发酵工程课件第六章
合集下载
【发酵工艺学总论】第六章-发酵经济学

(1)菌株选育对发酵成本的影响
▪ 一般来说,菌种选育约占生产成本的20%-60%,筛选 具有优良性能的菌株和对菌株进行改良是降低生产成 本的有效途径。
a 优良生产菌株的筛选
①提高筛选效率很重要 分离一支有价值的菌株并不容易,通常要花费 较长的时间和代价,甚至花费了大量的精力仍一 无所获。
(1)菌株选育对发酵成本的影响
a 碳源(续)
▪ 在确定培养基配方时,不仅要比较它们的单耗成本,
而且还要考虑通风量与搅拌功率。 (黏度、溶氧)
▪ 工业废料的利用
▪ 优点:以此作为廉价C源,主要意义在其社会效益 显著,保护了环境 。
▪ 缺点:经济效益不如传统原料高。
(2)发酵培养基成本分析
b 矿物质(无机盐)
▪ 原材料中矿物质所占比重一般较小,其中较高的
本章内容
一、概述 二、影响发酵产品成本的主要因素的成本分析
(1)菌株选育 (2)发酵培养基 (3)无菌空气与通气搅拌 (4)动力费(加热、冷却) (5)培养方式 (6)发酵产品的分离纯化 (7)发酵规模 (8)市场经济信息分析及管理技术 三、发酵过程的经济学评价
一、概述
菌株 发酵工程原理 反应过程(代谢、工艺过程及控制)
搅拌转速亦会改变,应根据工艺要求设计,使整个运转费 最低。
(4)动力费(加热、冷却)成本分析
▪ 发酵生产中,需要加热与冷却的工序大体有: ▪ 培养基的加热灭菌(或者淀粉质原料的蒸煮糊化),
然后冷却到接种温度;
▪ 发酵罐及辅助设备的加热灭菌与冷却; ▪ 发酵热的冷却,发酵恒温; ▪ 产物提炼与纯化过程的蒸发、蒸馏、结晶、干燥等。 ▪ 节约冷却水用量的办法 ▪ 采用气升式发酵罐; ▪ 选育嗜热或耐热的生产菌株; ▪ 改变原料路线,少用烃类原料。
《发酵工程》课件

产物分离纯化的优化
分离纯化方法
常见的分离纯化方法包括过滤、离心、萃取、蒸馏、膜分离等。
优化策略
根据产物的性质和发酵液的特点,选择合适的分离纯化方法,并优化工艺参数,以提高产物的纯度和收率。
06
未来发酵工程的发展趋势
新技术应用与设备改进
生物信息学
利用生物信息学技术,对微生物基因组学、转录组学和蛋白质组学 进行深入研究,为发酵工程提供更精确的微生物代谢调控手段。
为防止发酵污染,应定期对菌种进行 纯化、复壮,严格控制培养基和设备 的灭菌温度和时间,加强发酵过程中 的监控和检测。
发酵效率的提高
影响因素
影响发酵效率的因素包括菌种特性、培养基成分、发酵温度、pH值、溶解氧浓度等。
优化方法
通过调整培养基成分、控制发酵温度、调节pH值、提高溶解氧浓度等方法,可以有效提高发酵效率。
合成生物学
利用合成生物学技术,设计和构建具有特定功能的微生物细胞工厂, 实现高效、定向的物质转化。
基因编辑技术
通过基因编辑技术,改造和优化微生物的代谢途径,提高发酵产物 的产量和品质。
可持续性与环保
1 2
节能减排
通过优化发酵工艺和设备,降低能源消耗和减少 废弃物排放,实现发酵工程的绿色可持续发展。
抗菌素
抗菌素是一类具有抗菌活性的物质,通过抑制或杀死病原微生物,达到防治病害 的目的。抗菌素在医疗、农业、食品工业等领域广泛应用。
其他发酵产物及其应用
柠檬酸
柠檬酸是发酵工程中重要的有机酸之一,主要用于食品、 化工、医药等领域。柠檬酸具有抗氧化、抗菌、提高口感 等作用。
氨基酸
氨基酸是蛋白质的基本组成单位,通过发酵工程生产出的 各种氨基酸,如谷氨酸、赖氨酸等,在食品、饲料、医药 等领域广泛应用。
发酵工程 第6章 发酵动力学

模型的简化考虑一般采用均衡生长的非结构模型。
■将细胞作为与培养液分离的生物相处理所建立的模 型为分离化模型。在细胞浓度很高时采用。
如果把细胞和培养液视为一相,建立的模型为均一化 模型。
非结构模型
结构模型
最理想情况
确定论模型 不考虑细胞内部结构
各种细胞均一
均衡 细胞之间无差异, 生长 是均一的,细胞内
如果在考虑细胞组成变化的基础上建立的模型,称为结 构模型,一般选取RNA、DNA、糖类及蛋白含量做为过 程变量。
■菌体视为单组分的模型为非结构模型,通过物料平 衡建立超经验或半经验的关联模型。
如果细胞内的各种成分均以相同的比例增加,称为 均衡生长。
如果由于各组分的合成速率不同而使各组分增加比 例不同,称为非均衡生长。
(3)质量平衡法(质量守恒定律)
发酵系统中物 物质进入系统的速度+物质在系统生成的速度 =
质积累的速度 -物质排出系统的速度-物质在系统消耗的速度
研究发酵动力学的步骤
(1). 为了获得发酵过程变化的第一手资料,要尽 可能寻找能反映过程变化的各种理化参数。
(2). 将各种参数变化和现象与发酵代谢规律联系 起来,找出它们之间的相互关系和变化规律。
S ——基质量,mol;
t ——发酵时间,h
注:这里的“维持”是指活细胞群体没有净生长和产物没有净合成的生 命活动,所需能量有细胞物质氧化或降解产生,这种用于“维持”的物 质代谢称为维持代谢(内源代谢),代谢释放的能量叫维持能。
(2)得率系数(或产率,转化率,Y): 是指被消耗的物质和所合成产物之间的量的关系。包括生
基于关键生化反应限速步及其关键酶的动力学特征及其影响因素采用一系列分子水平的方法?细胞层次代谢网络与细胞工厂基于细胞信号传导代谢网络细胞物质运输的系列关键生化反应的综合表现采用一系列细胞水平的方法包括细胞群体行为分析?反应器层次过程工程基于细胞群体生长及产物合成对外部环境综合响应采用一系列优化反应器发酵条件的方法主要针对微生物发酵的表观动力学通过研究微生物群体的生长代谢定量反映细胞群体酶促反应体系的宏观变化速率主要包括
■将细胞作为与培养液分离的生物相处理所建立的模 型为分离化模型。在细胞浓度很高时采用。
如果把细胞和培养液视为一相,建立的模型为均一化 模型。
非结构模型
结构模型
最理想情况
确定论模型 不考虑细胞内部结构
各种细胞均一
均衡 细胞之间无差异, 生长 是均一的,细胞内
如果在考虑细胞组成变化的基础上建立的模型,称为结 构模型,一般选取RNA、DNA、糖类及蛋白含量做为过 程变量。
■菌体视为单组分的模型为非结构模型,通过物料平 衡建立超经验或半经验的关联模型。
如果细胞内的各种成分均以相同的比例增加,称为 均衡生长。
如果由于各组分的合成速率不同而使各组分增加比 例不同,称为非均衡生长。
(3)质量平衡法(质量守恒定律)
发酵系统中物 物质进入系统的速度+物质在系统生成的速度 =
质积累的速度 -物质排出系统的速度-物质在系统消耗的速度
研究发酵动力学的步骤
(1). 为了获得发酵过程变化的第一手资料,要尽 可能寻找能反映过程变化的各种理化参数。
(2). 将各种参数变化和现象与发酵代谢规律联系 起来,找出它们之间的相互关系和变化规律。
S ——基质量,mol;
t ——发酵时间,h
注:这里的“维持”是指活细胞群体没有净生长和产物没有净合成的生 命活动,所需能量有细胞物质氧化或降解产生,这种用于“维持”的物 质代谢称为维持代谢(内源代谢),代谢释放的能量叫维持能。
(2)得率系数(或产率,转化率,Y): 是指被消耗的物质和所合成产物之间的量的关系。包括生
基于关键生化反应限速步及其关键酶的动力学特征及其影响因素采用一系列分子水平的方法?细胞层次代谢网络与细胞工厂基于细胞信号传导代谢网络细胞物质运输的系列关键生化反应的综合表现采用一系列细胞水平的方法包括细胞群体行为分析?反应器层次过程工程基于细胞群体生长及产物合成对外部环境综合响应采用一系列优化反应器发酵条件的方法主要针对微生物发酵的表观动力学通过研究微生物群体的生长代谢定量反映细胞群体酶促反应体系的宏观变化速率主要包括
《发酵工程绪论》PPT课件

h
22
一、发酵工程的特征
(p13)
1、原料:发酵所用的原料通常以淀粉、糖蜜或其他 农副产品为主,只要加入少量的有机和无机氮源 就可进行反应。可以利用废水和废物等作为发酵 的原料进行生物资源的改造和更新。
2、菌种:微生物菌种是进行发酵的根本因素,通过 变异和菌种选育,可以获得高产的优良菌株并使 生产设备得到充分利用,也可以因此获得按常规 方法难以生产的产品。
h
10
4、发酵的现代概念
• 利用微生物在有氧或无氧条件下的生命活动来制备微生物菌体或其代谢产物的过程, 统称为发酵。
h
11
利用微生物的特点:
• 发酵工程所利用的微生物:细菌、放线菌,酵母菌和霉菌等。 • 利用微生物的特点:
(1)对周围环境的温度、压强、渗透压、酸碱度等条件有极大的适应能力。 (2)有极强的消化能力。 (3)有极强的繁殖能力。
h
16
(三)发酵工程产品的类型
• 酒精类饮料、醋酸和面包,而且生产胰岛素、 干扰素、生长激素、抗生素和疫苗等多种食品 、医疗保健药物;
• 天然杀虫剂、细菌肥料和微生物除草剂等农用 生产资料;
• 氨基酸、香料、生物高分子、酶以及维生素; • 单细胞蛋白等微生物菌体。 • 生物能 • 微生物冶炼 • (p3 )
病用的疫苗等。 • 特点:细胞的生长与产物积累成平行关系,生长速率最大时期也是产物合成速率
最高阶段,生长稳定期产量最高。
h
30
2、微生物代谢产物发酵
• 包括初级代谢产物、中间代谢产物和次级代谢产物。 • 对数生长期形成的产物是细胞自身生长所必需的,称为初级代谢产物或中间代谢
产物。 • 各种次级代谢产物都是在微生物生长缓慢或停止生长时期即稳定期所产生的,来
发酵工程--ppt课件(2024版)

罐,中间除了空气进入和尾气排出,与外部没 有物料交换。 ➢ 传统的生物产品发酵多用此过程。
分批发酵的优缺点
➢ 优点 操作简单 操作引起染菌的概率低 不会产生菌种老化和变异问题
➢ 缺点 非生产时间较长、设备利用率低
➢ 根据不同发酵类型,每批发酵需要十 几个小时到几周时间。
➢ 全过程包括空罐灭菌、加入灭过菌的 培养基、接种、发酵过程、放罐和洗 罐,所需时间的总和为一个发酵周期。
典型的分批发酵工艺流程图
微生物分批培养的生长曲线
1.延滞期 2.加速生长期 3.指数生长期 4.减速期 5.稳定期 6.衰亡期
4.3.1.2 连续发酵
以一定的速度向发酵罐内添加新鲜培养基, 同时以相同的速度流出培养液,从而使发酵罐 内的液量维持,微生物在稳定状态(恒定的基 质浓度、恒定的产物浓度、恒定的pH、恒定的 菌体浓度、恒定的比生长速率)下生长。
4 发酵工程
【学习目的】
1. 掌握发酵工程的基本类型和基本原理。 2. 了解典型发酵产品的生产工艺。 3. 认识发酵的基本过程及常用的发酵设备。
发酵(Fermentation)
最初来自拉丁语“发泡”(fervere),是指酵 母作用于果汁或者发芽谷物产生CO2的现象。
巴斯德:酵母在无氧环境下的呼吸过程。 生物化学:微生物在无氧时的代谢过程。
草莓栽培
微生物酶发酵 酶普遍存在于动植物中,在人类生活中发挥着
非常重要的作用。
微生物代谢产物发酵 ①氨基酸、蛋白质、核酸——初级代谢产物 ②抗生素、生长因子等——次级代谢产物
微生物转化发酵 利用微生物把一种化合物转变成结构相关的更
有经济价值的产物。 葡萄糖→Grapevine
生物工程发酵 DNA重组的“工程菌”理论上可以生产出多种代 谢产物。
分批发酵的优缺点
➢ 优点 操作简单 操作引起染菌的概率低 不会产生菌种老化和变异问题
➢ 缺点 非生产时间较长、设备利用率低
➢ 根据不同发酵类型,每批发酵需要十 几个小时到几周时间。
➢ 全过程包括空罐灭菌、加入灭过菌的 培养基、接种、发酵过程、放罐和洗 罐,所需时间的总和为一个发酵周期。
典型的分批发酵工艺流程图
微生物分批培养的生长曲线
1.延滞期 2.加速生长期 3.指数生长期 4.减速期 5.稳定期 6.衰亡期
4.3.1.2 连续发酵
以一定的速度向发酵罐内添加新鲜培养基, 同时以相同的速度流出培养液,从而使发酵罐 内的液量维持,微生物在稳定状态(恒定的基 质浓度、恒定的产物浓度、恒定的pH、恒定的 菌体浓度、恒定的比生长速率)下生长。
4 发酵工程
【学习目的】
1. 掌握发酵工程的基本类型和基本原理。 2. 了解典型发酵产品的生产工艺。 3. 认识发酵的基本过程及常用的发酵设备。
发酵(Fermentation)
最初来自拉丁语“发泡”(fervere),是指酵 母作用于果汁或者发芽谷物产生CO2的现象。
巴斯德:酵母在无氧环境下的呼吸过程。 生物化学:微生物在无氧时的代谢过程。
草莓栽培
微生物酶发酵 酶普遍存在于动植物中,在人类生活中发挥着
非常重要的作用。
微生物代谢产物发酵 ①氨基酸、蛋白质、核酸——初级代谢产物 ②抗生素、生长因子等——次级代谢产物
微生物转化发酵 利用微生物把一种化合物转变成结构相关的更
有经济价值的产物。 葡萄糖→Grapevine
生物工程发酵 DNA重组的“工程菌”理论上可以生产出多种代 谢产物。
发酵工程第六章

发酵工程
第二节 发酵过程的代谢变化
了解生产菌种在具有合适的培养基、pH、温
度和通气搅拌等环境条件下对基质的利用、细胞
的生长以及产物合成的代谢变化,有利于人们对
生产的控制。
发酵工程
一、发酵过程操作方式 发酵过程操作方式:
A.分批发酵 B.补料分批发酵 C.连续发酵
发酵工程
1. 分批发酵 分批发酵是指在一封闭培养系统内含
发酵工程
控制方法: (1)培养基注意适当的配比 (2)通过中间补料,控制起始浓度不要太高
发酵工程
第四节 基质对发酵的影响及其控制
一、碳源种类 速效碳源:较迅速的被利用,有利于菌体的生
长,如葡萄糖 迟效碳源:被菌体缓慢利用,有利于代谢产物
的合成,如乳糖等
发酵工程
培养基中不同糖对大肠杆菌生长速度的影响 1.单独加入葡萄糖时,菌体生长几乎没有延迟期; 单独加入乳糖时,菌体生长有明显的延迟期;2. 同 时加入葡萄糖和乳糖时,菌体呈二次生长
3)培养后期,产生热量不多,温度变化不大,且逐 渐减弱。
发酵工程
2、搅拌热Q搅拌
在机械搅拌通气发酵罐中,由于机械 搅拌带动发酵液作机械运动,造成液 体之间,液体与搅拌器等设备之间的 摩擦,产生可观的热量。
发酵工程
3、蒸发热Q蒸发
通气时,引起发酵液的水分蒸发,水分 蒸发所需的热量叫蒸发热。 此外,排气也会带走部分热量叫显热Q显 热,显热很小,一般可以忽略不计。
发酵工程
4、辐射热Q辐射
发酵罐内温度与环境温度不同,发酵液中有 部分热通过罐体向外辐射。辐射热的大小取 决于罐温与环境的温差。冬天大一些,夏天 小一些,一般不超过发酵热的5%。
发酵工程
第六节 发酵过程的pH控制
第六章 发酵工程 PPT课件
生物下游一般过程
§6-5 生化反应器
生化反应器类型 通用式发酵罐 气升式发酵罐 其他生物反应器形式
生化反应器类型
• 酶反应器:单相式、多相式 • 发酵反应器器:液态、固态
通用式发酵罐
通气 搅拌:传质
传热
气升式发酵罐
气升式发酵罐的优点 是能耗低,液体中的 煎切作用小,结构简 单。在同样的能耗下, 其氧传递能力比机械 搅拌式通气发酵罐要 高得多。
发酵的基本过程
发酵过程形式
• 批式发酵
• 补料发酵→带放(半连续发酵)
• 连续发酵→多级连续发酵
• 发酵-分离耦合 • ……
连续发酵
连续发酵是指以一定的速度向发酵罐内添加新 鲜培养基,同时以相同速度流出培养液,从而 使发酵罐内的液量维持恒定的发酵过程。
优点 ① 可提高设备利用率和产量; ② 发酵中各参数趋于恒值,便于自动控制; ③ 易于分期控制。可以在不同的罐中控制不同的条件。
• 初级、次级代谢产物 • 生物大分子(酶、多糖) • 菌体 • 利用微生物发酵进行转化反应
§6-2 工业微生物
常见种类 菌种选育与保藏
常见工业微生物种类
• 细菌 • 放线菌 • 酵母菌 • 霉菌
细菌的形态(单细胞)
• 球菌 • 杆菌 • 螺旋菌
•
细 菌 细 胞 结 构 模 式 图
放线菌
•
固态发酵罐
课外书籍资料
• 微生物与发酵基础教程,宋超先,天津大学出版社, 2007
• 发酵工艺,孙俊良,中国农业出版社,2008 • 生物反应工程原理,贾士儒,科学出版社,2008 • 微生物工程工艺原理,姚汝华,华南理工大学出版社
1996 • 生化工程,伦世仪,中国轻工业出版社,1993 • 生化反应工程,山根恒夫,西北大学出版社,1992 • 发酵工艺学原理,(英)P·F·斯坦伯里,中国医药科技
《发酵工艺学第六》课件
适用人群
食品科学与工程专业的学生 食品工业的研发人员 食品生产一线的技术人员 对发酵工艺感兴趣的爱好者
课件结构
引言:介绍《发酵工艺学第六》 的背景和意义
主要内容:介绍《发酵工艺学第 六》的主要章节和内容
教学方法:介绍《发酵工艺学第 六》的教学方法和手段
实践操作:介绍《发酵工艺学第 六》的实践操作和实验
自我评估与反馈
回顾学习内容, 总结知识点
思考题:针对知 识点进行自我测 试
反馈:对自我测 试结果进行分析 ,找出薄弱环节
制定改进计划, 提高学习效果
下一步学习计划
复习重点:掌握发酵工艺学的基本原理和关键技术 思考题:针对实际生产问题,提出解决方案 学习资料:查阅相关文献和资料,了解最新研究成果 实践操作:参与实验室实验,提高实际操作能力
主要设备介绍
发酵罐:用于微生物发 酵的主要设备,具有保 温、控温、搅拌等功能
空气过滤器:用于过滤 空气中的杂质,保证发 酵罐内的空气清洁
冷却器:用于控制发酵 罐内的温度,保证微生 物发酵的最佳温度
搅拌器:用于搅拌发酵 罐内的物料,保证微生 物发酵的均匀性
控制系统:用于控制发 酵罐内的温度、湿度、 压力等参数,保证微生 物发酵的最佳条件
学习目标
掌握发酵工艺学的基本概念和原理 理解发酵工艺在食品、医药、化工等领域的应用 学会如何设计和优化发酵工艺流程 提高对发酵工艺在实际生产中的认识和应用能力
05
发酵工艺流程及设备
发酵工艺流程
原料准备:选择合适的原料,如糖、淀粉、蛋白质等 菌种培养:选择合适的菌种,如酵母、乳酸菌、醋酸菌等 发酵过程:将原料和菌种混合,进行发酵,产生发酵产物 发酵产物分离:将发酵产物与原料分离,得到纯化的发酵产物 发酵产物纯化:对发酵产物进行纯化,得到高纯度的发酵产物 发酵产物包装:将发酵产物进行包装,得到成品
发酵工程第六章 发酵条件及过程控制
3、菌体浓度对产物的影响
♦ 在适当的比生长速率下,发酵产物的产率与菌浓成正比 关系,即
式中, P ——发酵产物的产率(产物最大生成速率或生率),g/(L· h); QPm ——产物最大比生成速率,h-1; ♦初级代谢产物的产率与菌体浓度成正比; c(X) ——菌体浓度,g/L.
P=QPmc(X)
♦次级代谢产物的生产中,控制菌体的比生长速率μ比μ临略高 一点的水平,即c(X) ≤c(X)临时,菌体浓度越大,产物的产量 才越大。 ♦c(X)过高,摄氧率增加,溶氧成为限制因素,使产量降低。
(三)磷酸盐浓度的影响及控制
☺ 磷是构成蛋白质、核酸和ATP的必要元素,是微生物 生长繁殖所必需的成分,合成产物所必需的营养。 控制方式: ☺ 在基础培养基中采用适量的浓度给予控制,以保证菌 体的正常生长所需;
代谢缓慢:补加磷酸盐。举例:在四环素发酵中,间歇,微量添加磷
酸二氢钾,有利于提高四环素的产量。
(二)氮源
2、不同种类氮源对发酵的影响及控制 ☺ 培养基中某些氮源的添加有利于该发酵过程中产物的积累, 这些主要是培养基中的有机氮源作为菌体生长繁殖的营养 外,还有作为产物的前体。 如:缬氨酸、半胱氨酸和ɑ-氨基己二酸等是合成青霉素和头 孢霉素的主要前体。
☺ 无机氮源利用会快于有机氮源,但是常会引pH值的变化, 这必须注意随时调整。如:
(三)磷酸盐浓度的影响及控制
☺ 微生物生长良好时,所允许的磷酸盐浓度为0.32~ 300mmol/L,但次级代谢产物合成良好时所允许的磷 酸盐最高水平浓度仅为1mmol/L。 ☺ 因此,在许多抗生素,如链霉素、新霉素、四环素、 土霉素、金霉素和万古霉素等的合成中要以亚适量添 加。
举例:四环素发酵:菌体生长最适的磷浓度为65~70
发酵工程 第六章 微生物发酵机理文稿演示
如果采取某些手段阻止乙醛作为氢受体时,磷酸二羟丙酮则替 代乙醛作为氢受体形成甘油,这样发酵转为甘油发酵。
NaHSO3可作为抑制剂: 乙醛 + NaHSO3
乙醛亚硫酸氢钠↓
甘油发酵
2ATP 2ADP
1.6-
葡
二磷
萄
酸果
糖
糖
2AT 2ADPP
3-磷酸
丙酮酸
甘油醛
CO NaHSO
2 乙 乙醛 醛 HSO3
葡萄糖 ATP
ADP
6-磷酸果糖
6-磷酸果糖 Pi
1
4-磷酸赤藓糖
3-磷酸甘油醛
2
7-磷酸景天庚酮糖
乙酰磷酸
ADP ATP
3
5-磷酸木酮糖
乙酰
4
5
5-磷酸核糖
5-磷酸核酮糖
5-磷酸木酮糖
6
2 分子3-磷酸甘油醛 NAD+
NADH+H+ ADP
ATP NADH+H+
NAD+
乳酸
乙酰磷酸 ADP
7
ATP
⑽
2(NADH+H+)
⑹ 2Pi 1,3-二磷酸甘油酸
2ADP
⑺
2ADP
磷酸烯醇式丙酮酸 ⑼
2-磷酸甘油酸
3-磷酸甘油酸 2ATP
2H2O
糖酵解和酒精发酵的全过程
酒精发酵中的副产物
主产物:乙醇、CO2
酵母菌酒精
醇(杂醇油)
发酵
醛(糠醛)
副产物40多种 酸(琥珀酸)
酯
甲醇
二 甘油发酵
酵母菌中的乙醇脱氢酶活性很强,乙醛作为氢受体被还原成 乙醇的反应进行得很彻底,因此,在乙醇发酵中甘油的生成量 很少。
2. 次级代谢(secondary metabolism):微生物以 初级代谢产物为前体物质,合成一些对微生物 生命活动无明确功能的物质和能量的过程。
NaHSO3可作为抑制剂: 乙醛 + NaHSO3
乙醛亚硫酸氢钠↓
甘油发酵
2ATP 2ADP
1.6-
葡
二磷
萄
酸果
糖
糖
2AT 2ADPP
3-磷酸
丙酮酸
甘油醛
CO NaHSO
2 乙 乙醛 醛 HSO3
葡萄糖 ATP
ADP
6-磷酸果糖
6-磷酸果糖 Pi
1
4-磷酸赤藓糖
3-磷酸甘油醛
2
7-磷酸景天庚酮糖
乙酰磷酸
ADP ATP
3
5-磷酸木酮糖
乙酰
4
5
5-磷酸核糖
5-磷酸核酮糖
5-磷酸木酮糖
6
2 分子3-磷酸甘油醛 NAD+
NADH+H+ ADP
ATP NADH+H+
NAD+
乳酸
乙酰磷酸 ADP
7
ATP
⑽
2(NADH+H+)
⑹ 2Pi 1,3-二磷酸甘油酸
2ADP
⑺
2ADP
磷酸烯醇式丙酮酸 ⑼
2-磷酸甘油酸
3-磷酸甘油酸 2ATP
2H2O
糖酵解和酒精发酵的全过程
酒精发酵中的副产物
主产物:乙醇、CO2
酵母菌酒精
醇(杂醇油)
发酵
醛(糠醛)
副产物40多种 酸(琥珀酸)
酯
甲醇
二 甘油发酵
酵母菌中的乙醇脱氢酶活性很强,乙醛作为氢受体被还原成 乙醇的反应进行得很彻底,因此,在乙醇发酵中甘油的生成量 很少。
2. 次级代谢(secondary metabolism):微生物以 初级代谢产物为前体物质,合成一些对微生物 生命活动无明确功能的物质和能量的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 次级代谢及产物 各抗种生次素级、代毒谢素产物、都激是素在和微色生素物生等长。缓慢或停止生
长时期即稳定期所产生的,来自于中间代谢产物和 初级代谢产物。
2020/11/5
第二节 代谢调节方式与机制
一、调节方式 • 代谢途径区域化 • 代谢流向的调控 • 代谢速度的调控 • 细胞透性的调节 • 能荷调节
酶的顺序反馈抑制
抑制
抑制
D
E
Y
Eb
A
B
C
Ea
Ec
F
G
Z
2020/11/5
抑制
途径中的第一个反应(A B)被两个不同的酶所催化,一 个酶被Y抑制,另一个酶被Z抑制。只有当Y和Z同时过量 才能完全阻止A转变为B。另两个控制点(C D),(C F),分别受Y或Z的抑制。
同工酶的反馈抑制
同工酶是能催化同一生化反应,但它们的结构稍有不同,可分别 被相应的末端产物抑制的一类酶。
一、积累代谢产物的有效措施
(一)反馈抑制作用的解除:实质是使代谢途径中的关键酶(别构
酶)的调节亚基的结构基因发生突变,使末端产物或其类似物不再与别 构中心结合,从而解除反馈抑制,积累末端产物;
2020/11/5
(二)反馈阻遏作用的解除:实质是使调节基因蛋白不再与末端产物相结合, 或结合后的复合物不能同操纵基因结合,从而解除了末端产物对酶合 成的阻遏;
① 酶活性的激活(activation)
前体激活:代谢途径中后面的酶促反应,可被该途径中较 前面的一个中间产物所促进。
代谢中间产物的反馈激活:代谢中间产物对该代谢途径的 前面的酶起激活作用。
2020/11/5
2、酶活性的调节(细调)
② 酶活性的抑制(inhibition):大多是反馈抑制
A. 无分支代谢途径的调节:通常是在线形的代谢途
环化②酶的酶活合性成,的导阻致遏cAM(Pr浓ep度re降ss低io,n coAfMenPz与yCmAePs的yn结th合e受sis阻),CAP 不能终被点活化产而物无反法馈结阻合至遏启:动合子成,代导致谢R过NA程聚中合,酶相无法关与酶启的动合序成列结被合过, 因此量乳终糖操点纵产子物表所达阻下降遏。。
PC OAA
akg
Glu
Mal
生物素对谷氨酸合成的影响
PEP:磷酸烯醇式丙酮酸;Pyr:丙酮酸;AcCoA:乙酰辅酶A; OAA:草酰乙酸; α kg:α -酮戊二酸;Glu:谷氨酸;Mal:苹果 酸;PC:丙酮酸羧化酶
2020/11/5
例2:溶烷棒杆菌GL-21(甘油缺陷型)生产谷氨酸
PGDH
磷酸二羟丙酮
累积反馈抑制
58%
40%
D
E
Y
A
B
C
E1
F
G
Z
30%
2020/11/5
末端产物Y和Z单独过量时,各自对途径中第一个酶E1仅产 生较小的抑制作用,一种末端产物过量并不影响其他末端产 物的形成。当Y和Z同时过量,对E1产生的抑制作用则超过 各种末端产物单独过量时的抑制的总和。
超相加反馈抑制
90%
15%
2020/11/5
二、人工控制微生物代谢的手段
(一)生物合成途径的遗传控制
代谢调节控制育种通过特定突变型的选育,达到改变代谢 通路、降低支路代谢总产物的产生或切断代谢途径及提高 细胞膜的透性,使代谢流向目的产物积累方向进行。
2020/11/5
1、代谢缺陷型菌株 2、利用抗代谢类似物的突变积累氨基酸 3、产物降解酶缺失突变株 4、细胞膜组分的缺失突变
流向;
谷氨酸脱氢酶 + NADP+
催化谷氨酸的合成
谷氨酸脱氢酶 + NAD+
催化谷氨酸的分解
2020/11/5
2、由两种酶控制的逆单向反应
在生物体代谢的关键部位的某些反应,是由两种不同的 酶来催化的。即在一个“可逆”反应中,其中一个酶催 化正反应,另一种酶则催化逆反应。
如: 葡萄糖+ATP 己糖激酶 6-磷酸葡萄糖 6-磷酸葡萄糖+H2O 6-磷酸葡萄糖酯酶 葡萄糖+Pi
2020/11/5
A结K构1和类例能H似积S:物D累(H黄苏的A色氨H调短V酸节)杆亚结菌基合抗的,α-结氨当构基然基-也β因-不羟突会基变同戊,苏酸不氨(能酸A与H结苏V合)氨,菌酸所株的
以能解除苏氨酸对AK1和HSDH的反馈抑制,因而积累苏氨 酸。
AK1
Asp AK2 Asp-P
AK3
HSDH Hse Asa
2020/11/5
本章要求
• 掌握初级与次级代谢的产物 • 掌握微生物代谢调节的方式 • 掌握酶活性被抑制的方式 • 了解发酵产物的发酵机制及发酵动力学
2020/11/5
第一节 发酵工程微生物的基本代谢及产物代谢
• 初级代谢及产物
对多数糖生、长蛋期白形质成、的核产酸物和是氨细基胞酸自等身。生长所必需的, 称为初级代谢产物或中间代谢产物。
D
E
Y
A
B
C
E1
F
G
Z
20%
2020/11/5
② 酶活性调节的分子机制
主要有两种理论解释:
别构调节理论(酶分子构象的改变)
别构酶除了具有与底物结合的催化中心外,还具有与调节 剂结合的调节中心。当酶与调节剂以非共价键结合后,酶
蛋酶白分的构子象的发化生学变修化饰,引理起论催(化酶中分心子改结变构,的从改而变引)起酶活
酶性的的共变价化修。饰是酶蛋白在修饰酶催化下,可与某些物质发 生共价键的结合或解离,从而导致调节酶的活化或抑制, 以控制代谢的速度和方向。如糖原合成酶的磷酸化(高活 性)和去磷酸化(低活性)。
2020/11/5
(四)细胞透性的调节
细胞质膜的透性直接影响物质的吸收和 代谢产物的分泌,从而影响到细胞内代 谢的变化。
2020/11/5
生物素是丙酮酸羧化酶的辅酶,生物素在低于亚适浓度之
前有,利例增于加谷1:生氨谷物酸氨素的酸有合棒利成杆于;菌丙(酮生酸物的素羧缺化陷产型生)草生酰产乙谷酸氨,酸进而
生物素是催化脂肪酸生物合成的初始酶乙酰辅酶A羧化酶的 辅酶,该酶催化乙酰辅酶A羧化生成丙二酸单酰辅酶A,再 经一系列转化合成脂肪酸,而脂肪酸又是构成细胞膜磷脂 的主P要EP成分,因P此y生r 物素可间A接cC地o影A 响细胞膜的透性。
乳糖操纵子
2020/11/5
2020/11/5
乳糖操纵子的诱导机制
P R PO
z
ya
半乳糖苷酶 半乳糖苷渗透酶 半乳糖苷转乙酰基酶
2、酶活性的调节(细调)
一定数量的酶,通过其分子构象或分子结构的改变来调 节其催化反应的速率。酶活调节的影响因素包括:底物和产 物的性质和浓度、压力、pH、离子强度、辅助因子以及其 他酶的存在等等。特点是反应快速。
其代谢活动只能在特定的部位上进行,如与呼吸产能有 关的酶系集中于线粒体内膜上,DNA合成的某些酶位于 细胞核里。
2020/11/5
(二)代谢流向的调控
微生物在不同条件下可以通过控制各代谢途径中某个酶促反应的速 率来控制代谢物的流向,从而保持机体代谢的平衡。
1、由一个关键酶控制的可逆反应
同一个酶可以通过不同的辅基(或辅酶)控制代谢物的
2020/11/5
(五)能荷调节
• 对利用ATP的途径(合成代谢)的酶活性或形成ATP 的途径(分解代谢)的酶活性的调节。
2020/11/5
二、微生物代谢调控机制
微生物在正常情况下,通过细胞内的自我调节,维持各个代谢途径 的相互协调,使其代谢产物既不缺少又不会过多的积累。而人类利用微 生物进行发酵则需要微生物积累较多的代谢产物,因此对微生物的代谢 必须进行人工控制。
分解代谢物阻遏:可被组成酶快速利用的基质,阻遏了分 解难利用基质的酶的合成。
2020/11/5
1、酶合成的调节(粗调)
③酶合成调节的遗传机制:操纵子学说
操纵子是指基因组DNA分子的一个片段,这个片断 由启动子、调节基因、操纵基因和结构基因组成。 诱导型操纵子:效应物存在导致基因表达。 阻遏型操纵子:效应物存在导致基因表达的关闭。
Thr Met
Lys
Asp:天门冬氨酸;Asp-P:天门冬氨酰磷酸;Asa:天门冬氨酸半醛; Hse:高丝氨酸;Thr:苏氨酸;Met:甲硫氨酸;Lys:赖氨酸;AK: 天门冬氨酸激酶;HSDH:高丝氨酸脱氢酶
2020/11/5
将诱变处理后的菌种接种到完全培养基上,生成的菌落再 以影印法分别接种到含葡萄糖培养基和以产物作为唯一碳 源的培养基上。在后一种培养基上不能生长的菌落就是缺 乏产物降解酶的变异株。 3、产物降解酶缺失突变株
抑制
抑制
D
E
Y
E3
E1
A
B
C
E2
E4 F
G
Z
抑制
抑制
2020/11/5
末端产物Y和Z单独过量,对途径中第一个酶E1无抑制作用, 只有Y和Z同时过量,才能对E1具有抑制作用。另两个控制 点的酶E2和E3分别被Y和Z所抑制。
协同反馈抑制
抑制
抑制
D
E
Y
E2
A
B
C
E1
E3
F
G
Z
抑制
2020/11/5
末端产物Y和Z单独过量时,各自对途径中第一个酶E1仅产 生较小的抑制作用,一种末端产物过量并不影响其他末端产 物的形成。只有当Y和Z同时过量,才能对E1产生较大的抑 制作用。
有的代谢产物由于相应降解酶的存在而在发酵液中不能稳定存在,因 此可通过诱变获得缺乏降解产物的酶的菌株使发酵单位提高。
2020/11/5
4、细胞膜组分的缺失突变
以前经常提到反馈抑制和反馈阻遏,都是由于末端 产物的浓度过高引起的。利用细胞膜组分的缺失突 变使细胞膜的透性增大,可使代谢产物易于分泌到 胞外,从而达到解除末端产物抑制或阻遏的目的。
长时期即稳定期所产生的,来自于中间代谢产物和 初级代谢产物。
2020/11/5
第二节 代谢调节方式与机制
一、调节方式 • 代谢途径区域化 • 代谢流向的调控 • 代谢速度的调控 • 细胞透性的调节 • 能荷调节
酶的顺序反馈抑制
抑制
抑制
D
E
Y
Eb
A
B
C
Ea
Ec
F
G
Z
2020/11/5
抑制
途径中的第一个反应(A B)被两个不同的酶所催化,一 个酶被Y抑制,另一个酶被Z抑制。只有当Y和Z同时过量 才能完全阻止A转变为B。另两个控制点(C D),(C F),分别受Y或Z的抑制。
同工酶的反馈抑制
同工酶是能催化同一生化反应,但它们的结构稍有不同,可分别 被相应的末端产物抑制的一类酶。
一、积累代谢产物的有效措施
(一)反馈抑制作用的解除:实质是使代谢途径中的关键酶(别构
酶)的调节亚基的结构基因发生突变,使末端产物或其类似物不再与别 构中心结合,从而解除反馈抑制,积累末端产物;
2020/11/5
(二)反馈阻遏作用的解除:实质是使调节基因蛋白不再与末端产物相结合, 或结合后的复合物不能同操纵基因结合,从而解除了末端产物对酶合 成的阻遏;
① 酶活性的激活(activation)
前体激活:代谢途径中后面的酶促反应,可被该途径中较 前面的一个中间产物所促进。
代谢中间产物的反馈激活:代谢中间产物对该代谢途径的 前面的酶起激活作用。
2020/11/5
2、酶活性的调节(细调)
② 酶活性的抑制(inhibition):大多是反馈抑制
A. 无分支代谢途径的调节:通常是在线形的代谢途
环化②酶的酶活合性成,的导阻致遏cAM(Pr浓ep度re降ss低io,n coAfMenPz与yCmAePs的yn结th合e受sis阻),CAP 不能终被点活化产而物无反法馈结阻合至遏启:动合子成,代导致谢R过NA程聚中合,酶相无法关与酶启的动合序成列结被合过, 因此量乳终糖操点纵产子物表所达阻下降遏。。
PC OAA
akg
Glu
Mal
生物素对谷氨酸合成的影响
PEP:磷酸烯醇式丙酮酸;Pyr:丙酮酸;AcCoA:乙酰辅酶A; OAA:草酰乙酸; α kg:α -酮戊二酸;Glu:谷氨酸;Mal:苹果 酸;PC:丙酮酸羧化酶
2020/11/5
例2:溶烷棒杆菌GL-21(甘油缺陷型)生产谷氨酸
PGDH
磷酸二羟丙酮
累积反馈抑制
58%
40%
D
E
Y
A
B
C
E1
F
G
Z
30%
2020/11/5
末端产物Y和Z单独过量时,各自对途径中第一个酶E1仅产 生较小的抑制作用,一种末端产物过量并不影响其他末端产 物的形成。当Y和Z同时过量,对E1产生的抑制作用则超过 各种末端产物单独过量时的抑制的总和。
超相加反馈抑制
90%
15%
2020/11/5
二、人工控制微生物代谢的手段
(一)生物合成途径的遗传控制
代谢调节控制育种通过特定突变型的选育,达到改变代谢 通路、降低支路代谢总产物的产生或切断代谢途径及提高 细胞膜的透性,使代谢流向目的产物积累方向进行。
2020/11/5
1、代谢缺陷型菌株 2、利用抗代谢类似物的突变积累氨基酸 3、产物降解酶缺失突变株 4、细胞膜组分的缺失突变
流向;
谷氨酸脱氢酶 + NADP+
催化谷氨酸的合成
谷氨酸脱氢酶 + NAD+
催化谷氨酸的分解
2020/11/5
2、由两种酶控制的逆单向反应
在生物体代谢的关键部位的某些反应,是由两种不同的 酶来催化的。即在一个“可逆”反应中,其中一个酶催 化正反应,另一种酶则催化逆反应。
如: 葡萄糖+ATP 己糖激酶 6-磷酸葡萄糖 6-磷酸葡萄糖+H2O 6-磷酸葡萄糖酯酶 葡萄糖+Pi
2020/11/5
A结K构1和类例能H似积S:物D累(H黄苏的A色氨H调短V酸节)杆亚结菌基合抗的,α-结氨当构基然基-也β因-不羟突会基变同戊,苏酸不氨(能酸A与H结苏V合)氨,菌酸所株的
以能解除苏氨酸对AK1和HSDH的反馈抑制,因而积累苏氨 酸。
AK1
Asp AK2 Asp-P
AK3
HSDH Hse Asa
2020/11/5
本章要求
• 掌握初级与次级代谢的产物 • 掌握微生物代谢调节的方式 • 掌握酶活性被抑制的方式 • 了解发酵产物的发酵机制及发酵动力学
2020/11/5
第一节 发酵工程微生物的基本代谢及产物代谢
• 初级代谢及产物
对多数糖生、长蛋期白形质成、的核产酸物和是氨细基胞酸自等身。生长所必需的, 称为初级代谢产物或中间代谢产物。
D
E
Y
A
B
C
E1
F
G
Z
20%
2020/11/5
② 酶活性调节的分子机制
主要有两种理论解释:
别构调节理论(酶分子构象的改变)
别构酶除了具有与底物结合的催化中心外,还具有与调节 剂结合的调节中心。当酶与调节剂以非共价键结合后,酶
蛋酶白分的构子象的发化生学变修化饰,引理起论催(化酶中分心子改结变构,的从改而变引)起酶活
酶性的的共变价化修。饰是酶蛋白在修饰酶催化下,可与某些物质发 生共价键的结合或解离,从而导致调节酶的活化或抑制, 以控制代谢的速度和方向。如糖原合成酶的磷酸化(高活 性)和去磷酸化(低活性)。
2020/11/5
(四)细胞透性的调节
细胞质膜的透性直接影响物质的吸收和 代谢产物的分泌,从而影响到细胞内代 谢的变化。
2020/11/5
生物素是丙酮酸羧化酶的辅酶,生物素在低于亚适浓度之
前有,利例增于加谷1:生氨谷物酸氨素的酸有合棒利成杆于;菌丙(酮生酸物的素羧缺化陷产型生)草生酰产乙谷酸氨,酸进而
生物素是催化脂肪酸生物合成的初始酶乙酰辅酶A羧化酶的 辅酶,该酶催化乙酰辅酶A羧化生成丙二酸单酰辅酶A,再 经一系列转化合成脂肪酸,而脂肪酸又是构成细胞膜磷脂 的主P要EP成分,因P此y生r 物素可间A接cC地o影A 响细胞膜的透性。
乳糖操纵子
2020/11/5
2020/11/5
乳糖操纵子的诱导机制
P R PO
z
ya
半乳糖苷酶 半乳糖苷渗透酶 半乳糖苷转乙酰基酶
2、酶活性的调节(细调)
一定数量的酶,通过其分子构象或分子结构的改变来调 节其催化反应的速率。酶活调节的影响因素包括:底物和产 物的性质和浓度、压力、pH、离子强度、辅助因子以及其 他酶的存在等等。特点是反应快速。
其代谢活动只能在特定的部位上进行,如与呼吸产能有 关的酶系集中于线粒体内膜上,DNA合成的某些酶位于 细胞核里。
2020/11/5
(二)代谢流向的调控
微生物在不同条件下可以通过控制各代谢途径中某个酶促反应的速 率来控制代谢物的流向,从而保持机体代谢的平衡。
1、由一个关键酶控制的可逆反应
同一个酶可以通过不同的辅基(或辅酶)控制代谢物的
2020/11/5
(五)能荷调节
• 对利用ATP的途径(合成代谢)的酶活性或形成ATP 的途径(分解代谢)的酶活性的调节。
2020/11/5
二、微生物代谢调控机制
微生物在正常情况下,通过细胞内的自我调节,维持各个代谢途径 的相互协调,使其代谢产物既不缺少又不会过多的积累。而人类利用微 生物进行发酵则需要微生物积累较多的代谢产物,因此对微生物的代谢 必须进行人工控制。
分解代谢物阻遏:可被组成酶快速利用的基质,阻遏了分 解难利用基质的酶的合成。
2020/11/5
1、酶合成的调节(粗调)
③酶合成调节的遗传机制:操纵子学说
操纵子是指基因组DNA分子的一个片段,这个片断 由启动子、调节基因、操纵基因和结构基因组成。 诱导型操纵子:效应物存在导致基因表达。 阻遏型操纵子:效应物存在导致基因表达的关闭。
Thr Met
Lys
Asp:天门冬氨酸;Asp-P:天门冬氨酰磷酸;Asa:天门冬氨酸半醛; Hse:高丝氨酸;Thr:苏氨酸;Met:甲硫氨酸;Lys:赖氨酸;AK: 天门冬氨酸激酶;HSDH:高丝氨酸脱氢酶
2020/11/5
将诱变处理后的菌种接种到完全培养基上,生成的菌落再 以影印法分别接种到含葡萄糖培养基和以产物作为唯一碳 源的培养基上。在后一种培养基上不能生长的菌落就是缺 乏产物降解酶的变异株。 3、产物降解酶缺失突变株
抑制
抑制
D
E
Y
E3
E1
A
B
C
E2
E4 F
G
Z
抑制
抑制
2020/11/5
末端产物Y和Z单独过量,对途径中第一个酶E1无抑制作用, 只有Y和Z同时过量,才能对E1具有抑制作用。另两个控制 点的酶E2和E3分别被Y和Z所抑制。
协同反馈抑制
抑制
抑制
D
E
Y
E2
A
B
C
E1
E3
F
G
Z
抑制
2020/11/5
末端产物Y和Z单独过量时,各自对途径中第一个酶E1仅产 生较小的抑制作用,一种末端产物过量并不影响其他末端产 物的形成。只有当Y和Z同时过量,才能对E1产生较大的抑 制作用。
有的代谢产物由于相应降解酶的存在而在发酵液中不能稳定存在,因 此可通过诱变获得缺乏降解产物的酶的菌株使发酵单位提高。
2020/11/5
4、细胞膜组分的缺失突变
以前经常提到反馈抑制和反馈阻遏,都是由于末端 产物的浓度过高引起的。利用细胞膜组分的缺失突 变使细胞膜的透性增大,可使代谢产物易于分泌到 胞外,从而达到解除末端产物抑制或阻遏的目的。