos∠DAC=sin∠BAC,,在△ABC中,由正弦定理得变形得|AC|sin∠BAC=|BC|sinB,,=|BC|sinB==,故答案为.22.(2009•XX)若等边△ABC的边长为,平面内一点M满足=+,则=﹣2.解:以C点为原点,以AC所在直线为x轴建立直角坐标系,可得,∴,,∵=+=,∴M,∴,,=(,)•(,)=﹣2.故答案为:﹣2.三.选择题(共2小题)23.(2012•XX)定义向量=(a,b)的“相伴函数”为f(x)=asinx+bcosx,函数f(x)=asinx+bcosx 的“相伴向量”为=(a,b)(其中O为坐标原点).记平面内所有向量的“相伴函数”构成的集合为S.(1)设g(x)=3sin(x+)+4sinx,求证:g(x)∈S;(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;(3)已知M(a,b)(b≠0)为圆C:(x﹣2)2+y2=1上一点,向量的“相伴函数”f(x)在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值X围.【解答】解:(1)g(x)=3sin(x+)+4sinx=4sinx+3cosx,其‘相伴向量’=(4,3),g(x)∈S.(2)h(x)=cos(x+α)+2cosx=(cosxcosα﹣sinxsinα)+2cosx=﹣sinαsinx+(cosα+2)cosx∴函数h(x)的‘相伴向量’=(﹣sinα,cosα+2).则||==.(3)的‘相伴函数’f(x)=asinx+bcosx=sin(x+φ),其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f(x)取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan(2kπ+﹣φ)=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0)∪(0,].令m=,则tan2x0=,m∈[﹣,0)∪(0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0)∪(0,].24.(2007•XX)设F1、F2分别是椭圆=1的左、右焦点.(Ⅰ)若P是第一象限内该椭圆上的一点,且,求点P的作标;(Ⅱ)设过定点M(0,2)的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值X围.】解:(Ⅰ)易知a=2,b=1,.∴,.设P(x,y)(x>0,y>0).则,又,联立,解得,.(Ⅱ)显然x=0不满足题设条件.可设l的方程为y=kx+2,设A(x1,y1),B(x2,y2).联立∴,由△=(16k)2﹣4•(1+4k2)•12>016k2﹣3(1+4k2)>0,4k2﹣3>0,得.①又∠AOB为锐角,∴又y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4∴x1x2+y1y2=(1+k2)x1x2+2k(x1+x2)+4===∴.②综①②可知,∴k的取值X围是.。
专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。
(完整版)平面向量的综合应用

平面向量1.D 是△ABC 的边AB 上的中点,则向量CD →等于( )A .-BC →+12BA →B .-BC →-12BA → C.BC →-12BA → D.BC →+12BA →2.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB →+AD →=λAO →,则λ=________.3.(2015·全国卷Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( )A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →5.(2016·南京模拟)已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.6.(2014·全国卷Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( )A.BC →B.12AD →C.AD →D.12BC →7.(2016·苏州模拟)设D 、E 分别是△ABC 的边AB 、BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1、λ2为实数),则λ1+λ2的值为________. 8.设两个非零向量a 与b 不共线.①若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; ②试确定实数k ,使k a +b 和a +k b 共线.9.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .410.已知在△ABC 中,D 是AB 边上的一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.11.设M 是△ABC 所在平面上一点,且MB →+32MA →+32MC →=0,D 是AC 的中点,则|MD →||BM →|的值为( ) A.13 B.12 C .1 D .2 12.O 是△ABC 所在平面内的一定点,动点P 满足OA OP +=λ,λ∈[0,+∞),则P 点的轨迹一定通过△ABC 的( )A .外心B .内心C .重心D .垂心13.(2015·北京高考)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB→+yAC →,则x =________;y =________.14.(2016·南京模拟)如图所示,在△ABC 中,H 为BC 上异于B ,C 的任一点,M为AH 的中点,若AM →=λAB →+μAC →,则λ+μ=________.(14题图)(16题图)15.(2014·陕西高考)设0<θ<π2,向量a =(sin 2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.16.(2016·长春模拟)如图所示,在四边形ABCD 中,AC 和BD 相交于点O ,设AD→=a ,AB →=b ,若AB →=2DC →,则AO →=________(用向量a 和b 表示).17.直线y =12ax 与线段AB 交于C ,且AC →=2CB →,则实数a 等于________.18.(2016·济南模拟)如图,两块斜边长相等的直角三角板拼在一起.若AD →=xAB →+yAC →,则x =________,y =________.19.如图,G 是△OAB 的重心,P ,Q 分别是边OA 、OB 上的动点,且P ,G ,Q 三点共线.(1)设PG →=λPQ →,将OG →用λ,OP →,OQ →表示;(2)设OP →=xOA →,OQ →=yOB →,证明:1x +1y 是定值.(18题图)(19题图) 20.(2015·山东高考)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( )A .-32a 2B .-34a 2 C.34a 2 D.32a 221.(2015·四川高考)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20B .15C .9D .6 22.(2015·湖北高考)已知向量O A →⊥A B →,|O A →|=3,则O A →·O B →=________. 23.已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61.(1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积. 24.△ABC 外接圆的半径等于1,其圆心O 满足AO →=12(AB →+AC →),|AO →|=|AC →|,则向量BA →在BC →方向上的投影等于( )A .-32 B.32 C.32 D .325.在矩形ABCD 中,AB =2,BC =22,点E 为BC 的中点,点F 在边CD 上,若AB →·AF →=2,则AE →·BF →的值是________.26.(2016·银川模拟)已知向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________.27.(2016·桂林模拟)如图,在等腰三角形ABC 中,底边BC =2,AD →=DC →,AE →=12EB →,若BD →·AC →=-12,则CE →·AB →=( ) (27题图)(29题图)A .-43 B.43 C .-32 D.3228.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.29.(2016·合肥模拟)如图,半圆的直径AB =6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值为________. 30.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形 31.如图,圆O 的直径为2,A 为直径延长线上一点,OA =2,B 为圆上任一点,以AB 为一边作等边三角形ABC ,则OC →·AB →的值为( )(31题图)(32题图)A .-3B .-32C .3 D.3232.如图,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →=( )A .2 3 B.32 C.33 D.333.若等边△ABC 的边长为23,平面内一点M 满足CM →=16CB →+23CA →,则MA →·MB →=________.34.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形。
2024全国高考真题数学汇编:平面向量及其应用章节综合

2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
专题07 平面向量-2022年高考真题和模拟题数学分类汇编(解析版)

专题07 平面向量1.【2022年全国乙卷】已知向量a ⃑=(2,1),b ⃑⃑=(−2,4),则|a ⃑−b ⃑⃑|( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a ⃑−b ⃑⃑,然后求得|a ⃑−b ⃑⃑|. 【详解】因为a ⃑−b ⃑⃑=(2,1)−(−2,4)=(4,−3),所以|a ⃑−b ⃑⃑|=√42+(−3)2=5. 故选:D2.【2022年全国乙卷】已知向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=√3,|a ⃑−2b ⃑⃑|=3,则a ⃑⋅b ⃑⃑=( ) A .−2 B .−1 C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵|a ⃗−2b ⃑⃗|2=|a ⃗|2−4a ⃗⋅b ⃑⃗+4|b ⃑⃗|2, 又∵|a ⃗|=1,|b ⃑⃗|=√3,|a ⃗−2b ⃑⃗|=3, ∴9=1−4a ⃗⋅b ⃑⃗+4×3=13−4a ⃗⋅b ⃑⃗, ∴a ⃗⋅b ⃑⃗=1 故选:C.3.【2022年新高考1卷】在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃑⃑⃑⃑⃑⃑=m ⃑⃑⃗,CD ⃑⃑⃑⃑⃑⃑=n ⃑⃗,则CB ⃑⃑⃑⃑⃑⃑=( ) A .3m ⃑⃑⃗−2n ⃑⃗ B .−2m ⃑⃑⃗+3n ⃑⃗C .3m ⃑⃑⃗+2n ⃑⃗D .2m ⃑⃑⃗+3n ⃑⃗【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出. 【详解】因为点D 在边AB 上,BD =2DA ,所以BD ⃑⃑⃑⃑⃑⃑⃑=2DA ⃑⃑⃑⃑⃑⃑,即CD ⃑⃑⃑⃑⃑⃑−CB ⃑⃑⃑⃑⃑⃑=2(CA ⃑⃑⃑⃑⃑⃑−CD ⃑⃑⃑⃑⃑⃑), 所以CB ⃑⃑⃑⃑⃑⃑= 3CD ⃑⃑⃑⃑⃑⃑−2CA ⃑⃑⃑⃑⃑⃑=3n ⃑⃑−2m ⃑⃑⃑ =−2m ⃑⃑⃗+3n ⃑⃗. 故选:B .4.【2022年新高考2卷】已知向量a ⃑=(3,4),b ⃑⃑=(1,0),c ⃑=a ⃑+tb ⃑⃑,若<a ⃑,c ⃑>=<b ⃑⃑,c ⃑>,则t =( ) A .−6 B .−5 C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:c ⃗=(3+t,4),cos 〈a ⃗,c ⃗〉=cos 〈b,c ⃗〉,即9+3t+165|c⃗|=3+t|c ⃗|,解得t =5,故选:C5.【2022年北京】在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑的取值范围是( ) A .[−5,3] B .[−3,5]C .[−6,4]D .[−4,6]【答案】D 【解析】 【分析】依题意建立平面直角坐标系,设P (cosθ,sinθ),表示出PA ⃑⃑⃑⃑⃑⃑,PB ⃑⃑⃑⃑⃑⃑,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得; 【详解】解:依题意如图建立平面直角坐标系,则C (0,0),A (3,0),B (0,4),因为PC =1,所以P 在以C 为圆心,1为半径的圆上运动, 设P (cosθ,sinθ),θ∈[0,2π],所以PA⃑⃑⃑⃑⃑⃑=(3−cosθ,−sinθ),PB ⃑⃑⃑⃑⃑⃑=(−cosθ,4−sinθ), 所以PA⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑=(−cosθ)×(3−cosθ)+(4−sinθ)×(−sinθ) =cos 2θ−3cosθ−4sinθ+sin 2θ=1−3cosθ−4sinθ=1−5sin (θ+φ),其中sinφ=35,cosφ=45,因为−1≤sin (θ+φ)≤1,所以−4≤1−5sin (θ+φ)≤6,即PA ⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑∈[−4,6]; 故选:D6.【2022年全国甲卷】已知向量a ⃑=(m,3),b ⃑⃑=(1,m +1).若a ⃑⊥b ⃑⃑,则m =______________.【答案】−34##−0.75 【解析】 【分析】直接由向量垂直的坐标表示求解即可. 【详解】由题意知:a ⃑⋅b ⃑⃑=m +3(m +1)=0,解得m =−34.故答案为:−34.7.【2022年全国甲卷】设向量a ⃑,b ⃑⃑的夹角的余弦值为13,且|a ⃑|=1,|b ⃑⃑|=3,则(2a ⃑+b ⃑⃑)⋅b ⃑⃑=_________. 【答案】11 【解析】 【分析】设a ⃑与b ⃑⃑的夹角为θ,依题意可得cosθ=13,再根据数量积的定义求出a ⃑⋅b ⃑⃑,最后根据数量积的运算律计算可得. 【详解】解:设a ⃑与b ⃑⃑的夹角为θ,因为a ⃑与b ⃑⃑的夹角的余弦值为13,即cosθ=13, 又|a ⃑|=1,|b ⃑⃑|=3,所以a ⃑⋅b ⃑⃑=|a ⃑|⋅|b ⃑⃑|cosθ=1×3×13=1, 所以(2a ⃑+b ⃑⃑)⋅b ⃑⃑=2a ⃑⋅b ⃑⃑+b ⃑⃑2=2a ⃑⋅b ⃑⃑+|b ⃑⃑|2=2×1+32=11. 故答案为:11.8.【2022年浙江】设点P 在单位圆的内接正八边形A 1A 2⋯A 8的边A 1A 2上,则PA ⃑⃑⃑⃑⃑⃑12+PA 2⃑⃑⃑⃑⃑⃑⃑⃑2+⋯+PA ⃑⃑⃑⃑⃑⃑82的取值范围是_______. 【答案】[12+2√2,16] 【解析】 【分析】根据正八边形的结构特征,分别以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设P(x,y),再根据平面向量模的坐标计算公式即可得到PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82=8(x 2+y 2)+8,然后利用cos22.5∘≤|OP|≤1即可解出. 【详解】以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示:则A 1(0,1),A 2(√22,√22),A 3(1,0),A 4(√22,−√22),A 5(0,−1),A 6(−√22,−√22),A 7(−1,0),A 8(−√22,√22),设P(x,y),于是PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82=8(x 2+y 2)+8,因为cos22.5∘≤|OP|≤1,所以1+cos45∘2≤x 2+y 2≤1,故PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82的取值范围是[12+2√2,16].故答案为:[12+2√2,16].1.(2022·陕西·西北工业大学附属中学模拟预测(理))在直角坐标系xOy 中的三点(),3M m ,()4,N n ,()2,2E -,若向量OM 与ON 在向量OE 方向上的投影相等,则m 与n 的关系为( )A .7m n +=B .3m n -=C .m n =D .m n =-【答案】A 【解析】 【分析】根据向量在向量上的投影的定义列式可求出结果. 【详解】(),3OM m =,(4,)ON n =,(2,2)OE =-,向量OM 在向量OE 方向上的投影为||OM OE OE ⋅==向量ON 在向量OE 方向上的投影为8||ON OE OE ⋅=,=7m n +=. 故选:A.2.(2022·山东潍坊·三模)已知a ,b 是平面内两个不共线的向量,AB a b λ=+,AC a b μ=+,λ,μ∈R ,则A ,B ,C 三点共线的充要条件是( )A .1λμ-=B .2λμ+=C .1λμ=D .1λμ= 【答案】C 【解析】 【分析】利用向量共线的充要条件有AB mAC =且R m ∈,即可得答案. 【详解】由A ,B ,C 三点共线的充要条件是AB mAC =且R m ∈,所以1m mμλ=⎧⎨=⎩,故1λμ=.故选:C3.(2022·江苏苏州·模拟预测)在ABC 中,π3A =,点D 在线段AB 上,点E 在线段AC 上,且满足22,2AD DB AE EC ====,CD 交BE 于F ,设AB a =,AC b =,则AF BC ⋅=( )A .65B .175C .295D .325【答案】B 【解析】 【分析】根据平面共线向量的性质,结合平面向量数量积的运算性质、平面向量数量积的定义、平面向量的加法的几何意义进行求解即可. 【详解】设DF DC λ=,EF EB μ=,因为11111()(),33333AF AD DF AB DC AB DA AC AB AB AC AB AC λλλλλ-=+=+=++=+-+=+11111()(),22222AF AE EF AC EB AC EA AB AC AC AB AC AB μμμμμ-=+=+=++=+-+=+所以有21531152λλμμμλ-⎧⎧==⎪⎪⎪⎪⇒⎨⎨-⎪⎪==⎪⎪⎩⎩,因此AF BC ⋅=2212121()()55555+-+=-+-⋅AB AC AB AC AB AC AC AB ,因为π3A =,3AB =,4AC =,所以AF BC ⋅=1211179163455525⋅=-⨯+⨯-⨯⨯⨯=AF BC ,故选:B4.(2022·内蒙古·满洲里市教研培训中心三模(文))若(2,3a =-,(2sin ,2cos)66b ππ=,下列正确的是( ) A .//()b a b -B .()b a b ⊥-C .a 在b 方向上的投影是12-D .()a b a b +⊥-()【答案】C 【解析】 【分析】根据向量平行的坐标表示判断A ,根据向量垂直的坐标表示判断BC ,根据向量的投影的定义判断C. 【详解】由已知(2,3a =-,(1,3)b =,所以(((2,3=1,a b -=---,((()2,3=3,0a b+=-+, 因为1(10⨯-≠,所以b ab -,不平行,A 错, 因为(10⨯-≠,所以b a b -,不垂直,B 错,因为a 在b 方向上的投影为2211cos ,=21a b a a b b ⋅⨯-==-+,C 对,因为(13+00⨯-⨯≠,所以a b a b +-,不垂直,D 错, 故选:C.5.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b 满足1a =,2b =,()235a a b ⋅+=,则a 与b 的夹角为( )A .6πB .3π C .23π D .56π 【答案】B 【解析】 【分析】根据数量积的运算律得到a b ⋅,再根据cos a b a bθ⋅=⋅计算可得;【详解】解:因为1a =,2b =,()235a a b ⋅+=,所以2235a a b +⋅=,即2235a a b +⋅=,所以1a b ⋅=,设a 与b 的夹角为θ, 则1cos 2a b a bθ⋅==⋅,因为[]0,θπ∈,所以3πθ=; 故选:B6.(2022·北京·潞河中学三模)已知菱形ABCD 的边长为,60a ABC ∠=,则DB CD ⋅=( ) A .232a -B .234a -C .234aD .232a【答案】A 【解析】 【分析】将,DB CD 分别用,BA BC 表示,再根据数量积的运算律即可得出答案. 【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=-.故选:A.7.(2022·湖北·华中师大一附中模拟预测)已知向量(,3)a m =,(1,)b m =,若a 与b 反向共线,则3a b -的值为( )A .0B .48C .D .【答案】C 【解析】 【分析】由向量反向共线求得m =3a b -. 【详解】由题意23m =,得m =又a 与b 反向共线,故m =3(23,6)a b -=-, 故3=43a b -. 故选:C.8.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF , 即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .9.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AHAG +=D .23BO BHBG +=【答案】D 【解析】 【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误. 【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误;()112333AO AHAG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BHBG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.10.(2022·江苏·南京外国语学校模拟预测)已知,,OA OB OC 均为单位向量,且满足102OA OB OC ++=,则AB AC ⋅的值为( ) A .38B .58C .78D .198【答案】B 【解析】 【分析】通过向量的线性运算进行化简求值即可. 【详解】()2,32AO OB OC AB OB OC =+=+,同理23AC OB OC =+()()2274(),,32238AO OB OC OB OC AB AC OB OC OB OC =+∴⋅=-⋅=++2291566136688OB OC OB OC =++⋅=+-=. 故选:B.11.(2022·辽宁沈阳·三模)已知椭圆()22:40C x y m m +=>的两个焦点分别为12,F F ,点P是椭圆上一点,若12PF PF ⋅的最小值为1-,则12PF PF ⋅的最大值为( ) A .4 B .2C .14D .12【答案】D 【解析】 【分析】设00(,)P x y ,求出焦点坐标,利用向量的坐标运算得出12PF PF ⋅,再根据椭圆的范围利用二次函数求最值即可得解. 【详解】设00(,)P x y ,由()22:40C x y m m +=>可知1(F ,2F ,100(,)PF x y ∴=---,0023(,)2PF x y =--, 22222012000033311(4)44442x m m PF PF x y x m x m ∴⋅=-++=-++-=-,0m x -≤≤00x ∴=时,12PF PF ⋅的最小值为112m -=-,解得2m =.当0x =12PF PF ⋅的最大值为312142⨯-=.故选:D12.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=,所以a b -与a 的夹角为3π. 故选:B13.(2022·浙江省江山中学模拟预测)在ABC 中,E ,F 分别为,AC BC 的中点,点D 是线段AF (不含端点)内的任意一点,AD mAB nAE =+,则( ) A .(0,1)m ∈ B .(0,2)n ∈ C .2n m = D .1m n +=【答案】C 【解析】 【分析】根据向量的线性运算的定义和平面向量基本定理确定,m n 的关系和范围. 【详解】因为点D 是线段AF (不含端点)内的任意一点, 所以可设(01)AD AF λλ=<<, 因为E ,F 分别为,AC BC 的中点,所以11112222AF AB BF AB BC AB AC AB AE =+=+=+=+,所以2AD AB AE λλ=+,又AD mAB nAE =+,所以10,22m λ⎛⎫=∈ ⎪⎝⎭,()0,1n λ=∈,2n m =,32m n λ+=, 所以A ,B ,D 错误,C 正确, 故选:C.14.(2022·安徽·合肥一中模拟预测(文))已知向量(1,0)a =,(1,1)b =,向量a b 与a 垂直,则实数λ的值为( ) A .2- B .2 C .1- D .1【答案】C 【解析】 【分析】由题得()0λ+⋅=a b a 化简即得解. 【详解】 因为ab 与a 垂直,所以()20,0λλ+⋅=∴+⋅=a b a a a b , 所以1+(10)0,1λλ⨯+=∴=-. 故选:C.15.(2022·海南华侨中学模拟预测)已知不共线的平面向量,,a b c 两两所成的角相等,且1,4,7a b a b c ==++=,则c =( )A B .2 C .3 D .2或3【答案】D 【解析】 【分析】 先求出23πθ=,转化2()7a b c a b c ++=++=,列方程即可求出. 【详解】由不共线的平面向量a ,b ,c 两两所成的角相等,可设为θ,则23πθ=.设|c |=m. 因为147a b a b c ==++=,,,所以27a b c ++=, 即2222227a a b b b c a c c +⋅++⋅+⋅+=,所以2222221214cos424cos 21cos 7333m m m πππ+⨯⨯++⨯⨯+⨯⨯+= 即2560m m -+=,解得:2m =或3. 所以|c |=2或3 故选:D16.(2022·贵州贵阳·模拟预测(理))已知()1,2a =,()2,1b =-,()1,c λ=,且()c a b ⊥+,则λ=______. 【答案】3- 【解析】 【分析】由向量垂直的坐标表示计算可得. 【详解】由题意()()3,1a b +=,又()c a b ⊥+,则()()()1,3,130c a b λλ⋅+=⋅=+=,故3λ=-. 故答案为:3-.17.(2022·河北·沧县中学模拟预测)已知向量,a b 的夹角为23π,4a =,3b =,则a b +=___________.【解析】 【分析】根据2222a b a a b b +=+⋅+求解即可. 【详解】 21cos43632a b a b π⎛⎫⋅==⨯⨯-=- ⎪⎝⎭, 则()222222426313a b a a b b +=+⋅+=+⨯-+=, 则13a b +=.18.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________.【答案】2π##90 【解析】 【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 19.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====AC DB ⋅值为__________. 【答案】94##2.25【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ==== 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:9420.(2022·浙江·镇海中学模拟预测)设,a b 为不共线的向量,满足,342(,R)c a b λμλμλμ=++=∈,且c a c b c --==,若3a b -=,则()22()⋅⋅-a ba b 的最大值为________. 【答案】324【解析】 【分析】采用建系法,令,,a OA b OB c OC ===,将各个点用坐标表示,然后表达出OAB 面积的最大值,进而求得()22()⋅⋅-a b a b 的最大值;【详解】令,,a OA b OB c OC ===,又因为c a c b c --==, 即==OC CA CB ,则点C 为OAB 的外心,因为3-==a b AB , 设33,0,,0,(0,)22⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭B AC m ,不妨取0m >则点()00,O x y 在圆2229:()4+-=+C x y m m 上, 由OC OA OB λμ=+,代入坐标,()00000033,,,22λμ⎛⎫⎛⎫---=--+--- ⎪ ⎪⎝⎭⎝⎭x m y x y x y ,解得003(),211-+=⋅-=----mx y m μλμλλμλμ,联立342+=u λ和2229:()4+-=+C x y m m ,解得12λ⎫<⎪⎭m,故0()1μλλμ+=+--m y m622λ=≤-+ ⎪⎝⎭,1λ=-时取“=”. 故01||92=⋅≤OABSAB y ,于是 ()22222max max(||||)()||||1cos a b a b OA OB AOB ⎡⎤⎡⎤⋅-⋅=⋅⋅-∠⎣⎦⎣⎦ ()2222maxmax||||sin 4324OAB OA OB AOB S ⎡⎤=⋅⋅∠==⎣⎦△.故答案为:324 【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年——2016年高考题专题汇编
专题3 平面向量
1、(16年全国1 文)设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .
2、(16年全国1 理)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = .
3、(16年全国2 文)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.
4、(16年全国2 理)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m =
(A )-8 (B )-6 (C )6 (D )8
5、(16年全国3 文)已知向量BA →
=(12,2),BC →=(2,12),则∠ABC = (A )30° (B )45° (C )60° (D )120°
6、(16年全国3 理)已知向量1
(,)22BA = ,31(),22
BC = 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200
7、(15年新课标2 文)向量(1,1)=-a ,(1,2)=-b ,则(2)+⋅=a b a
A .-1
B .0
C .1
D .3
8、(15年新课标2理)设向量,不平行,向量
与平行,则实数_________.
9、(15年新课标1文)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =
(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 10、(15年新课标1理)设D 为ABC 所在平面内一点3BC CD =,则
(A )1433AD AB AC =-
+ (B) 1433
AD AB AC =- (C )4133AD AB AC =+ (D) 4133AD AB AC =-
11、(14年新课标3 文)已知a b 、
为单位向量,其夹角为060,则(2)a b b -•=( ) A .-1 B .0 C .1 D .2
12、(14年新课标3 理)若向量,a b 满足:||1a =,()a b a +⊥,(2)a b b +⊥,则||b =( )
A .2
B
C .1 D
13、(14年新课标2 文)设向量a ,b 满足a ·b=
(A )1 (B ) 2 (C )3 (D) 5
14、(14年新课标2 理)设向量a,b 满足|a+b |=|a -b ,则a ⋅b = ( )
A. 1
B. 2
C. 3
D. 5
15、(14年新课标1文)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EB
A. AD
B.
AD 21 C. BC 21 D. BC
16、(14年新课标1理)已知A ,B ,C 是圆O 上的三点,若1()2
AO AB AC =+,则AB 与AC 的夹角为 .
17、(13全国2 文 理)已知正方形ABCD 的边长为2, E 为CD 的中点,,则 =_______.
18、(12全国2 文)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=
19、(11全国2 文)若向量a,b 满足1||||1,2a b a b ==⋅=-
,则2a b +=
A B C
D 20、(11全国2 理)设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,则c 的最大值等于
A .2
B
C
D .1。