高考数学第一轮复习数列
新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

所以 an=aan-n 1·aann- -12·…·aa21·a1=n+n 1·n-n 1·nn- -21·…·23=n+2 1.
2,n=1, 所以 an=2nn-1,n≥2.
已知 Sn 求 an 的步骤 (1)利用 a1=S1 求出 a1. (2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn- 1(n≥2)求出当 n≥2 时 an 的表达式. (3)检验 n=1 时的值是否符合 n≥2 时的表达式,再写出通项公 式 an.
式 an=59(10n-1).
1.错误地表示符号规律致误:项正负相间的数列可以用(-1)n, (-1)n+1 表示符号,要分清是先负后正还是先正后负.
2.未对项变形致误:若已知的项的形式不统一,则不便求通项 公式,因此可以先将项通过变形统一形式后再观察求通项公式,如题 (3).
3.求通项公式时要注意联想:对于如题(4)这样的数列,可以通 过联想 10,100,1 000,10 000→9,99,999,9 999→1,11,111,1 111 进而得 到通项公式.
考点2 由Sn与an的关系求通项——综合性
(1)若数列{an}的前 n 项和 Sn=n2-10n,则此数列的通项 公式为 an=________.
(2)若数列{an}的前 n 项和 Sn=2n+1,则此数列的通项公式为 an =________.
3,n=1, (1)2n-11 (2)2n-1,n≥2.
解:(1)这个数列的前 4 项的绝对值都等于序号与序号加 1 的乘 积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式 an=(- 1)n·nn1+1.
(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为 1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数 的乘积,故所求数列的一个通项公式 an=2n-12n2n+1.
人教版高中数学高考一轮复习--数列的概念(课件)

故Sn=2×3n-1.
2×3n-1
.
能力形成点3
由数列的递推关系式求通项公式
表示,那么这个式子叫做这个数列的通项公式,常用an=f(n)(n∈N*)表示.
问题思考
数列的通项公式an=3n+5与函数y=3x+5有何区分与联系?
数列的通项公式an=3n+5是特殊的函数,其定义域为N*,而函数y=3x+5的
定义域是R,an=3n+5的图象是离散的点,且在y=3x+5的图象上.
6.数列的递推公式
得到正确的选项.
对点训练 1
2 4 6
(1)数列 0, , , ,…的一个通项公式为( C )
3 5 7
-1
-1
2(-1)
A.an=
B.an=
C.an=
+2
2+1
2-1
2
D.an=
2+1
(方法一:直接法)由第2,3,4项的分母可知,通项公式的分母为奇数1,3,5,7,…,
故a1的分母为1,an的分母为2n-1.
第二环节
关键能力形成
能力形成点1
由数列的前几项求数列的通项公式
例 1 根据下面各数列前几项的值,写出数列的一个通项公式:
(1)-1,7,-13,19,…;
1
1
1
1
(2),
,,
,…;
1×2 2×3 3×4 4×5
2 4 6 8 10
(3)3 , 15 , 35 , 63 , 99,…;
1 9 25
1 4 9 16 25
2
察,即2 , 2 , 2 , 2 , 2 ,…,从而可得该数列的一个通项公式 an= 2 .
2024届高考一轮复习数学课件(新人教B版):等差数列

所以数列{ Sn}是等差数列. ①②⇒③. 已知{an}是等差数列,{ Sn}是等差数列.
设数列{an}的公差为d, 则 Sn=na1+nn- 2 1d=12n2d+a1-d2n.
因为数列{ Sn}是等差数列, 所以数列{ Sn}的通项公式是关于 n 的一次函数,
教材改编题
1.在等差数列{an}中,已知a5=11,a8=5,则a10等于
A.-2
B.-1
√C.1
D.2
设等差数列{an}的公差为 d,由题意得151==aa1+1+74dd,, 解得ad1==-192,. ∴an=-2n+21. ∴a10=-2×10+21=1.
教材改编题
2.设等差数列{an}的前n项和为Sn,若S4=8,S8=20,则a9+a10+a11+a12
A.aa94=-1
√C.aa93=-1
B.aa83=-1 D.aa140=-1
由aa85=-2 得 a5≠0,2a5+a8=a4+a6+a8=3a6=0, 所以a6=0,a3+a9=2a6=0, 因为a5≠0,a6=0, 所以 a3≠0,aa93=-1.
命题点2 等差数列前n项和的性质
例 4 (1)设等差数列{an},{bn}的前 n 项和分别为 Sn,Tn,若对任意的
则 a1-d2=0,即 d=2a1,所以 a2=a1+d=3a1. ②③⇒①. 已知数列{ Sn}是等差数列,a2=3a1, 所以S1=a1,S2=a1+a2=4a1. 设数列{ Sn}的公差为 d,d>0, 则 S2- S1= 4a1- a1=d,得 a1=d2, 所以 Sn= S1+(n-1)d=nd,
所以Sn=n2d2, 所以an=Sn-Sn-1=n2d2-(n-1)2d2=2d2n-d2(n≥2),是关于n的一 次函数,且a1=d2满足上式, 所以数列{an}是等差数列.
2025届高考数学一轮总复习第六章数列第一节数列的概念与简单表示法

第一节 数列的概念与简单表示法
课标
1.了解数列的概念和表示方法(表格、图象、通项公式、递推公式).
解读
2.了解数列是一种特殊的函数.
强基础 增分策略
知识梳理
1.数列的有关概念
概念
含义
数列的项
按照 确定的顺序 排列的一列数
数列中的 每一个数
数列的通项
数列{an}的第n项an
数列
通项公式
前n项和
如果数列{an}的递推公式满足an+1-an=f(n)的形式,且f(n)可求和,那么就可
以运用累加法an=(an-an-1)+(an-1-an-2)+(an-2-an-3)+…+(a2-a1)+a1,求出数列
{an}的通项公式.
对点训练
1
3 数列{an}中,a1=0,an+1-an= + +1,且
√ √
an=9,则 n=
.
答案 100
1
解析∵an+1-an= + +1
√ √
= √ + 1 − √,
∴an=an-an-1+an-1-an-2+…+a2-a1+a1=√ − -1 + -1 − -2+…+√2 −
√1+0=√-1.∵an=9,即√-1=9,解得 n=100.
考向2.累乘法
-1
· ··
…·
2 3 4
+1
1
1
1
1
1
∴S30=1- + − +…+ −
2
2
3
30
高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。
下面给出一些数列求和的方法指导,希望对高考复习有所帮助。
1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。
对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。
2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。
对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。
3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。
首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。
4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。
首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。
5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。
首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。
6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。
该公式是等差数列求和公式的一个变形。
首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。
2023版高考数学一轮总复习6-1数列的概念及表示课件

3.结合相应函数的图象直观判断.
例3
(1)已知数列{an}满足an=
(3 an5
a)n 2, , n 6,
n
6,
且{an}是递增数列,则实数a
2)an=
SS1n(n
1), Sn1 (n
2).
考法一 利用Sn与an的关系求通项公式 1.已知Sn求an的步骤: 1)先利用a1=S1求出a1. 2)用n-1替换Sn中的n得到一个新的关系,利用an=Sn-Sn-1(n≥2)便可求出当n ≥2时an的表达式. 3)对n=1时的结果进行检验,看是否符合n≥2时an的表达式,若符合,则数列 的通项公式合写;若不符合,则应该分n=1与n≥2两段来写.
=n+3× (n 1) n = (3n 1)n ,
2
2
∴a10=
(3
1021)来自10=145.故选B.
答案 B
考法三 数列的单调性和最大(小)项 1.用作差比较法,根据an+1-an的符号判断数列{an}是递增数列、递减数列 或常数列.
2.用作商比较法,根据 an1 (an>0或an<0)与1的大小关系进行判断.
2.数列的性质
递增数列 递减数列 常数列 摆动数列
周期数列
∀n∈N*,an+1>an ∀n∈N*,an+1<an ∀n∈N*,an+1=an 从第2项起,有些项大于它的前一项,有些项小于 它的前一项的数列 ∀n∈N*,存在正整数k,使得an+k=an
3.数列的通项公式和递推公式 1)通项公式:如果数列{an}的第n项an与序号n之间的关系可以用一个式子 an=f(n)来表示,那么这个式子叫做这个数列的通项公式. 2)递推公式:如果已知数列{an}的第一项(或前几项),且从第二项(或某一 项)开始,任何一项an与它的前一项an-1(n≥2)(或前几项)间的关系可以用一 个式子来表示,那么这个式子叫做数列{an}的递推公式. 4.数列{an}的前n项和及其与通项公式的关系 1)Sn=a1+a2+…+an.
2024年高考数学一轮复习(新高考版)《数列求和》课件ppt

跟踪训练2 (2023·重庆模拟)在①a1=1,nan+1=(n+1)·an,② 2a1 + 2a2 +…+2an =2n+1-2这两个条件中任选一个,补充在下面的问题中并作答. 问题:在数列{an}中,已知________. 注:如果选择多个条件分别解答,按第一个解答计分. (1)求{an}的通项公式;
(2)若bn=
2an 1 3an
,求数列{bn}的前n项和Sn.
由(1)可知 bn=2n3-n 1,
则 Sn=311+332+…+2n3-n 1,
①
13Sn=312+333+…+2n3-n 3+23nn-+11.
②
两式相减得23Sn=13+322+323+…+32n-23nn-+11=13+2911--313n1-1-23nn-+11
教材改编题
2.数列{an}的前 n 项和为 Sn.若 an=nn1+1,则 S5 等于
A.1
√B.56
C.16
D.310
因为 an=nn1+1=1n-n+1 1, 所以 S5=a1+a2+…+a5=1-12+12-13+…-16=56.
教材改编题
3.Sn=12+12+38+…+2nn等于
2n-n-1 A. 2n
第六章 数 列
§6.5 数列求和
考试要求
1.熟练掌握等差、等比数列的前n项和公式. 2.掌握非等差数列、非等比数列求和的几种常用方法.
内容索引
第一部分
落实主干知识
第二部分
探究核心题型
第三部分
课时精练
第
一 部 分
落实主干知识
知识梳理
数列求和的几种常用方法
1.公式法
直接利用等差数列、等比数列的前n项和公式求和.
数列的概念及简单表示法(高三一轮复习)

所以数列
S 2
n
是首项为S
2 1
=a
2 1
=1,公差为1的等差数列,所以S
2 n
=n,所以Sn=
n
(n∈N*).
数学 N 必备知识 自主学习 关键能力 互动探究
— 20 —
命题点2 由数列的递推公式求通项公式
考向1 累加法
例2
设数列
a
n
满足a1=1,且an+1-an=1(n∈N*),则数列
1 3
an+1,所以a2=3S1=3×
16 3
=16.当n≥2时,有an=Sn-Sn-1
=13an+1-13an,即an+1=4an.
所以从第二项起,数列an为首项为16,公比为4的等比数列,所以an= 4n(n≥2).
经检验,an=4n对n=1不成立,
所以an=136,n=1, 4n,n≥2.
数学 N 必备知识 自主学习 关键能力 互动探究
,所以a2=
4 2-a1
=
4 2-4
=-2,a3=
4 2-a2
=
4 2+2
=1,a4=
4 2-a3
=
4 2-1
=4,…,所以数列
a
n
是以3为周期的周期数列,又2
022=
673×3+3,所以a2 022=a673×3+3=1.
数学 N 必备知识 自主学习 关键能力 互动探究
— 12 —
4.(易错题)若数列
— 7—
4.数列的表示法 数列有三种表示法,它们分别是 8 列表法 、图象法和 9 解析法 .
数学 N 必备知识 自主学习 关键能力 互动探究
— 8—
常用结论► (1)数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有 关,还与这些“数”的排列顺序有关. (2)项与项数的概念:数列的项是指数列中某一确定的数,而项数是指数列的项 对应的位置序号. (3)若数列{an}的前n项和为Sn,则数列{an}的通项公式为an=SS1n,-nS=n-11,,n≥2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设S n 是等比数列{a n }的前n 项和,S 3S 6=13,则S 6S 12等于( )A.13B.15C.18D.192.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( )A .8B .7C .6D .53.已知数列{a n }是各项均为正数的等比数列,a 1=3,前3项和S 3=21,则a 3+a 4+a 5=( )A .2B .33C .84D .1894.等差数列{a n }的前n 项和为S n ,若a 3+a 7-a 10=5,a 11-a 4=7,则S 13等于( )A .152B .154C .156D .1585.已知数列{a n }中,a 1=b (b >1),a n +1=-1a n +1(n ∈N *),能使a n =b 的n 可以等于( )A .14B .15C .16D .176.数列{a n }的前n 项和为S n ,若S n =2a n -1(n ∈N *),则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 7.设等差数列{a n }的前n 项和为S n ,若S 15>0,S 16<0,则S 1a 1,S 2a 2,…,S 15a 15中最大的是( )A.S 6a 6B.S 7a 7C.S 8a 8D.S 9a 98.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +4n的最小值为( )A.32B.53C.256D.43二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡相应位置)9.在等比数列{a n }中,a 5·a 11=3,a 3+a 13=4,则a 15a 5=________.10.已知数列{a n }满足a 1=2,a n +1=5a n -133a n -7(n ∈N *),则数列{a n }的前100项的和为________.11.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10=________.12.数列{a n }中,a 1=35,a n +1-a n =2n -1(n ∈N *),则a nn的最小值是________.13.已知a ,b ,c 是递减的等差数列,若将数列中两个数的位置对换,得到一个等比数列,则a 2+b 2c2的值为________.14.用大小一样的钢珠可以排成正三角形、正方形与正五边形数组,其排列的规律如下图所示:个钢珠去排成每边n 个钢珠的正五边形数组时,就会多出9个钢珠,则m =________.三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤)15.(12分)在数列{a n }、{b n }中,已知{a n }是等差数列,且a 2=3,a 5=9,又点(n ,b n )在曲线y =3x上.(1)求数列{a n }、{b n }的通项公式;(2)令c n =a n +b n ,求数列{c n }的前n 项和T n .16.(13分)设各项为正数的等比数列{a n }的前n 项和为S n ,S 4=1,S 8=17. (1)求数列{a n }的通项公式;(2)是否存在最小正整数m ,使得当n ≥m 时,a n >201115恒成立?若存在,求出m ;若不存在,请说明理由.17.(13分)某同学在暑假的勤工俭学活动中,帮助某公司推销一种产品,每推销1件产品可获利润4元,第1天他推销了12件,之后加强了宣传,从第2天起,每天比前一天多推销3件.问:(1)该同学第6天的获利是多少元?(2)该同学参加这次活动的时间至少要达到多少天,所获得的总利润才能不少于1020元?18.(14分)已知数列{a n }是各项均不为0的等差数列,S n 是其前n 项和,且满足S 2n -1=12a 2n,n ∈N+.(1)求a n ;(2)数列{b n }满足b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),12a n -1(n 为偶数),T n 为数列{b n }的前n 项和,求T 2n .19.(14分)数列{b n }(n ∈N *)是递增的等比数列,且b 1+b 3=5,b 1b 3=4. (1)求数列{b n }的通项公式;(2)若a n =log 2b n +3,求证数列{a n }是等差数列; (3)若a 21+a 2+a 3+…+a m ≤a 46,求m 的最大值.20.(14分)已知数列{a n }单调递增,且各项非负,对于正整数K ,若对任意i ,j (1≤i ≤j ≤K ),a j -a i 仍是{a n }中的项,则称数列{a n }为“K 项可减数列”.(1)已知数列{b n }是首项为2,公比为2的等比数列,且数列{b n -2}是“K 项可减数列”,试确定K 的最大值.(2)求证:若数列{a n }是“K 项可减数列”,则其前n 项和S n =n2a n (n =1,2,…,K ).参考答案1.B [解析] 设等比数列{a n }的公比为q ,则由S 3S 6=13,得1-q 31-q 6=13, 解得q 3=2,所以S 6S 12=1-q 61-q 12=1-41-16=15,故选B.2.D [解析] ∵S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =4k +4,∴4k +4=24,可得k =5,故选D. 3.C [解析] 设等比数列{a n }的公比为q ,由S 3=a 1+a 2+a 3=21,得a 1(1+q +q 2)=21,即q 2+q -6=0,解得q =2或q =-3(舍去),∴a 3+a 4+a 5=a 1(q 2+q 3+q 4)=3(22+23+24)=84,故选C.4.C [解析] 由题设a 3+a 7-a 10=5,a 11-a 4=7,得a 3+a 11+a 7-(a 10+a 4)=12,即a 7=12,则S 13=13(a 1+a 13)2=13·2a 72=156,故选C.5.C [解析] ∵a 1=b (b >1),∴a 2=-1b +1,a 3=-b +1b =-1-1b ,a 4=b ,由此可得数列{a n }是周期为3的数列,a 16=a 3×5+1=a 1=b ,故选C.6.C [解析] 由已知,有S n =2a n -1,S n -1=2a n -1-1(n ≥2),两式相减,得a n =2a n -2a n -1,即a n =2a n -1,∴数列{a n }是公比为2的等比数列,又S 1=2a 1-1,得a 1=1,则a n =2n -1,1a n a n +1=⎝⎛⎭⎫122n -1,∴T n =1a 1a 2+1a 2a 3+…+1a n a n +1=12+⎝⎛⎭⎫123+⎝⎛⎭⎫125+…+⎝⎛⎭⎫122n -1 =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎝⎛⎭⎫1-14n ,故选C 7.C [解析] 由S 15>0,得S 15=15(a 1+a 15)2=15a 8>0,即a 8>0,由S 16<0,得S 16=16(a 1+a 16)2=8(a 8+a 9)<0,即a 9<-a 8<0,∴数列{a n }是递减数列,前8项为正,第9项起为负,则S 8最大,而正项中a 8最小,故选C.8.A [解析] 设等比数列的公比为q ,由a 7=a 6+2a 5,得 a 1q 6=a 1q 5+2a 1q 4,q 2-q -2=0,解得q =2或q =-1(舍去).由a m a n =4a 1,得a 1·2m -1·a 1·2n -1=4a 1,即2m +n -2=24,m +n =6,∴1m +4n =⎝⎛⎭⎫1m +4n ·m +n 6=56+2m 3n +n 6m≥56+22m 3n ·n 6m =56+23=32, 当且仅当2m 3n =n6m ,即m =2,n =4时取等号,故选A.9.3或13 [解析] ∵a 5·a 11=a 3·a 13=3,a 3+a 13=4,∴a 3=1,a 13=3或a 3=3,a 13=1,∴a 15a 5=a 13a 3=3或13,故选C.10.200 [解析] 由已知a n +1=5a n -133a n -7,得a 2=3,a 3=1,a 4=2,…,由此可知数列{a n }是周期为3的数列,其前100项的和为33×6+2=200.11.1 [解析] 方法一:由S n +S m =S n +m ,得S 1+S 9=S 10, ∴a 10=S 10-S 9=S 1=a 1=1. 方法二:∵S 2=a 1+a 2=2S 1,∴a 2=1, ∵S 3=S 1+S 2=3,∴a 3=1,∵S 4=S 1+S 3=4,∴a 4=1, 由此归纳a 10=1.12.10 [解析] 由已知,得a 2-a 1=1,a 3-a 2=3,…,a n -a n -1=2(n -1)-1,各式相加,得a n -a 1=1+3+…+2(n -1)-1=(n -1)(1+2n -3)2=(n -1)2,即a n =(n -1)2+35,∴a n n =n +36n -2≥2n ·36n-2=10, 故当且仅当n =36n ,即n =6时,a nn有最小值,最小值是10.13.516或174 [解析] 依题意,得 ①⎩⎪⎨⎪⎧ a +c =2b ,b 2=ac 或②⎩⎪⎨⎪⎧ a +c =2b ,a 2=bc 或③⎩⎪⎨⎪⎧a +c =2b ,c 2=ab , 由①得a =b =c ,与“a ,b ,c 是递减的等差数列”相矛盾;由②消去c 整理得(a -b )(a +2b )=0,又a >b ,∴a =-2b ,c =4b ,a 2+b 2c 2=516;由③消去a 整理得(c -b )(c +2b )=0,又b >c ,∴c =-2b ,a =4b ,a 2+b 2c 2=174.14.126 [解析] 每边n 个钢珠的正三角形需要钢珠n (n +1)2个,每边n 个钢珠的正方形需要钢珠n 2个,根据已知n (n +1)2+n 2=m .设每边n 个钢珠的正五边形需要钢珠a n 个,根据组成规律,则a n +1=a n +3n +1且a 1=1,根据这个递推式解得a n =1+(3n +2)(n -1)2,根据已知1+(3n +2)(n -1)2+9=m .所以n (n +1)2+n 2=10+(3n +2)(n -1)2,解得n =9,所以m =9×102+92=126.15.[解答] (1)设等差数列{a n }的公差为d ,则3d =a 5-a 2=9-3=6,d =2, ∴数列{a n }的通项公式是a n =a 1+(n -1)d =a 2-d +(n -1)d =2n -1; ∵点(n ,b n )在曲线y =3x 上,∴数列{b n }的通项公式为b n =3n . (2)由已知c n =a n +b n ,得数列{c n }的前n 项和为T n =c 1+c 2+…+c n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n ) =n (1+2n -1)2+3(1-3n )1-3=12·3n +1+n 2-32.16.[解答] (1)设{a n }的公比为q ,由S 4=1,S 8=17,知q ≠1,所以得a 1(q 4-1)q -1=1,a 1(q 8-1)q -1=17.相除得q 8-1q 4-1=17,解得q 4=16,所以q =2或q =-2(舍去).将q =2代入a 1(q 4-1)q -1=1得a 1=115,所以a n =2n -115.(2)由a n =2n -115>201115,得2n -1>2011,而210<2011<211,所以n -1≥11,即n ≥12.因此,存在最小的正整数m =12,使得n ≥m 时,a n >201115恒成立.17.[解答] (1)记此同学第n 天推销的产品的件数为a n ,由题设可知,{a n }是一个公差为3的等差数列,则a n =12+(n -1)×3=3n +9,a 6=27,∴该同学第6天的获利是27×4=108(元).(2)设该同学前n 天推销的产品的件数为S n ,由题设可知,S n =12n +n (n -1)2×3,令4S n ≥1020,即12n +n (n -1)2×3≥255,化简,得n 2+7n -170≥0,解得n ≥10或n ≤-17(舍去),故该同学参加这次活动的时间至少要达到10天,所获得的总利润才能不少于1020元.18.[解答] (1)设数列{a n }的首项为a 1,公差为d ,在S 2n -1=12a 2n 中,令n =1,n =2,得⎩⎪⎨⎪⎧2S 1=a 21,2S 3=a 22,即⎩⎪⎨⎪⎧2a 1=a 21,2(3a 1+3d )=(a 1+d )2, 解得a 1=2,d =4或d =-2(舍去).所以a n =4n -2.(2)由(1)得b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),2n -3(n 为偶数),所以T 2n =1+(2×2-3)+22+(2×4-3)+24+(2×6-3)+…+22n -2+(2×2n -3)=1+22+24+…+22n -2+4(1+2+…+n )-3n =1-4n 1-4+4×n (n +1)2-3n=4n 3+2n 2-n -13. 19.[解答] (1)由⎩⎪⎨⎪⎧b 1b 3=4,b 1+b 3=5,知b 1,b 3是方程x 2-5x +4=0的两根,注意到b n +1>b n 得b 1=1,b 3=4. b 22=b 1b 3=4,得b 2=2,∴b 1=1,b 2=2,b 3=4.等比数列{b n }的公比为b 2b 1=2,∴b n =b 1q n -1=2n -1.(2)证明:a n =log 2b n +3=log 22n -1+3=n -1+3=n +2. ∵a n +1-a n =[(n +1)+2]-(n +2)=1,故数列{a n }是首项为3,公差为1的等差数列.(3)由(2)知数列{a n }是首项为3,公差为1的等差数列,有a 21+a 2+a 3+…+a m =a 21+a 1+a 2+a 3+…+a m -a 1=32+m ×3+m (m -1)2×1-3=6+3m +m 2-m 2,∵a 46=48,∴6+3m +m 2-m2≤48,整理得m 2+5m -84≤0,解得-12≤m ≤7. ∴m 的最大值是7.20.[解答] (1)设c n =b n -2=2n -2,则c 1=0,c 2=2,c 3=6,则c 1-c 1=c 1,c 2-c 1=c 2,c 2-c 2=c 1,即数列{c n }一定是“2项可减数列”, 但因为c 3-c 2≠c 1,c 3-c 2≠c 2,c 3-c 2≠c 3,所以K 的最大值为2.(2)证明:因为数列{a n }是“K 项可减数列”,所以a K -a t (t =1,2,…,K )必定是数列{a n }中的项,而{a n }是递增数列,a K -a K <a K -a K -1<a K -a K -2<…<a K -a 1,所以必有a K -a K =a 1,a K -a K -1=a 2,a K -a K -2=a 3,…,a K -a 1=a K . 故a 1+a 2+a 3+…+a K =(a K -a K )+(a K -a K -1)+(a K -a K -2)+…+(a K -a 1) =Ka K -(a 1+a 2+a 3+…+a K ),所以S K =Ka K -S K ,即S K =K2a K ,所以S n =n2a n (n =1,2,…,K ).。