第四章_t检验原理.ppt
预防医学- t检验PPT

t =d d d 0 d , n 1
S d
Sd n Sd n
式中,d 为每对数据的差值, d 为差值的样本均数,
Sd
为
差
值
的标准差
,
S d
为差值样本均数的标准误,
n
为
对子数。
30
配对的主要形式有: 同源配对
①同一受试对象处理前后的数据; ②同一受试对象两个部位的数据; ③同一样品用两种方法(仪器)检验的结果;
22
(一)单样本 t 检验
(one sample t-test)
即样本均数 X(代表未知总体均数)与
已知总体均数0(一般为理论值、标准值或
经过大量观察所得稳定值等)的比较。其检 验统计量按下式计算
t X X X 0 , n 1
S X
Sn Sn
23
例15.14
t检验
一、 假设检验的基本原理
■ 假设检验的基本原理 ➢反证法:
当一件事情的发生只有两种可能A和B,为了肯定 一种情况A,但又不能直接证实A,这时否定另一种可能 B,则间接肯定了A。
➢概率论(小概率):
如果一件事情发生的概率很小,那么在一次试验 时,我们说这个事件是”不会发生的”。从一般的常识 可知,这句话在大多数情况下是正确的,但有犯错误的 时候,因为概率小也是有可能发生的。
(
1 n1
1 n2
)
(n1 1)S12 (n2 1)S22 ( 1 1 )
n1 n2 2
n1 n2
式中 S 为两样本均数之差的标准误; X1 X 2
S
2 c
为两样本合并方差。
40
第4章 两均数差异显著性检验-正式课件

(MEANS过程和TTEST过程)
第1 节
概述
根据实验设计的不同,样本均数差异的显著性检验分为 两大类: 1、单个样本均数与已知总体均数比较的假设检验 2、两个样本均数相比较的假设检验 ① 配对设计实验资料(成对数据资料)的t检验 ② 非配对设计实验资料(成组数据资料)的t/u检验 在统计学上,当总体方差已知或总体方差未知,但样本 容量较大(n>30)时的假设检验特称为“u检验”;总体方 差未知且为小样本时的假设检验称为“t检验”。 t/u检验是假设检验中最常用的方法,主要用于两组数值 资料的比较分析(即均数差异的显著性检验)。
表4-3 饲喂两种饲料后仔猪体重增重结果
1
甲饲料 乙饲料 10.0 9.8
2
11.2 10.6
3
11.0 9.0
4
12.1 10.5
5
10.5 9.6
6
9.8 9.0
7
11.5 10.8
8
10.8 9.8
程序4-3
Data EX4_3; Input x y@@; D=x-y; Cards; 10 9.8 11.2 10.6 11 9 12.1 10.5 10.5 9.6 9.8 9 11.5 10.8 10.8 9.8 ; Proc means mean std stderr t prt; 如果没有Var语句 Var D; 会有什么变化? Run;
程序4-1
Data EX4_1; Input X@@; Y=X-114; Cards; 116 115 113 112 114 117 115 116 114 113 ; Proc means mean std stderr t prt; Var Y; Run;
t检验ppt课件

t X0
74 .272
1.692
SX
6.5 25
精品课件
3.自由度ν= n-1 = 25-1 = 24,
t=1.692,查t 界值表得:
0.05<P<0.10 不能拒绝H0 ,差异无统计学意义。 尚不能认为该山区健康成年男子脉搏 数高于一般地区。
精品课件
例2 应用克矽平治疗矽肺患者10名, 治疗前后血红蛋白的含量如表1所示,问 该药是否引起血红蛋白含量的变化?
查附表3 (方差分析表,方差齐性检验用)
F0.05(9,49)=2.39 因为F =10.22>F0.05(9,49) 所以 P<0.05,
拒绝H0 。认为因为两总体方差的
差异有统计学意义,
故不能用 t 检验而要用 t 检验。
精品课件
x1 10.00 18.00 25.00 19.00 30.00 19.00
精品课件
方差齐性的检验用F 检验, 统计量F 值的计算公式为:
S
2 1
较
大
F
S
2 2
较
小
精品课件
求得F值后,其自由度分别为: df1 =n1-1; df2 =n2-1
查附表3,作方差齐性检验,
若 P> 0.05 则用 t 检验 P< 0.05 则用t'检验
精品课件
两独立样本均数比较的t’ 检验 (two independent sample t-test)
t 检验计算公式
t
X1 X 2
S
2 1
S
2 2
n1
n2
tα’界限值计算公式
ta
SX21
ta,d1f S2
X1
t检验医学统计学PPT课件

[
sc2
( x12
x1)2 ][ n1
( x22
n1 n2 2
x2)2 ] n2
(n1 1)s12 (n2 1)s22 n1 n2 2
第36页/共78页
例8-7 :
表8-4 男女大学生的血清谷胱甘肽过氧化酶(GSH-PX)
性别 例 数 均 数 标准差 男 48 96.53 7.66 女 46 93.73 8.23
身高与以往男子平均身高相等
H1:µ≠µ0=170cm,即即现在该地20岁男子平均
身高与以往男子平均身高不等
α= 0.05,双侧检验
第9页/共78页
⑵ 选定检验方法,计算检验统计量 根据题目资料类型,可见,该资料是样本与
总体之间的比较,且σ已知可用样本-总体的Z
检验。依公式计算检验统计量:
z x 0 x 0
值样本是否来自零总体(μd=0 ),如来自零总体
,则两方法检测值相同,如不是来自零总体,则 表明两方法检测值的不一致,不是由抽样误差引 起,而是来自不同的总体。
第25页/共78页
⑴ 建立检验假设,确定检验水准
H0:µd=0,即两方法检测结果相同 H1:µd≠0,即两方法检测结果不同 α= 0.05 ,双侧检验
第6页/共78页
在 H0 成立的前提条件下,检验统计量计算公式:
① σ已知或σ未知但n足够大:
z x
x
( )
② σ未知且n较小:
t x μ0 x μ0
sx
s n
第7页/共78页
(n1)
例8-1 根据大量调查得知,某地20岁健康成年男子平 均身高为170cm,标准差为cm。今随机抽查了该地25 名健康成年男子,求得其身高均数为172cm,标准差 为cm,能否据此认为该地现在20岁成年男子平均身高 与以往不同?
5第四章 t检验ppt课件

1.建立检验假设、确定检验水准
H0:两总体方差相等
H1:两总体方差不相等
0.10( 较大以减少II类错误)
2.选择检验方法、计算统计量
中药组S2 =0.580 西药组S2 =0.466 F=s12/s22 =0.580/0.466 =1.245
3.确定P 值、做出推论
ν1=n1-1=10-1=9,ν2=n2- 1=10-1=9,查F 界值表(方差齐 性检验用),得F 0.05〔9,9) = 4.03, F< F 0.05〔9,9) ,P >0.05。
非参数检验是一类不依赖总体分布的具体形式的统 计方法。如Ridit分析、秩和检验、符号检验、 中位数检验、序贯试验、等级相关分析等。
⑴优点:①对总体的分布形式不要求;②可用于不 能精确测量的资料;③易于理解和掌握;④计算 简便。
⑵缺陷:不能充分利用资料所提供的信息,使检验 效率降低。
(二〕单因素分析与多因素分析
已知总体均数一般为标准值、理论值或 经大量观察得到的较稳定的指标值。
一、适用条件
1.对正态分布的数值变量资料,需用t 检验。
2.对于非正态分布的资料,若经过变量 变换使成正态分布,可按t检验处理; 否则,用非参数检验的方法。
二、正态性检验的方法
检验假设H0为总体分布是正态分布,当P>α时, 不拒绝H0,认为样本所来自的总体服从正态分 布;而P≤α时,拒绝H0,认为样本所来自的总 体不服从正态分布。
表4-2 两法治疗高血脂症3个月后血清胆固醇含量(mmol/L)
病人编号 组别
1 2 3 4 5 6 7 8 9 10
中药 5.45 5.04 4.62 5.61 4.06 5.32 5.28 4.78 6.97 5.34 西药 5.34 6.12 5.87 4.67 5.21 6.89 5.48 5.43 4.57 5.79
t检验和Z检验

药物治疗
1
? =
药物治疗合 并饮食疗法
2
推断
甲组
n1=12
XX1 =15.21
乙组 n2=13 X 2=10.85
t 检验——问题提出
▪ 根据研究设计,t检验有三种形式:
➢单个样本的t检验 ➢配对样本均数t检验(非独立两样本均数t
检验)
➢两个独立样本均数t检验
第一节 单个样本t检验
▪ 又称单样本均数t检验(one sample t test),适 用于样本均数与已知总体均数μ0的比较,目的是 检验样本均数所代表的总体均数μ是否与已知总 体均数μ0有差别。
▪ 配对设计主要有三种情况:
(1)将受试对象按某些混杂因素(如性别、年龄、窝别 等)配成对子,每对中的两个个体随机分配给两种处理 (如处理组与对照组); (2)同一受试对象或同一标本的两个部分,随机分别进 行不同处理(或测量)。 (3)同一受试对象自身前后对照。
配对t检验原理
▪ 配对设计的资料具有对子内数据一一对应的特征, 研究者应关心是对子的效应差值而不是各自的效 应值。
表 5-1 12 名儿童分别用两种结核菌素的皮肤浸润反应结果(mm)
编号
标准品 新制品 差值 d
d2
1
12.0
10.0
2.0
4.00
2
14.5
10.0
4.5
20.25
3
15.5
12.5
3.0
9.00
4
12.0
13.0
-1.0
1.00
5
13.0
10.0
3.0
9.00
6
12.0
5.5
6.5
42.25
医学统计学——t检验课件

医学统计学——t检验课件xx年xx月xx日contents •t检验的基本概念•t检验的原理•t检验的步骤•t检验的应用•t检验的注意事项•t检验的实例演示目录01 t检验的基本概念统计假设检验的一种,用于比较两个独立样本的平均数是否有显著差异,或一个样本的平均数与一个已知的参考值之间是否有显著差异。
t检验常用于小样本数据,特别是两个独立样本的比较。
t检验的定义t检验的适用范围适用于小样本数据,特别是两个独立样本的比较;常用于检验一个样本的平均数与一个已知的参考值之间是否有显著差异;可用于二分类变量和等级变量的比较。
两个独立样本来自的总体服从正态分布;两个独立样本来自的总体方差相等;样本数据是随机样本。
t检验的假设条件02 t检验的原理两独立样本t检验适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
统计假设比较两组独立样本的均值是否存在显著差异,即H0:μ1=μ2与H1:μ1≠μ2。
两配对样本t检验统计假设比较两组配对样本的差值均值是否显著非零,即H0:μ1-μ2=0与H1:μ1-μ2≠0。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据t值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
单因素方差分析t检验统计假设比较三组或多组独立样本的均值是否存在显著差异,即H0:μ1=μ2=…=μn与H1:μ1≠μ2≠…≠μn。
适用条件样本应来自正态分布总体,且方差相等。
结果解释根据F值和自由度,结合临界值表,确定P值,判断是否拒绝原假设。
如果P值小于预设显著性水平α,则认为各组均值存在显著差异;否则,认为无显著差异。
03 t检验的步骤明确研究目的明确研究目的是t检验的首要步骤,决定了数据的类型和数量。
数据筛选对数据进行筛选,去除异常值和缺失值,以确保数据的有效性和可靠性。
数据分组根据研究目的,将数据分成两组或以上,以便进行比较和分析。
第四章 t检验 PPT课件

t检验(t test)是以t分布为理论
基础,对一个或两个样本的数值变 量资料进行假设检验常用的方法, 属于参数检验。
第一节 假设检验
一、假设检验的概念与分类 假设检验(hypothesis test) 亦称显著 性检验(significance test),是利用 样本信息,根据一定的概率水准,推断 指标(统计量) 与总体指标(参数)、不 同样本指标间的差别有无意义的统计分 析方法。
假设检验有双侧检验和单侧检验
若目的是推断两总体均数是否不等,应选用
双侧检验。 H0:=0,H1:0
若从专业知识已知不会出现0 (或0)的 情况,则选用单侧检验。
H 0 : = 0 , H 1 : 0 ( 或 0 )
确定检验水准
Hale Waihona Puke 检验水准亦称显著性水准,符号为α , 指由假设检验做出推断结论时发生假阳 性错误的概率。 α 常取0.05或0.01。
1.607
3.确定P值、做出推论
=30-1 =29,查t值表, t0.05/2,29=2.045, 今t =1.607t0.05/2,29,P 0.05。 按 0.05水准,不拒绝H0,根据现
有样本信息,尚不能认为脾虚男子脉 搏数与健康人不同。
第三节
配对设计资料均数的t检验
配对设计
二、假设检验的基本步骤
例题:根据大量调查,已知健康成年 男子的脉搏均数为72次/分。某医生 在某医院随机调查30名脾虚男子,求 得脉搏均数为74.2次/分,标准差为 7.5次/分。脾虚病人的脉搏是正态分 布,问脾虚男子的脉搏均数与一般成 年男子的脉搏均数是否相等?
分析:
把一般成年男子的脉搏均数看作一个 总体均数,脾虚男子的脉搏均数为 样本均数。 0 = 72 , n = 30 , X = 74.2 , s = 7.5 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 配对设计资料均数的t检验
配对设计
配对设计是将观察单位按照某些特征(如性别、 年龄、病情等可疑混杂因素)配成条件相同或 相似的对子,每对中的两个观察单位随机分 配到两个组,给予不同的处理,观察指标的 变化。
① 同一观察单位实验(或治疗)前后的比较;
(一)参数检验和非参数检验
1.参数检验(parametric test) 是依赖 总体分布的具体形式的统计方法,简称 参数法。常用的参数法有χ2 检验、t 检验、F检验等。使用条件是抽样总体 的分布已知。
⑴优点:能充分利用样本信息;检验效 率较高。
⑵缺点:应用条件限制较多;手工计算 较繁琐。
2.非参数检验 (nonparametric test)
t检验(t test)是以t分布为理论
基础,对一个或两个样本的数值变 量资料进行假设检验常用的方法, 属于参数检验。第一节 假设来自验一、假设检验的概念与分类
假设检验(hypothesis test) 亦称显著 性检验(significance test),是利用 样本信息,根据一定的概率水准,推断 指标(统计量) 与总体指标(参数)、不 同样本指标间的差别有无意义的统计分 析方法。
α常取0.05或0.01。
2.选择检验方法、计算统计量
根据:①研究目的, ②资料的类型和分布, ③设计方案, ④统计方法的应用条件, ⑤样本含量大小等,
选择适宜的统计方法并计算出相应 的统计量。
3.确定P值、做出推论
假设检验中的P值是指在由无效假设所
规定的总体作随机抽样,获得等于及大 于(和/或等于及小于)现有统计量的概 率。
x
t
sn
, x t S x
ν=n-1
式中 x 为样本均数,μ为总体均数,n
为样本含量,s为样本标准差,ν为自 由度。
四、检验步骤
1.建立假设、确定检验水准
H0:0 H1:0 0.05
2.选择检验方法、计算统计量
t74.2721.607 7.5/ 30
3.确定P值、做出推论
=30-1 =29,查t值表, t0.05/2,29=2.045, 今t =1.607t0.05/2,29,P 0.05。 按 0.05水准,不拒绝H0,根据现
0=72,n=30 ,X=74.2,s=7.5 。
0 X 的原因: ①抽样误差所致。 ②脾虚致两个均数间有本质性差异。
1.建立假设、确定检验水准
⑴无效假设:记为H0,即样本均数所 代表的总体均数与已知的总体均数0 相等。样本均数与0的差异是由抽样
误差引起,无统计学意义。
⑵备择假设:记为H1,即样本均数所 代表的总体均数与0不相等,样本均 数与0的差异是本质性差异,有统计
二、假设检验的基本步骤
例题:根据大量调查,已知健康成年 男子的脉搏均数为72次/分。某医生 在某医院随机调查30名脾虚男子,求 得脉搏均数为74.2次/分,标准差为 7.5次/分。脾虚病人的脉搏是正态分 布,问脾虚男子的脉搏均数与一般成 年男子的脉搏均数是否相等?
分析:
把一般成年男子的脉搏均数看作一个 总体均数,脾虚男子的脉搏均数为 样本均数。
服从正态分布。
1.W检验 Shapiro-Wilk检验是基于次序统计量对 它们期望值的回归而构成的。所用检验统计量为W, 又称为W检验。在样本量3≤n≤50时使用。
2.D检验 Kolmogorov-Smirnov检验的统计量为D, 所以也称D检验,在样本量50≤n≤1000时使用。
三、计算公式
已知总体均数一般为标准值、理论值或 经大量观察得到的较稳定的指标值。
一、适用条件
1.对正态分布的数值变量资料,需用t
检验。
2.对于非正态分布的资料,若经过变量 变换使成正态分布,可按t检验处理; 否则,用非参数检验的方法。
二、正态性检验的方法
检验假设H0为总体分布是正态分布,当P>α时, 不拒绝H0,认为样本所来自的总体服从正态分布; 而P≤α时,拒绝H0,认为样本所来自的总体不
② 同一样品用两种方法检验结果的比较;
③ 配对的两个观察单位分别接受两种处理后 的数据比较。
1.单因素分析亦称一元分析,是在主要的非处 理因素相同的条件下,不管影响结果的处理 因素(如病人年龄、病情、辩证分型、病理类 型、药物剂型、用药途径、疗程等)有多少, 每次仅分析一个处理因素与效应之间关系的 统计方法。
2.多因素分析亦称多变量分析或多元分析,是 研究多因素和多指标之间的关系以及具有这 些因素的个体之间关系的一种统计分析方法。
即各样本统计量的差异来自抽样误差的
概率,它是判断H0成立与否的依据。
确定P值的方法主要有两种
⑴查表法 根据检验水准、样本自由
度直接查相应的界值表求出P值。 ⑵计算法 用特定的公式直接求出P
值。
推论
若则P结>论α为,不拒就绝没H有0理,由做怀出疑不H否0的定真此实样性本,
是来自于该总体的结论,也即差别无显 著性意义。
学意义。
假设检验有双侧检验和单侧检验
若目的是推断两总体均数是否不等,应选用
双侧检验。 H0:=0,H1:0 若从专业知识已知不会出现0 (或0)的
情况,则选用单侧检验。
H0:=0,H1:0 (或0)
确定检验水准
检验水准亦称显著性水准,符号为α,
指由假设检验做出推断结论时发生假阳 性错误的概率。
非参数检验是一类不依赖总体分布的具体形式的统 计方法。如Ridit分析、秩和检验、符号检验、 中位数检验、序贯试验、等级相关分析等。
⑴优点:①对总体的分布形式不要求;②可用于不 能精确测量的资料;③易于理解和掌握;④计算 简便。
⑵缺点:不能充分利用资料所提供的信息,使检验 效率降低。
(二)单因素分析与多因素分析
若P≤α,则拒绝H0,接受H1,也就是
说这些统计量来自不同的总体,其差别 不能仅由抽样误差来解释,下结论为差 别有显著性意义。
第二节 单样本 t 检验
单 样 本 t 检 验 (one sample t test) 亦 称样本均数与总体均数的比较的t检验。 用于从正态总体中获得含量为n的样本, 算得均数和标准差,判断其总体均数μ 是否与某个已知总体均数μ0相同。