热力学第二定律的建立
热力学第二定律的建立

热力学第二定律的建立热力学第二定律的建立1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。
这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。
1、热力学第二定律产生的历史背景18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。
瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。
为了进一步减少热的耗散量和提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。
热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。
但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。
因此,卡诺的可逆循环只可趋近而永远也无法达到。
这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。
事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。
人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。
热力学第二定律

———高等物理律是热力学的基本定律之一,是指在自然状态下,
热永远都只能由热处转到冷处。它是关于在有限空间和时间内,一切 和热运动有关的物理、化学过程具有不可逆性的经验总结。在生活实 践中,热力学第二定律的应用非常广泛,如热能与机械能的传递和转 换、流体扩散与混合、化学反应、燃烧、辐射、溶解、分离、生态等 问题。
的不可逆性
热力学第二定律的表述
两种说法完全等效
违反克劳修斯表述,也就违反了开尔文表述。
热力学第二定律的表述
违反开尔文表述,也就违反了克劳修斯表述。
Q1 = W ,违背开尔文表述
热力学第二定律的表述
熵增加原理表述
孤立系统的熵永不自动减少,熵 在可逆过程中不变,在不可逆过程中 增加。 熵:克劳修斯定义的一个状态量。
减出现的概率要大得多;即使达到热
平衡,熵也会围绕着其最大值出现一 定的涨落,且幅度越大的涨落出现概 率越小。现在已有的一些实验结果, 与玻尔兹曼的叙述基本相符。
玻尔兹曼(1844~1906),奥地利物理学家和哲学家,是热力学 和统计物理学的奠基人之一。
热力学第二定律的质疑
吉布斯悖论
玻尔兹曼关系给出了一个并不外 延的熵的表示方法。这导致产生了一
热力学第二定律的表述
克劳修斯表述
不可能把热量从低温物体传向高 温物体而不引起其它变化。 热量不能自动地从低温物体传到 高温物体。——热传导的不可逆性
热力学第二定律的表述
开尔文表述
不可能制成一种循环动作的热机 ,从单一热源取热,使之完全变为功 而不引起其它变化。 开尔文表述还可以表述成:第二
类永动机不可能实现。——摩擦生热
热力学第二定律的适用范围
第二定律在有限的宏观系统中也要保证如下条件:
2.5-2.6热力学第二定律 第三定律 演示文稿

T
2.5.3 克劳修斯提出熵的概念
• 对于不可逆过程,克劳修斯写道:“在一循 环过程中所有变换的代数和只能是正数。即 N>0。他将这种变换称为”非补偿的“变换。 • 虽然在上式中,等价值N是不严格的(因为 没有采用绝对温标),但N这个函数已经具 备了熵的基本特性。 • 1865年,克劳修斯发表《热的动力理论的基 本议程的几种方便形式》,他明确用T表示绝 对温标,提出用S表示Q/T,认为S是只与状 态有关的量,并且建议将其命名 为”Entropie( 熵)“。
2.5.2 W.汤姆生研究热力学第二定律
开尔文在1852年发表的“关于自然界中机械 能耗散的普遍趋向”一文中,把克劳修斯的 公理说成是:一台不借助任何外界作用的自 动机器,把热从一个物体传到另一个温度比 他高的物体,这是不可能的。今天把他说成: 热不能自动地有低温物体转移到高温物体上 去。这就是称之为热力学第二定律的克劳修 斯表述。
2.6.1
气体的液化与低温的获得 --液化工作的改进
• 1883年,波兰物理学家乌罗布列夫斯基(S。 Wroblewski,1845-1888)和化学家奥耳舍夫斯 基(K.Olszewski,1846-1915)合作,将以上 两种方法综合运用,并作了两点改进:
– 一是将液化的氧用一小玻璃管收集; – 二是将小玻璃管置于盛有液态乙烯的低温槽中 (温度保持在-130℃),这样他们就第一次收 集到了液氧。
p 完 全 液 体 48.1℃ 完全汽化 C (临界点) 31.3℃ B c D b 汽液平衡区 V
2.6.1 气体的液化与低温的获得 --氧的液化 • 1877年,几乎同时由两位物理学家分别用不同的方 法实现了氧的液化。
– 法国人盖勒德(Louis Paul Cailletet,1832-1913)将纯净的 氧压缩到300大气压,再把装有压缩氧气的玻璃管置于二 氧化硫蒸气(-29℃)中,然后令压强突降,这时在管 壁上观察到了薄雾状的液氧。 – 瑞士人毕克特(Paous-Pierre Pictet,1846-1929)从日内 瓦打电报给法国科学院:“在320大气压和140冷度(即 -140℃)下联合使用硫酸和碳酸液化氧取得成功。”他 用真空泵抽去液体表面的蒸气,液体失去了速度最快的 分子而降温,然后用降温后的液体包围第二种液体,再 用真空泵抽去第二种液体表面的蒸气,它的温度必然低 于第一种液体,如此一级一级联下去,终于达到了氧的 临界温度。
热力学第二定律有两种常用表述

读热学第二定律的建立及其意义有感热力学第二定律有两种常用表述:(1)克劳修斯在1850年在研究热机的工作原理的基础上提出了热力学第二定律的一种表述:不可能使热量从低温物体传递到高温物体,而不引起其他变化。
这里的“不引起其他的变化”和“自发地”是等价的。
(2)开尔文在1851年提出了热力学第二定律的另一种表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
它也可以表述为第二类永动机是不可能制成的。
由于自然界的自发过程都是有联系的,是相互依存的。
描述自发过程方向性的第二定律也是等价的。
热力学第二定律揭示了有大量分子参与的宏观过程的方向性,对于我们认识自然、利用自然有重要的指导意义。
两种表述等价的证明:如果假设热量由高温传向低温的不可逆性消失了,即热量能自动地经过某种假想装置从低温传向高温。
这是我们可以设计一部热机,使它在一次循环中由高温热库(热源)吸热,对外做功,向低温热库放热(),这种热机能自动进行动作,然后利用那个假想装置使热量自动地传给高温热库,而使低温热库恢复原来状态。
当我们把该假想装置与此热机看成一个整体时,它们就能从热库吸出热量而全部转变为对外做的功,而不引起其他任何变化。
这就是说,功变热的不可逆性也消失了。
同理,反之也成立。
热力学第二定律是独立于热力学第一定律的另一实验定律,它指出系统变化进行的可能方向和达到平衡的必要条件,是自然界最基本、最普遍的规律之一。
引入熵,热力学第二定律可表述为:在孤立系内,任何变化不可能导致熵的总值减少,即ΔS ≥0 (孤立系)“=”号---绝热可逆等熵过程“>”号---绝热不可逆熵增加过程。
热力学发展简史

热力学发展简史热力学是研究热能转化和传递的物理学分支,它的发展历程可以追溯到18世纪末。
以下将详细介绍热力学的发展历史。
1. 开始阶段(18世纪末-19世纪初)热力学的起源可以追溯到18世纪末,当时研究者开始探索热量和机械能之间的关系。
最早的研究者之一是法国物理学家尼古拉·卡诺,他在1824年提出了卡诺热机理论,奠定了热力学的基础。
同时,英国物理学家约翰·道尔顿也提出了“热量是物质微粒的运动形式”的观点,这对热力学的发展有着重要的影响。
2. 热力学第一定律的建立(19世纪中期)19世纪中期,热力学第一定律的建立标志着热力学理论的重要进展。
德国物理学家朱尔斯·冯·迈耶在1842年提出了能量守恒定律,即热力学第一定律。
他认为,能量可以从一种形式转化为另一种形式,但总能量守恒。
此后,热力学第一定律成为研究能量转化和传递的基本原理。
3. 热力学第二定律的提出(19世纪中后期)19世纪中后期,热力学第二定律的提出进一步推动了热力学理论的发展。
热力学第二定律描述了热量的自发流动方向,即热量只能从高温物体流向低温物体。
热力学第二定律的提出由多位科学家共同完成,其中包括克劳修斯、开尔文和卡诺等人。
他们的研究成果为热力学第二定律的确立奠定了基础。
4. 统计热力学的发展(19世纪末-20世纪初)19世纪末至20世纪初,统计热力学的发展成为热力学领域的重要研究方向。
统计热力学是热力学和统计力学的结合,通过统计方法研究微观粒子的运动和性质。
奥地利物理学家路德维希·玻尔兹曼是统计热力学的先驱者之一,他提出了著名的玻尔兹曼方程,解释了气体分子的运动规律,并对热力学第二定律进行了微观解释。
5. 热力学的应用与发展(20世纪)20世纪,热力学的应用范围不断扩大,成为众多领域的基础理论。
热力学在化学、工程、材料科学等领域的应用日益广泛。
例如,热力学在化学反应动力学研究中起到重要作用,可以预测反应速率和平衡常数。
热力学三个定律的形成史

热力学三个定律的形成史热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律,下面是为大家搜集的一篇关于热力学三个定律的形成史探究的,供大家阅读参考。
热力学是热学理论的一个方面。
热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。
热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。
因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。
热力学三定律是热力学的基本理论。
1热力学第一定律1.1热力学第一定律概述能量守恒与转换定律是自然界最普遍、最基本的规律之一。
自然界中的一切物质都具有能力,能量有各种不同的形式,这种不同形式的能量都可以转移(从一个物体传递到另一个物体),也可以相互转换(从一种能量形式转变为另一种能量形式),但在转移和转换过程中,它们的总量保持不变。
这一规律成为能量守恒与转换定律。
能量守恒与转换定律应用在热力学中,或者说应用在伴有热效应的各种过程中,便是热力学第一定律。
热力学第一定律是人类在实践中积累的经验总结,它的发现和建立,打破了人们企图制造一种可以不消耗能量而能连续做功的永动机。
因此,热力学第一定律也可以表述为:第一类永动机是造不出来的[1].其基本公式可以表述为公式(1),它表明向系统输入的热量Q,等于质量为m的流体流经系统前后焓H的增量、动能v的增量以及系统向外界输出的机械功W之和。
1.2热力学第一定律形成史1.2.1罗伯特·迈尔热力学第一定律与能量守恒定律有着极其密切的关系。
德国物理学家、医生迈尔发现体力和体热来源于食物中所含的化学能,提出如果动物体能的输入同支出是平衡的,所有这些形式的能在量上就必定守恒。
他由此受到启发,去探索热和机械功的关系。
1842年他发表了《论无机性质的力》的论文,表述了物理、化学过程中各种力(能)的转化和守恒的思想。
热力学第一定律和第二定律

热力学第一定律和热力学第二定律通过我们对物理及热力学的学习发现了这样的规律:凡是牵涉到热现象的一切过程都有一定的方向性和不可逆性,例如热量总是从高温物体自发地传向低温物体,而从未看到热量自发地从低温物体传向高温物体,例如当我们拥有一杯热水可以通过等待热水向周围空气散热得到一杯凉水,可是当我们需要这杯凉水重新变成热水时,单纯等待散失到周围空气的热量重新回来却不可能。
又如机械能可以通过摩擦无条件地完全地转化为热量,但是热能无法在单一热源下自发地转换为机械能。
这种自然规律虽然有时候不能如我们所愿,但它对我们意义重大。
可以说是人类在地球上赖以生存的基础。
我们却难以设想传热方向未知状态下的混乱。
我们不知道传热的方向,从而会不知道一杯热水放在环境中会变凉还是会继续升温,何时才能变凉,我们把凉水放在炉子上加热却不知道热量是从凉水传向炉子,还是从炉子传向凉水。
我们会得到热水还是更凉的凉水。
从这个意义上说正如交通红绿灯是交通畅通无阻的保证传热方向规律是自然界热领域中的红绿灯。
热不可能自发地不付代价地从低温物体传至高温物体,这就是克劳修斯说的热力学第二定律不可能制造出从单一热源吸热使之全部转化成为功而不留下其他任何变化的热力发动机这就是开尔文说的热力学第二定律总结热力学第二定律的两种说法的自然过程总是使系统趋于平衡能量从高位趋于低位,存在着不平衡的自然界,无时无刻不发生着这种变化——机械运动产生热量高温物体将热量传向低温物体。
高温物体将热量传向低温物体的过程中又可能产生机械运动。
生命过程、化学过程、核反应过程都伴随着热过程的发生,自然界的运动变化中热现象担任着重要的角色。
生活常识告诉我们冬天冷玻璃杯遇开水会破裂,这些都是物质表现出来的各种热湿现象,由于地球不停地运动和变化,经过漫长的地质年代逐渐在地壳内部积累了巨大的能量。
形成了巨大的应力作用,当大地构造应力或热应力使地壳某些脆弱的地带承受不了,时发生错位或断裂以波的形式传到地面就形成了地震研究火山的学者认为;热是各种地质作用的原始驱动力,火山活动是地球内部热的不均匀性的地表,反映海底的地震和火山喷发可能引起海水中形成巨大的海浪并向外传播。
物理学史2.5 热力学第二定律的建立

2.5热力学第二定律的建立本来汤姆生有可能立即从卡诺定理引出热力学第二定律,但是由于他没有摆脱热质说的羁绊,错过了首先发现热力学第二定律的机会。
2.5.1克劳修斯研究热力学第二定律就在汤姆生感到困难之际,克劳修斯于1850年在《物理学与化学年鉴》上率先发表了《论热的动力及能由此推出的关于热本性的定律》,对卡诺定理作了详尽的分析,他对热功之间的转化关系有明确的认识。
他证明,在卡诺循环中,“有两种过程同时发生,一些热量用去了,另一些热量从热体转到冷体,这两部分热量与所产生的功有确定的关系。
”他进一步论证:“如果我们现在假设有两种物质,其中一种能够比另一种在转移一定量的热量中产生更多的功,或者,其实是一回事,要产生一定量的功只需从A到B转移更少的热。
那么,我们就可以交替应用这两种物质,用前一种物质通过上述过程来产生功,用另一种物质在相反的过程中消耗这些功。
到过程的末尾,两个物体都回到它们的原始状态;而产生的功正好与耗去的功抵消。
所以根据我们以前的理论,热量既不会增加,也不会减少。
唯一的变化就是热的分布,由于从B到A要比从A到B转移更多的热,继续下去就会使全部的热从B转移到A。
交替重复这两个过程就有可能不必消耗力或产生任何其它变化而随意把任意多的热量从冷体转移到热体,而这是与热的其它关系不符的,因为热总是表现出要使温差平衡的趋势,所以总是从更热的物体传到更冷的物体。
”就这样,克劳修斯正确地把卡诺定理作了扬弃而改造成与热力学第一定律并列的热力学第二定律。
1854年,克劳修斯发表《热的机械论中第二个基本理论的另一形式》,在这篇论文中他更明确地阐明①:“热永远不能从冷的物体传向热的物体,如果没有与之联系的、同时发生的其它的变化的话。
关于两个不同温度的物体间热交换的种种已知事实证明了这一点;因为热处处都显示企图使温度的差别均衡之趋势,所以只能沿相反的方向,即从热的物体传向冷的物体。
因此,不必再作解释,这一原理的正确性也是不证自明的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第二定律的建立1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。
这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。
1、热力学第二定律产生的历史背景18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。
瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。
为了进一步减少热的耗散量和提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。
热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。
但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。
因此,卡诺的可逆循环只可趋近而永远也无法达到。
这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。
事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。
人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。
事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。
综上可见,虽然有的事件是不违背热力学第一定律的但也不可能发生;这就有待于热力学第二定律的发现。
卡诺曾经指出“单只是提供热量,并不足以产生推动力,必须还有冷,没有冷,热将是无用的”。
卡诺承认这样的事实,当水与A体接触时,变成了蒸汽,蒸汽与B体接触时又变冷了,但是若要恢复原来的温度,就必须再同A体接触,这就需要动力。
这说明在前一过程中损失了动力,它自身要完成这个反向的过程是不可能的。
因此,卡诺得出:“使用于提高液体温度的热质再回到A体中,是不可能的”。
一般认为,这是卡诺意识到热力学第二定律的思想萌芽。
在卡诺之后,克拉贝龙、迈尔、焦耳和亥姆霍兹等基本上都是沿着卡诺的理想热机可逆循环的思路,探讨热功转化和等当关系,而忽视了卡诺提出热从冷体向热体传递的不可能性的启示。
究其原因,或者由于这个普遍存在的现象的理论价值不大,或者认为从理论上予以处理在当时是太困难了而回避过去。
在卡诺的不可能从冷体向热体传热做功的思想启发下,几位理论物理学家从不同的方向,各自独立地探讨了热功转化过程中吸收的热量大于做功需要的热量,及从冷体向热体自发传热作功的不可能性。
他们认为这个领域内热力学第一定律是无能为力的,必须从其内在的本质联系中揭示一个新的基本定律,这就是热力学第二定律。
2、克劳修斯对热力学第二定律的研究克劳修斯是最早提出了热力学第二定律的。
1850年4月12日,克劳修斯发表的《论热的动力和可由此推导热学本身的定律》论文中,首先肯定了前人在这方面做出的一些尝试。
克劳修斯赞同热之唯动说观点,他根据已经发现的很多事实说明:“热并不是一种物质,而是存在于物体的最小粒子的一种运动”。
从热之唯动说出发,克劳修斯批判了卡诺从热质说出发得出的热功转化过程中并未损失热而只是热质在传递过程中总数不变。
克劳修斯认为应当从热是一种运动的观点进行论证,只有这样才能得到合理的征明和反驳卡诺从热质观点得出的结论。
他声称,人们不应当被这些困难吓倒,也不认为问题会有那么严重,只要从把热质说转变为热之唯动说出发,把通常的思考方式改变一下,就会发现与任何事实并不矛盾。
克劳修斯在他的论文中讲述到,从卡诺的热转化为当量的功时的“热量并不减少”与他的热力学第一定律矛盾出发,认为坚持这个提法,势必把问题搞乱,因而探讨建立热力学第二定律的必要性和可能性。
克劳修斯通过一个假想实验,得出与上述卡诺说法相背离的结论,这个假想实验就是设想有两种物质,在一般的热量转化条件下,一种比另一种会产生较多的功;或产生既定数量的功时一种比另一种由A物向B物传递较少的热量。
如果交替地应用这两种气体于正向和逆向过程中,使前者将热转化为功,使后者再将功转化为热,在这循环结束后,两种气体都又处于其原来的状态。
由于产生和消耗的功正好抵消,则按热力学第一定律,总热量既未增加也未减少。
但是,从B物传给A物的热量,比A物传给B物的热量要多,结果形成总体上从B物传递热量给A物。
所以,此种交替使用两种不同气体传递热量的过程反复无限地进行下去,就会在不需任何力消耗或发生其他变化的条件下,可以把任意多的热量从低温物体传递给高温物体。
但是,这显然与热传递的性质和无数的经验矛盾,这种经验就是热量传递的普遍趋向是从高温物体传到低温物体并使二者的温差消失。
因此,他保留卡诺说法的前一部分,发展成热力学第一定律,再修改其第二部分,变“热量并不减少”为热量只能自发地从高温物体传递到低温物体,而不是自发地从低温物体传递到高温物体,形成热力学第二定律。
所以,马赫在《热学原理》一书中,指出这个问题解决的清晰性不是通过实验完成的,而是“通过对不同理论的历史观点的谨慎批评;这种批评和修正,我们应归功于克劳修斯”。
热力学第二定律在经过上述基本概念的突破之后,才被克劳修斯、开尔文勋爵从不同的角度提出了各自的说法和论证。
在《论热的动力和可由此推导热学本身的定律》的第二部分中,克劳修斯得出热力学第二定律的表述:“在没有任何力消耗或其他变化的情况下,把任意多的热量从低温物体传递到高温物体是和热的惯常行为矛盾的”。
克劳修斯对热力学第二定律的明确表述,即至今所说的克劳修斯表述,是他于1854年在《物理和化学年鉴》上发表的《论机械热理论第二基本定律的一个改变形式》论文中提出的。
他对热力学第二定律的表述改变为:“热不可能由低温物体传递到高温物体,如果不因而同时引起其他关系的变化”。
在这个表述中,他用“如果不因而同时引起其他关系的变化”,概括并取代了1850年论文中的“在没有任何力消耗或其他变化情况下”,并且以反语序取代正语序。
这种用“关系”一词概括了各种力、功和能量等的方法,清楚明确,因而在后来被长期采用并广泛流行。
热力学第二定律的这种表述或说法特别强调了从低温物体传递到高温物体传递问题,对热传导的方向具有十分重要的意义。
并且,为了运用公式表示这个定律,必须用正负号表示热传递的方向。
为此,他规定“内功变为热和由高温转变到低温作为正向变化”,其代数符号为正,反之为负。
他进而根据卡诺提出的命题:“热的动力与参与完成工作的介质无关,其数量仅由传递热量的物体之间的温度所决定”,提出了低温物体传递到高温物体之间各种热传导情况都适用的和仅由低温物体传递到高温物体的温度决定的状态函数F(t1,t2),他称之为“二温度的等函数”。
为了使不可逆循环中热量和功及温度之间的关系在数学上易于处理,他将过程分为无数小的过程,他称之为“简单的循环过程”。
每一小过程可作为可逆循环处理,其终端和始端的温度变化可认为趋近于0,于是,它们传递的热量和温度之比可以用Q 1/T 1,Q 2/T 2,………Q n /T n 表示。
对于整个过程,可用N =∑Q/T 近似地表示,如写成微积分表示式,则为:⎰=T dQ N ;他指出,此式对于可逆循环应为0。
所以:⎰=0T dQ ;这就是在可逆循环情况下,热力学第二定律的表示式。
在这篇论文中,克劳修斯没有给出⎰TdQ 的物理概念和名称,只是给出一个新的状态函数的表示式。
从上述推导中可以看出,他把可逆循环时的表示式⎰=0TdQ ,看作是普遍情况下的N=⎰T dQ 的特殊情况。
1865年4月,克劳修斯在《关于机械热理论的主要方程的各种应用的方便形式》论文中提出⎰T dQ 的物理概念是一个与变化途径无关的状态函数,并用TdQ ds =表示。
他认为既然S 和热力学第一定律中的能量概念等当,都是状态函数,它就应表示物体的热转变含量。
为了给以定名,他根据S 的物理意义与“能”有相近的亲缘关系,在字形上也应当接近才好。
为此,克劳修斯在1865年 4月的论文中把S 命名为“熵”。
在这篇论文中,克劳修斯提出了热力学第二定律的普遍表示式为:⎰≤0T dQ ;他指出等号适用于可逆循环,不等号适用于不可逆过程。
从这个不等式可以看出,热力学第二定律说明熵具有方向性,如果用 S 表示熵,则上式的⎰T dQ 可按循环的正反过程写成:000≤+⎰⎰P P P P T dQ T dQ ;根据熵的定义:⎰=-P P T dQ S S 00,则0S S -≥⎰P P T dQ 0;如果循环为绝热过程,则Q =0,所以:S —S 0≥0。
此式说明,绝热过程中熵增加。
它对于平衡态的初终状态是正确的。
对于非平衡态的初终状态,在将它们分成无数小部分,并近似地认为每个小部分处于平衡态时,熵增原理仍然是正确的。
1875年他又在《热的动力理论》论文中提出他的热力学第二定律的、更精练的说法:“热不可能自发地从低温物体传递到高温物体”或“热从低温物体传递到高温物体不可能无补偿地发生”。
这前一个说法就是至今广泛引用的标准的“克劳修斯表述”,但是严格地说,这个说法似乎不如他在1854年提出的说法更严格而深刻。
因为那个说法中“如果不因而同时引起其他关系的变化”比“自发地”更清楚明确。
他在文中进而指出,他的1854年论文只考虑了可逆循环情况下的热力学第二定律表示式,因为它是很便于表达的。
显然,我们可以看出,当时他对于不可逆循环这种普遍情况的表示式应为一个不等式,还未触及甚至未认识到,因为这种情况在数学上如何解决,一直是像开尔文等这样的理论物理学家感到困难的问题,那时,克劳修斯可能还不具备这样的知识基础。
在1875年的论文中提到不可逆过程的数学表示式。
他认为⎰T dQ ≤0的发现,“完成了第二基本定律的数学表述”,并把这个定律的“补偿”说法改为“无补偿的转变必然是正向的”。
从克劳修斯在25年间所写的重要的热力学奠基性论文中,可以看出他对热力学第二定律的表述方法不断修改,并从不同角度提出几种说法,才终于形成著名的“克劳修斯表述”。
他在此定律的数学表示式方面,从可逆循环着手发展到不可逆循环,由特殊情况的等式(S=⎰=0T dQ )发展为普遍性的不等式(S=⎰T dQ ≤0),并把TdQ 作为状态函数提出来,定名为熵。