第四章 核磁共振碳谱 习题2

合集下载

核磁共振碳谱总结

核磁共振碳谱总结

第4章核磁共振碳谱在C的同位素中,只有13C有自旋现象,存在核磁共振吸收,其自旋量子数I=1/2。

13C NMR 的原理与1H NMR一样。

由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。

加之H核的偶合干扰,使得13C NMR信号变得很复杂,难以测得有实用价值的图谱。

知道二十世纪七十年代后期,质子去偶技术和傅里叶变换技术的发展和应用,才使13C NMR的测定变的简单易得。

4.1 核磁共振碳谱的特点1. 灵敏度低由于γc= γH /4,且13C的天然丰度只有1.1%,因此13C核的测定灵敏度很低,大约是H核的1/6000,测定困难。

2. 分辨能力高氢谱的化学位移δ值很少超过10ppm,而碳谱的δ值可以超过200ppm,最高可达600ppm。

这样,复杂和分子量高达400的有机物分子结构的精细变化都可以从碳谱上分辨。

同时13C 自身的自旋-自旋裂分实际上不存在,虽然质子和碳核之间有偶合,但可以用质子去偶技术进行控制。

3. 能给出不连氢碳的吸收峰有机化合物分子骨架主要由 C 原子构成,因而13C NMR 能更全面地提供有关分子骨架的信息。

而1HNMR 中不能给出吸收信号的 C=O、C=C、C≡C、C≡N以及季碳等基团,在13CNMR 中都可以直接给出特征吸收峰。

13CNMR 可直接观测不带氢的含碳官能团,如羰基、氰基等。

4. 不能用积分高度来计算碳的数目13C NMR的常规谱是质子全去偶谱。

对大多数碳,尤其是质子化碳,他们的信号强度都会由去偶的同时产生的NOE效应而大大增强。

因此不到呢国家的碳原子的数目不能通过常规共振谱的谱线强度来确定。

5. 弛豫时间T1可作为化合物结构鉴定的波谱参数在化合物中,处于不同环境的13C核,他们的弛豫时间数值相差较大,可以达到2~3个数量级,通过T1可以致人结构归属,窥测体系的运动情况等。

4.2 核磁共振碳谱的测定方法4.2.1 脉冲傅里叶变换法同核磁共振氢谱。

Chapter 4 核磁共振碳谱

Chapter 4  核磁共振碳谱

Chapter 4核磁共振碳谱2012-04-23曲玮popoqzh@( Carbon Nuclear Magnetic Resonance,13CNMR)WQuP11213C NMR一. 碳谱特点二. 碳谱主要参数三. 碳谱测定技术四. 各类碳的化学位移五. 碳谱在结构解析中的应用WQu13C-NMR 谱与1H-NMR的特点对比:1.化学位移范围宽13C-NMRδC0~220; 1H-NMR δH0~20 2.碳谱峰形简单全去偶13C-NMR谱(不必考虑C-C偶合)3.碳谱可给出季碳信息4.碳氢偶合常数J大C-HWQuWQu13C-NMR 谱与1H-NMR 的特点对比:5.弛豫时间对碳谱解析用处较大弛豫时间(T 1)长,不同类型碳原子弛豫时间也不同(全氢去偶碳谱中,峰的强度不能反映碳原子数量)一般T 1:CH 2<CH<CH 3<<C6.碳谱测试技术多(详见P121碳谱的测定技术)7.灵敏度低P11213C NMR一. 碳谱特点二. 碳谱主要参数三. 碳谱测定技术四. 各类碳的化学位移五. 碳谱在结构解析中的应用WQu二.碳谱主要参数影响δC的结构因素δC值受碳原子杂化的影响,其次序与δH平行。

一般情况如下:屏蔽常数δsp3>δsp>δsp21.碳原子的杂化CH3-CH3δ5.7 sp3δ<60ppmCH≡CH 71.9 sp 60~100 ppmCH2=CH2123.3 sp2100~167ppmCH2=O 197.0 sp2160~210ppmWQu二.碳谱主要参数4 共轭效应影响δC的结构因素1)羰基碳邻位引入双键(α,β-不饱和羰基化合物)或含孤对电子的杂原子(羟基,酰胺,酰氯等),形成共轭体系,屏蔽作用增大,使得羰基碳化学位移值向高场移动。

WQuWQu4 共轭效应2)取代苯环中--供电子基团&吸电子基团tips:取代基对间位碳化学位移影响不大。

核磁共振碳谱

核磁共振碳谱

化学位移规律:芳环化合物
化学位移规律:醇
烷烃中氢被OH取代后,α碳向低场位移 +△C在35-52,β碳向低场位移+△C在
5-12 ,γ碳向高场位移-△C在0-6 。
化学位移规律:羰基
羰基的化学位移值C 在160-220。
化学位移值大小顺序:酮、醛>酸>酯 ≈酰氯≈酰胺>酸酐 酮羰基C 在210±5,羧基碳在160-185。
第四章 核磁共振碳谱
任强 分析化学与药物分析教研室
Contents
• 第一节 碳谱的特点 • 第二节 碳谱的主要参数
• 第三节各类碳的化学位移
第一节 碳谱的特点
13 一、 C
1H
NMR核磁共振的特点
• 碳化学位移范围宽
NMR常用δ值范围为0-10ppm。
13C
NMR常用δ值范围为0-220ppm。
随取代基电负性,化学位移值
原子电负性大小数值:
H
C
S
N
Cl
O
F
4.0
2.1 2.5 2.5 3.0
3.0 3.5
影响碳谱(13C-NMR)化学位移的结构性因素
4. 共轭效应 共轭效应使得电子在共轭体系中分布不均匀, 导致碳化学位移值向低场或向高场位移。 与双键共轭,中心碳原子 , 另一个C
CH4< CH3CH3< CH2(CH3)2 < CH (CH3)3 < C (CH3)4 CH3Cl< CH2Cl2< CH Cl3 < CCl4
取代的烷基越大,化学位移值也越大。 RCH2C(CH3)3> RCH2CH(CH3)2 > RCH2CH2CH3 > RCH2CH3
影响碳谱化学位移的外部因素
影响碳谱(13C-NMR)化学位移的结构性因素

核磁共振习题完整版文档

核磁共振习题完整版文档
环氧乙烷
例9:C3H8O2 IR; 1800~1650 cm-1 无明显吸收峰
22 1H
(2) C4H7BrO2 a) 三重峰 δ=1.
NMR: 3.4(单峰), 4.6(单峰) ,面积比3:1
CH3-O-CH2-O-CH3
8(3H)二重峰,4.
47 1H c) 单峰 δ=11.
CH3-O-CH2-O-CH3
化合物A:(b.p.69℃)δ值8.4(6H)单峰. 化合物B:(b.p.82 ℃) δ=1.2(3H)三重 峰,1.9(2H)多重峰,5.8(1H)三重峰. 化合物C:(b.p.96 ℃) δ=1.4(3H)二重峰, 3.8(3H)二重峰,4.1(1H)多重峰 化合物D:(b.p.120 ℃) δ=2.2(2H)五重峰, 3.7(4H)三重峰。
NMR: 3.
120 ℃) δ=2.
47 1H
c) 单峰 δ=11.
(1) C5H12 2(3H)三重峰,1.
08 3H b) 五重峰 δ=2. 例8:某化合物的分子式为C2H4O,其光谱特征是:NMR谱有一单峰;
(2)
C3H6
(3) C H O 例1:预计下列每个化合物将有几个核磁共振信号?
化合物A:(b.
从以下数据,推测化合物的结构? 实验式:C3H6O。 22 1H
(2) C4H7BrO2
a) 三重峰 δ=1.
C6H12O IR; 1710 cm-1
NMR: δ1. 1(S) ,面积比3:1
(CH3)2CHCOCH(CH3)2
(CH3)3CCOCH3
(1) C5H12
(2) C3H6
例11. C7H14O IR; 1710 cm-1 NMR: 1.1(双重峰), 2.8(七重峰) ,面积比6:1

有机波谱分析课件 四 核磁共振碳谱(含习题)

有机波谱分析课件 四 核磁共振碳谱(含习题)

顺磁离子效应
顺磁物质对碳谱谱线的位移和线宽有强烈的影响。一些位移试剂 如镧系元素铕(Eu)、镨(Pr)、钇(Yb)等的盐类,包括氯化 物、硝酸盐、过氯酸盐等,以及它们的 -二酮的络合物,也都可 以作为13C 的位移试剂,使碳谱谱线产生位移。
烯烃及取代烯烃的化学位移
C 100~150 ppm 对于取代烯烃: (>C=)> (-HC=)> (H2C=)
核磁共振碳谱特点
弛豫时间长。13C 的弛豫时间比1H 慢得多,有的化合物中的一些碳原子的 弛豫时间长达几分钟,这使得测定 T1、T2等比较方便。另外,不同种类的 碳原子弛豫时间也相差较大,这样,可以通过测定弛豫时间来得到更多的 结构信息。
共振方法多。13C NMR 除质子噪声去耦谱外,还有多种其它的共振方法, 可获得不同的信息。如偏共振去耦谱,可获得13C-1H 耦合信息;门控去耦 谱,可获得定量信息等。因此,碳谱比氢谱的信息更丰富,解析结论更清 楚。
诱导效应
苯环取代因有共轭系统的电子环流,取代基对邻位及 对位的影响较大,对间位的影响较小。芳环上有杂原 子时,取代效应也和饱和环不同。
空间效应
13C化学位移还易受分子内几何因素的影响。相隔几个键的碳由于空间上的 接近可能产生强烈的相互影响。通常的解释是空间上接近的碳上 H 之间 的斥力作用使相连碳上的电子密度有所增加,从而增大屏蔽效应,化学位 移则移向高场。如甲基环己烷上直立的甲基 C(7)和环己烷 C(3)和 C (5)的化学位移比平伏键甲基位向的构象异构体的化学位移各向高场移 4 和 6 ppm左右。
图谱简单。虽然碳原子与氢原子之间的耦合常数较大,但由于它们的共振 频率相差很大,所以-CH-、-CH2-、-CH3等都构成简单的 AX、AX2、AX3体系 。因此即使是不去耦的碳谱,也可用一级谱解析,比氢谱简单。

核磁共振波谱法-碳谱

核磁共振波谱法-碳谱

1
2
图谱简单。虽然碳原子与氢原子之间的偶合常数较大,但由于它们的共振频率相差很大,所以-CH-、-CH2-、-CH3等都构成简单的 AX、AX2、AX3体系。因此可用一级谱解析,比氢谱简单的多。
三 13C NMR谱图
典型碳谱图谱 最常见的碳谱是宽带全去偶谱,每一种碳原子只有一条谱线。在去偶的同时,由于核的NOE效应,信号更为增强。但不同碳原子的T1不同,这对峰高影响不一样;不同核的NOE也不同; 峰高不能定量地反映碳原子数量。
*
5、缺电子效应
如果碳带正电荷,即缺少电子,屏蔽作用大大减弱,化学位移处于低场。
1
例如:叔丁基正碳离子(CH3)3C+的达到 327.8ppm。这 个效应也可用来解释羰基的13C 化学位移为什么处于较低 场,因为存在下述共振:
2
*
6、电场效应
在含氮化合物中,如含 -NH2的化合物,质子化作用后生成 – NH3+,此正离子的电场使化学键上电子移向 或碳,从而使它们的电子密度增加,屏蔽作用增大,与未质子化中性胺相比较,其 或碳原子的化学位移向高场偏移约 0.5-5ppm。这个效应对含氮化合物的碳谱指认很有用。
用于区分碳类型的一种技术。 INEPT称为低灵敏核的极化转移增强法。 DEPT称为不失真的极化转移增强法。 即去偶呈现单峰,又可以区分出碳的类型。 INEPT通过脉冲把灵敏度高的1H的自旋极化转移到13C核上去,13C信号强度增加4倍,进行测定,故灵敏度好。 DEPT谱法是INEPT法的一种改良方法。 DEPT的信号强度仅与脉冲的倾倒角有关。通过改变照射1H的的倾倒角(),使作45,90 ,135 变化并测定其13C NMR谱
*
磁各向异性的基团对核屏蔽的影响,可造成一定的差异。这种差异一般不大,而且很难与其它屏蔽的贡献分清(这一点与1H不同)。 但有时这种各向异性的影响是很明显的。如异丙基与手性碳原子相连时,异丙基上两个甲基由于受到较大的各向异性效应的影响,碳的化学位移差别较大,而当异丙基与非手性碳原子相连时,两个甲基碳受各向异性效应的影响较小,其化学位移的差别也较小。

核磁共振-习题答案

核磁共振-习题答案
1700cm-1, C=0, 醛,酮,排除羧酸, 醇,酚 <3000 cm-1, -C-H 饱和烃,无芳环 1.三种质子 4:4:6 2.裂分,有相邻质子; 3. =1.3(6H) 两个 CH3 裂分为3, 相邻C有2H; CH3-CH24. =2.5(4H) ,单峰, CO-CH2CH2-CO5. =4.1(4H) 低场(吸电子),
两个 -O-CH2-

O CH2CH3
正确结构: HC O CH2CH3
O CH2CH3
习题3
化合物 C10H12O2,推断结构
δ7.3 δ 5.21 5H δ2.3 2H δ1.2 3H
2H
化合物 C10H12O2,
=1+10+1/2(-12)=5
a. δ 2.32和δ 1.2—CH2CH3相互偶合峰
b. δ 7.3芳环上氢,单峰烷基单取代 c. δ 5.21—CH2上氢,低场与电负性基团相连
2)谱图解析与结构确定 习题1 化合物 C10H12O2
2 5 2
3
8
7
6
5
4
3
2
1
0
谱图解析与结构确定步骤
=1+10+1/2(-12)=5
δ 3.0和δ 4.30三重峰和三重峰
O—CH2CH2—相互偶合峰 δ 2.1单峰三个氢,—CH3峰 结构中有氧原子,可能具有: δ 7.3芳环上氢,单峰烷基单取代
O C CH3
正确结构:
a b O c CH2CH2 O C CH3 δ3.0 δ 4.30 δ2.1
习题2
C7H16O3,推断其结构
9
δ 3.38 δ 1.37
δ 5.30 1
6

有机化合物波谱解析_有机波谱分析 课后习题答案参考

有机化合物波谱解析_有机波谱分析 课后习题答案参考

第二章 质谱习题及答案1、化合物A 、B 质谱图中高质荷比区的质谱数据,推导其可能的分子式解:分子离子峰为偶数62=•+M表明不含氮或含有偶数个氮。

对于A ,1:3)(:)2(≈+M RI M RI ,所以分子中含有一个Cl 原子,不可能含氮。

则根据8.41.1100)()1(==⨯+x M RI M RI ,得3,2==y x ,所以A 分子式C 2H 3Cl ,UN=1合理;对于B ,4.4)2(=+M RI ,所以分子中可能含有一个S 原子,不可能含氮。

则根据8.38.01.1100)()1(=+=⨯+z x M RI M RI ,6,2==y x ,所以B 分子式C 2H 6S ,UN=0合理。

2、化合物的部分质谱数据及质谱图如下,推导其结构解:1:6:9)4(:)2(:)(≈++M RI M RI M RI ,所以分子中含有两个Cl ,m/z=96为分子离子峰,不含氮。

根据4.21.1100)()1(==⨯+x M RI M RI ,2,2==y x ,分子式为C 2H 2Cl 2,UN=1,合理。

图中可见:m/z 61(M-35),RI(100)为基峰,是分子离子丢失一个Cl 得到的; m/z=36, 为HCl +;m/z=26(M-Cl 2), RI(34),是分子离子丢失Cl 2得到的,相对强度大,稳定,说明结构为CHCl=CHCl 。

解:分子离子峰m/z 185为奇数表明含有奇数个氮。

基峰m/z 142=M -43,丢失的碎片可能为(⋅C 3H 7,CH 3CO ⋅),若丢失碎片为(CH 3CO ⋅),则来源于丁酰基或甲基酮,结合分子中含氮元素,很有可能为酰胺类物质,那么就应该有很强的分子离子峰,而m/z 185峰较弱,所以,丢失的中性碎片应该是(⋅C 3H 7),来源于长链烷基,谱图中有而则m/z 29,43,57的烷基m/z 142=A 的组成, C x H y N z O w S S 3.1037.01.1100)()1(=+=⨯+z x A RI A RI ,设z=1,则x=9.0,若z=3,则x=8.35,不合理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章核磁共振碳谱
一、判断题
[1]自由衰减信号(FID)是频率域信号。

()
[2]碳谱的化学位移范围范围较宽(0-200),所以碳谱的灵敏度高于氢谱。

()
[3]在宽带去耦碳谱中,不同类型的碳核产生的裂分峰数目不同。

()
[4]氢质子在二甲基亚砜中的化学位移比在氯仿中要小。

()
[5]在13C NMR谱中,由于13C-13C相连的概率很低,所以通常不考虑13C核只见到耦合。

()
[6]含19F的化合物,可观测到19F对13C核的耦合裂分,且谱带裂分数符合n+1规律。

()
[7]但在固相核磁共振波谱中,分子运动受到限制,由于磁各向异性作用将是谱线带变宽,
分辨率大大下降。

()
[8]在碳谱中,13C-1H会发生耦合作用,但是13C-1H的耦合常数远比1H-1H之间的耦合常
数小.()
[9]在135°DEPT试验中,CH、CH2和CH3均出正峰,季碳原子不出现谱峰。

()
[10]在APT实验中,CH和CH3均出正峰,CH2出负峰,季碳原子不出现谱峰。

()
二、选择题(单项选择)
[1] 下列原子核没有自旋角动量的是哪一种?()。

A. 14N7
B. 12C6
C. 31P15
D. 13C6
[2] 在13C NMR波谱中在化学位移125-140产生两个信号的化合物是()。

A. 1,2,3,-三氯苯;
B. 1,2,4,-三氯苯;
C. 1,3,5,-三氯苯
[3] 在13C NMR波谱中在化学位移125-140产生六个信号的化合物是()。

A. 1,2,3,-三氯苯;
B. 1,2,4,-三氯苯;
C. 1,3,5,-三氯苯
[4] 在13C NMR波谱中在化学位移125-140产生三个信号的化合物是()。

A. 对二氯苯;
B. 邻二氯苯;
C. 间二氯苯。

[5] 在13C NMR中在化学位移0-60产生3个信号;在1H NMR中在化学位移0-5产生3个信号(最低场信号为多重峰)的化合物是()。

A. 1,1-二氯丙烷;
B. 1,2二氯丙烷;
C. 2,2-二氯丙烷;
D. 1,3二氯丙烷。

[6] 在13C NMR中在化学位移0-70产生2个信号;在1H NMR中在化学位移0-5产生2个信号(最低场信号为三重峰)的化合物是()。

A. 1,1-二氯丙烷;
B. 1,2二氯丙烷;
C. 2,2-二氯丙烷;
D. 1,3二氯丙烷。

[7]下面原子核发生核磁共振时,如果外磁场强度相同,哪种核将需要最大照射频率()。

A. 19F9;
B. 13C6;
C.1H1;
D. 14N7
[8]碳谱如果不采用标识技术很难解析的原因是()。

A. 碳谱灵敏度较低;
B. 碳核之间有耦合裂分;
C. 碳谱分辨率高;
D. 碳核与氢核之间有耦合裂分。

[9]下列各类化合物中碳核化学位移最大的是()。

A. 苯环上的碳;
B. 酸酯羟基碳;
C. 醛酮羟基碳;
D. 与氧相连的饱和碳。

[10]在13C谱中,常看到溶剂的多重峰,如DMSO-d6在化学位移39.5ppm附近的七重峰,溶
剂产生多重峰的原因是()。

A. 硫核对碳核产生耦合;
B. 氧核对碳核产生耦合;
C. 碳核之间产生耦合;
D. D核对碳核产生耦合。

[11]在135°的DEPT实验中,谱图特征为()。

A. CH和CH3显示正峰;
B. CH和CH2显示正峰;
C. CH和CH3显示负峰;
D. CH2和CH3显示负峰。

[12]在APT实验中,谱图特征为()。

A. CH和CH3显示正峰;
B. CH和CH2显示正峰;
C. C和CH显示负峰;
D. CH2和CH3显示负峰。

[13]在45°的DEPT试验中,谱图特征为()。

A. C和CH2显示正峰,CH和CH3均出负峰;
B. CH、CH2和CH3均出负峰;
C. C和CH2显示负峰,CH和CH3均出正峰;
D. CH、CH2和CH3均出正峰;
[14]在90°的DEPT实验中,谱图特征为()。

A. CH2显示正峰,CH和CH3负峰;
B. CH2显示负峰,CH和CH3不出峰;
C. CH2显示负峰,CH和CH3均出正峰;
D. CH显示正峰,CH2和CH3不出峰;
[15]在偏共振去耦谱中,甲醛中C=O的偏共振多重性为()。

A. 四重峰(q);
B. 三重峰(t);
C. 双重峰(d);
D. 单峰(s)。

[16]在偏共振去耦谱中,苯乙腈中C≡N的偏共振多重性为()。

A. 四重峰(q);
B. 三重峰(t);
C. 双重峰(d);
D. 单峰(s)。

[17]在偏共振去耦谱中,RCHO中C=O的偏共振多重性为()。

A. 四重峰(q);
B. 三重峰(t);
C. 双重峰(d);
D. 单峰(s)。

[18]在宽带去耦谱中,谱线特征为()。

A. 除去13C-1H二键以上的耦合;
B. 除去所有质子对13C核耦合;
C. 除去了溶剂的多重峰;
D. 除去所有元素对13C核的耦合。

[19]在2.35T的磁场中,1H核的共振频率为100MHz,13C核的共振频率为()。

A. 100MHz;
B. 60MHz;
C. 25 MHz;
D. 15 MHz。

[20] 13C核旋磁比γ为1H核的()。

A. 2倍;
B. 1/2;
C. 4倍;
D. 1/4。

.
三、简答题
[1]13C NMR谱比较1H NMR谱有什么优点?
[2]试说明为什么13C NMR的灵敏度远远小于1H NMR?
[3]试说明在相同的外磁场中为什么1H核和13C核共振频率不同?
[4]试说明13C NMR中采用谱标识技术的原因?
[5]试说明13C NMR中为什么溶剂CDCl3在化学位移77.0附近出现三重峰?
[6]试说明什么是宽带去耦谱以及谱图特征?
[7]试说明如何在偏振去耦合谱中推断碳原子的类型?
[8]试说明APT实验中如何区分分子中的CH3、CH2、CH和季碳原子?
[9]试说明DEPT试验中如何区分分子式中的CH3、CH2、CH和季碳原子?
[10]为了解决固体样品的NMR谱带增宽问题,通常采用什么技术?。

相关文档
最新文档