门电路构成的单稳态触发器及典型应用分析

合集下载

门电路组成的微分型单稳态触发器

门电路组成的微分型单稳态触发器

门电路组成的微分型单稳态触发器单稳态触发器的特点:1. 电路中有一个稳态,一个暂稳态。

2. 在外来触发信号作用下,电路由稳态翻转到暂稳态。

3. 暂稳态是一个不能长期保持的状态,由于电路中RC 延时环节的作用,经过一段时间后,电路会自动返回到稳态。

暂稳态的持续时间取决于RC 电路的参数值。

单稳态触发器的这些特点被广泛地应用于脉冲波形的变换与延时中。

1、电路组成及工作原理微分型单稳态触发器可由与非门和或非门电路组成,图1(a)、(b)分别为由与非门和或非门构成的单稳态触发器。

与基本RC 触发器不同,构成单稳态触发器的两个规律门是由RC 耦合的,由于RC 电路为微分电路的形式,故称为微分型单稳态触发器。

下面以CMOS或非门构成的单稳态触发器为例,来说明它的工作原理。

(a) 由与非门构成的微分型单稳态触发器(b) 由或非门构成的微分型单稳态触发器图1 微分型单稳态触发器1. 没有触发信号时,电路处于一种稳态。

没有触发信号时,vⅠ为低电平。

由于门G2的输入端经电阻R 接VDD,因此vO2为低电平;G1的两个输入均为0,故输出vO1为高电平,电容两端的电压接近0V,这是电路的“稳态”。

在触发信号到来之前电路始终处于这个状态:vO1=VOH,vO2=VOL。

2. 外加触发信号,电路由稳态翻转到暂稳态。

当v1正跳变上升到Vth后,开头G1的输出vO1由高变低,经电容C 耦合,使vR为低电平,于是G2的输出vO2由低电平变为高电平。

vO2的高电平接至G1门的输入端,从而在此瞬间导致如下正反馈过程:这样G1导通,G2截止在瞬间完成。

此时,即使触发信号vⅠ撤除(vⅠ变为低电平),由于vO2的作用,vO1仍维持低电平。

然而,电路的这种状态是不能长期保持的,故称之为暂稳态。

暂稳态时,vO1=VOL,vO2=VOH。

3. 电容充电,电路由暂稳态自动返回至稳态。

在暂稳态期间,电源经电阻R和门G1的导通工作管对电容C充电,随着充电时间的增加,vC增加,使vR上升,当vR达到阈值电压Vth 时,电路发生下述正反馈过程(设此时触发器脉冲已消逝):于是G1门快速截止,G2门很快导通,最终使电路由暂稳态返回至稳态,vO1=VOH,vO2=VOL。

数字电子电路分析与应用)4-3单稳态触发器

数字电子电路分析与应用)4-3单稳态触发器
稳态
触发器在暂稳态结束后,会进入 一个稳定的状态,此时触发器的 输出状态保持不变。
触发器的波形变换功能
01
02
03
脉冲整形
利用触发器可以将不规则 的输入信号转换成具有特 定波形和频率的输出信号。
信号分离
可以将一个连续的输入信 号分离成多个脉冲信号, 实现信号的分离和整形。
信号分频
利用触发器可以将输入信 号的频率降低,实现信号 的分频。
输出脉冲宽度稳定,受电源电压和温度变化影响较小。
单稳态触发器的优势与不足
• 输出脉冲幅度大,驱动能力强。
单稳态触发器的优势与不足
不足
输出脉冲的上升沿和下降 沿不陡峭,可能会影响后 续电路的工作。
输出脉冲宽度固定,无法 调节。
电路的延迟时间受元件参 数影响较大,不易精确控 制。
单稳态触发器的发展趋势
恢复时间
指从输出状态改变后,输出回到稳定状态所需的时间。
影响因素
触发器的电路结构和参数,以及上一次触发后的余振影响。
选择依据
根据实际应用需求,选择具有较短恢复时间的单稳态触发器,以 提高工作效率。
重复频率
重复频率
指单位时间内触发器能够重复工 作的次数。
影响因素
触发器的电路结构和参数,以及 电源电压和环境温度等外部条件。
03 单稳态触发器的应用
定时器
定时器
单稳态触发器可以用于定时器电路, 通过设定输入脉冲的宽度和延迟时间 ,实现定时控制。
定时器应用
定时器在各种电子设备和系统中有着 广泛的应用,如微波炉、烤箱、洗衣 机等家电的计时功能,以及计算机和 通信设备的时钟信号等。
脉冲整形
脉冲整形
单稳态触发器可以对输入脉冲进行整形,通过调整输出脉冲的宽度和形状,以 满足特定电路的要求。

单稳态触发器

单稳态触发器
单元2 单稳态触发器
《数字电子技术》
2.1 微分型单稳态触发器 2.2 集成单稳态触发器 2.3 单稳态触发器的应用
单元2 单稳态触发器
引言
《数字电子技术》
单稳态触发器是输出有一个稳态和一个暂稳态的电路。 它不同于触发器的双稳态。单稳态触发器在无外加触发信 号时处于稳态。在外加触发信号的作用下,电路从稳态进 入到暂稳态,经过一段时间后,电路又会自动返回到稳态。 暂稳态维持时间的长短取决于电路本身的参数,与触发信 号无关。单稳态触发器在触发信号的作用下能产生一定宽 度的矩形脉冲,广泛用于数字系统中的整形、延时和定时。
单元2 单稳态触发器
2.1 微分型单稳态触发器
1、工作原理
《数字电子技术》
(1)稳态
在无触发信号(uI为高电平)且R< ROFF时,G2门关闭,uO2输出高电平;G1门 全1出0,uO1为低电平,电路处于稳态。
工作波形
单元2 单稳态触发器
2.1 微分型单稳态触发器
1、工作原理
《数字电子技术》
(2)暂稳态
tW ≈ 0.7RC 在应用微分型单稳态触发器时对触发信号uI的脉宽和
周期要有一定的限制。即要求脉宽要小于暂稳态时间,周 期要大于暂稳态加恢复过程时间,这样才能保证电路正常 工作。
单元2 单稳态触发器
2.2 集成单稳态触发器
《数字电子技术》
集成单稳态触发器根据工作状态的不同可分为不可重复触发和可重复
逻辑符号
引脚排列
单元2 单稳态触发器
2.2 集成单稳态触发器
《数字电子技术》
74LS121的 功能表
1、触发脉冲 74LSl21有两种触发方式,可以上升沿触发,也可下降沿触发。
(1)上升沿触发时,触发脉冲应从B端输入,且A1和A2中至少有一 个为低电平。此时,电路由稳态翻转W延时即可得一负脉冲 。因此利

单稳态触发器

单稳态触发器

同时输出返回到
的状态。
此后电容C通过电阻R和G2门的导通电路放电, 最终使电容C上的电压恢复到稳定状态时的初始 值,电路从暂稳态回复到稳态。
2.电路波形 uI
0 uO1
uI02 UDD UTH
0
uO
tw
tw
0
t1 t2
t
t UDD+ΔU
t
t
由波形图可知,若uI的正脉宽大于暂态脉宽tw,在电 路由暂态返回到稳态时,由于门G1被uI封锁住了, 会使输出uO的下降沿变缓,波形质量下降。 此时可以在单稳态触发器的输入端加一个RC微分电路,
当输入触发脉冲uI上升到G1门的阈值电压UTH,电路中 将产生如下正反馈过程: uI↑→ uO1↓→ uI2↓→ uO↑ 则门G1迅速导通,uO1很快 从高电平跳变为低电平 ,而由于电容C两端的电压不能 突变,所以uI2也同时跳变为低电平,门G2截止,输出 uO跳变为高电平。
此时即使触发信号uI撤除(即uI变为低电平),uO仍维 持高电平。 但电路的这种状态不能长久保持,所以叫做暂稳态。
数字电子技术基础
单稳态触发器
单稳态触发器
1.1 门电路构成的单稳态触发器 1.2 集成单稳态触发器
单稳态触发器--只有一个稳定状态的触发器。
特点:在未加触发脉冲前,电路处于稳定状态; 在触发脉冲到来时,电路由稳定状态翻转为暂 稳定状态,停留一段时间后,电路又自动返回 稳定状态。
暂稳定状态维持的时间长短,取决于电路的 参数(RC),与触发脉冲无关。
另外要注意,对于不同逻辑门组成的单稳态触发器, 电路的触发信号和输出脉冲是不一样的。
3.电路主要参数计算
(1)输出脉冲宽度tw。 由波形图知,输出脉冲宽度tw为电容C充电过程。 即uI2从0V上升到UTH所需的时间。

单稳态触发器实验报告

单稳态触发器实验报告

单稳态触发器实验报告单稳态触发器实验报告引言单稳态触发器是一种重要的电子元件,广泛应用于数字电路和计算机科学领域。

本实验旨在通过实际操作和观察,深入理解单稳态触发器的工作原理和应用。

实验目的1. 学习单稳态触发器的基本原理;2. 掌握单稳态触发器的实际应用;3. 理解单稳态触发器在数字电路中的作用。

实验器材1. 单稳态触发器芯片;2. 电路板;3. 电源;4. 示波器;5. 电阻、电容等元件。

实验步骤1. 搭建单稳态触发器电路:将单稳态触发器芯片连接到电路板上,并根据电路图连接所需的电阻、电容等元件。

2. 接通电源:将电路板连接到电源上,并调节电源的电压和电流。

3. 示波器连接:将示波器的探头连接到电路板上,以便观察电路的波形。

4. 实验观察:通过改变电路中的元件数值和连接方式,观察单稳态触发器的工作状态和输出波形的变化。

5. 记录实验数据:记录每次实验的电路参数、观察到的波形和实验结果。

实验结果与分析在实验过程中,我们通过改变电容值和电阻值,观察到了单稳态触发器的工作状态和输出波形的变化。

当电容值较小或电阻值较大时,触发器的输出波形呈现较长的稳态,即保持在高电平或低电平的时间较长。

而当电容值较大或电阻值较小时,触发器的输出波形呈现较短的稳态,即保持在高电平或低电平的时间较短。

通过实验观察和数据记录,我们发现单稳态触发器在数字电路中具有重要的应用。

例如,在计算机的存储器中,单稳态触发器可以用于控制存储单元的写入和读取操作,确保数据的正确传输和存储。

此外,在通信系统中,单稳态触发器也被广泛应用于数据的解码和编码过程中,提高数据传输的可靠性和稳定性。

结论通过本次实验,我们深入了解了单稳态触发器的工作原理和应用。

实验结果表明,单稳态触发器的输出波形受电容和电阻的数值影响,可以根据实际需求进行调节和控制。

单稳态触发器在数字电路和计算机科学领域具有重要的作用,能够提高数据传输的可靠性和稳定性。

实验中我们还发现,单稳态触发器的稳态时间和触发时间与电容和电阻的数值相关,这为进一步的研究和应用提供了指导。

可重触发单稳态触发器原理

可重触发单稳态触发器原理

可重触发单稳态触发器原理可重触发单稳态触发器是一种常用的数字电路元件,它具有一种特殊的工作方式,能够在输入信号发生变化时产生一个固定的输出脉冲。

本文将介绍可重触发单稳态触发器的原理及其在电路设计中的应用。

可重触发单稳态触发器由RS触发器和一个延时触发器组成。

RS触发器是一种由两个互补反馈的逻辑门组成的电路,它能够存储一个比特的状态。

延时触发器是一种能够延时输入信号的电路,它通常由一个RC电路和一个比较器组成。

可重触发单稳态触发器的工作原理如下:当输入信号发生变化时,RS触发器的状态会发生改变,从而导致输出信号的变化。

延时触发器负责延时输入信号,使得输出信号在一定时间后才发生变化。

当输入信号再次发生变化时,RS触发器的状态会再次改变,但由于延时触发器的延时作用,输出信号不会立即改变,而是在延时时间后才会发生变化。

这样就实现了可重触发的功能。

可重触发单稳态触发器在数字电路设计中有着广泛的应用。

它常用于脉冲信号的处理和时序控制电路中。

在脉冲信号的处理中,可重触发单稳态触发器可以将输入的短脉冲信号转换为固定宽度的脉冲信号,从而方便后续电路的处理。

在时序控制电路中,可重触发单稳态触发器可以实现延时和定时功能,控制电路的执行时间和顺序。

除了在数字电路设计中的应用,可重触发单稳态触发器还可以用于模拟电路中。

在模拟电路中,可重触发单稳态触发器可以实现信号的延时和重构,从而提高电路的稳定性和可靠性。

总的来说,可重触发单稳态触发器是一种重要的数字电路元件,它具有可重触发的特性,能够在输入信号发生变化时产生一个固定的输出脉冲。

它在数字电路设计和模拟电路中有着广泛的应用。

通过学习和理解可重触发单稳态触发器的原理和工作方式,我们可以更好地应用它来解决实际问题,提高电路的性能和可靠性。

门电路组成的微分型单稳态触发器

门电路组成的微分型单稳态触发器

t3
(b)
电容正反馈
多谐振荡器
当vd下降至Vth时,G1由开态变为 关态,va由低电平上跳至高电平,G2 由关态变为开态,vb由高电平下跳至 低电平。电路又一次自动翻转。
当G1处于关态,G2处于开态后,
R
d
&
a
G1 C
(a) 3.6V
va
0.3V
&b G2
电 容 C 充 电 , vd 电 位 逐 渐 上 升 , 在 vd 上升至Vth之前,这段时间称为暂态Ⅱ,
电路从暂稳态回到原来的初始稳定状态,电容上的电压恢复到原来的初始态0
输出脉冲宽度的计算:
主要参数的计算
vR t vc
vc
0
vc
t
e
tw
ln
vc vc vc vc
0
tw
估算
三要素公式
tw
ln
vc vc vc vc
0
tw
RCIn VDD 0 0.7RC
vb
0.3V

如图中t2~t3期间的波形。
vd ΔV 1.4V



当vd上升至Vth时,G1由关态变为
tw1
tw2
开态,G2由开态变为关态,进入暂态 Ⅰ。以后不断重复上述过程,从而形
成周期振荡,在输出端获得矩形波v
电容正反馈 多谐振荡器
R
d
&
a
G1 C
(a) 3.6V
va
0.3V
VDD
1 2
VDD
单稳态触发器
单稳态触发器的工作特点: ① 电路有一个稳态,一个暂稳态 ② 在外来触发信号作用下,电路由稳态翻转到暂稳态 ③ 暂稳态不能长久保持,电路会自动翻转回稳态 ④ 电路在暂稳态中持续的时间,由RC延时环节决定

单稳态触发器

单稳态触发器
的波形信号输出。
2019年7月24日星期三
4
第 12 章 脉冲波形的产生和整形
构成电路:
其周期可以用下面公式计算
T 2.3RC
2019年7月24日星期三
5
第 12 章 脉冲波形的产生和整形
12.1.2 RC基本多谐振荡器
其振荡周期可以用下面公式计算
T 1.4RC
2019年7月24日星期三
6








74HC123功能表


输出
说明
RD
TR
TR
Q
Q
1
0

1

1

0
1
TR↑触发
TR
↓触发 ↑触发
RD
0
×
×
0
1
RD低电平置0
×
1
×
×
×
0
0
1
0
1
TR
为高电平,置0

TR
为低电平,置0

同样有输出脉冲宽度 tW 0.7RextCext
2019年7月24日星期三
14
第 12 章 脉冲波形的产生和整形
12.2.3 单稳态触发器的应用
1.脉冲定时
上图是单稳态触 发器的模块逻辑 表达。用较小的 宽度的脉冲去触 发,可以获得确 定宽度的脉冲输 出,实现定时控 制(如下图)。
2019年7月24日星期三
15
第 12 章 脉冲波形的产生和整形
2.脉冲延迟
某些电路中,要求输入信号出现后电路不立即工作, 而应延迟一段时间后再工作。将输入信号uI1加入第一 级单稳态电路,再级联一级单稳态就获得了延迟tw时 间的脉冲输出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

门电路构成的单稳态触发器及典型应用分析
单稳态触发器有一个稳定状态和一个暂稳态。

当外加触发信号时,单稳态触发器从稳定状态转换到暂稳态,在暂稳态维持一段时间后,由于电路中所包含的电容元件的充放电作用,电路自动返回到稳定状态,因此这种电路称为“单稳”。

暂稳态维持的时间取决于电路本身的参数,而与外触发信号的宽度无关。

根据单稳态触发器的这些特点,数字系统常用它构成整形、脉冲展宽、延时和定时(产生一定宽度的方波)等电路。

【项目任务】
一、门电路构成的单稳态触发器 1.电路结构
由门电路和RC 元件组成的单稳态触发器电路形式较多。

一个电阻和一个电容元件可以组成积分电路或者微分电路,因此,由门电路和RC 元件可组成积分型单稳态触发器和微分型单稳态触发器。

图9.10所示电路就是微分型单稳态触发器的电路形式之一。

电路中电阻R 的值小于门电路的关门电阻值,即R<R OFF 。

图9.10 微分型单稳态触发器
2.工作原理定性分析
分析单稳态触发器的工作原理,就是分析如何在外触发信号的作用下,电路由稳态进入暂稳态,然后又如何在电容充放电的作用下,自动返回到稳定状态。

(1)在图9.10所示电路中,输入信号u I 在稳态下为高电平。

考虑到R<R OFF ,所以稳态时u I2为低电平,则u o 为高电平。

与非门G 1的两个输入端均为高电平,所以,u o1为低电平,电容C 两端的电压近似为0V 。

只要输入信号保持高电平不变,电路就维持在u o1为低电平,u o 为高电平这一稳定状态。

(2)假设在t 1时刻,输入端有一负脉冲信号出现,即外加触发信号开始作用,则与非门G 1的输出u o1变为高电平。

由于电容C 两端的电压不能突变,故u I2随u o1跳变为高电平,
u o
u o 跳变为低电平。

该低电平反馈到G 1的输入端,使u o1仍维持在高电平。

电路处于u o1为高电平、u o 为低电平的暂稳状态。

在暂稳态期间,经电容C 和电阻R 到地形成充电回路,电容C 开始充电,随着充电过程的进行,u I2逐渐下降。

当接近门电路的阈值电压U TH 时(设此时触发脉冲已消失),出现下述正反馈过程。

此正反馈的结果,使电路自动返回到u o1为低电平,u o 为高电平的稳定状态。

电容开始放电,为下一次触发作准备。

其工作波形如图9.11所示。

该图中,t W 为暂稳状态的维持时间,通过定量计算(在此略)可知其大小与R 、C 的大小成正比。

需要说明的是,上述工作波形是在假定输入触发信号的脉冲宽度小于t W 的条件下得到的。

如果这个条件不满足,电路就无法正常工作。

对于宽脉冲触发的输入信号,只要在其输入电路前增加一个简单的RC 微分电路,来实现宽脉冲到窄脉冲的变换即可。

图9.11 微分型单稳态触发器的工作波形
二、集成单稳态触发器
由门电路和RC 元件构成的单稳态触发器电路简单,但输出脉宽的稳定性差,调节范围小,且触发方式单一。

因此在数字系统中,广泛使用集成单稳态触发器。

单片集成单稳态触发器只需要外接RC 元件就可方便使用,而且有多种不同的触发方式和输出方式。

目前使用的集成单稳态触发器有不可重复触发和可重复触发之分,不可重复触发的单稳
U
u t
t
t
u
态触发器一旦被触发进入暂稳态之后,即使再有触发脉冲作用,电路的工作过程也不受其影响,直到该暂稳态结束后,它才接受下一个触发而再次进入暂稳态。

可重复触发单稳态触发器在暂稳态期间,如有触发脉冲作用,电路会被重新触发,使暂稳态继续延迟一个t W 时间。

两种单稳态触发器的工作波形如图9.12所示。

(a )不可重复触发的单稳态触发器工作波形
(b )可重复触发的单稳态触发器工作波形 图9.12 两种单稳态触发器的工作波形
集成单稳态触发器中,74121、74LS121、74221、74LS221等是不可重复触发的单稳态触发器。

74122、74123、74LS123等是可重复触发的单稳态触发器。

下面以不可重复触发的单稳态触发器74LS121为例加以介绍。

(a) 引脚图 (b) 逻辑符号图10-13 单稳态触
发器74LS121
1Q 2NC 3A 14A 25B 6Q 7GND 74LS12114U CC 13NC 12NC
11R ext /C ext 10C ext 9R int 8
NC
(a )
A 1A 2B
int ext ext ext
(b )
u I
u
u I
u
74LS121单稳态触发器的引脚图和逻辑符号如图10-11(a )、(b )所示,外接电阻R ext 的取值范围为2k Ω~40k Ω,外接电容C ext 取值为10pF~1000μF 。

C ext 接在10、11脚之间,R ext 接在11和电源U CC (14脚)之间,此时9脚开路。

当需要电阻较小时,可以直接使用阻值约为2k Ω的内部电阻R int ,此时将R int 接U CC ,即9、14脚相接。

它的输出脉宽为:
0.7W t RC (9.2)
式(9.2)中的R 可以是R ext ,也可以是芯片的内部电阻R int 。

其功能表如表10-1所示。

74LS121的主要功能如下:
(1)电路在输入信号A 1、A 2、B 的所有静态组合下均处于稳态Q =0,Q =1
(2)有两种
边沿触发方式。

输入A 1或A 2是下降沿触发,输入B 是上升沿触发。

从功能表可见,当A 1、A 2或B 中的任一端输入相应的触发脉冲,则在Q 端可以输出一个正向定时脉冲,Q 端输出一个负向脉冲。

表10-1 74LS121功能表
三、单稳态触发器的应用 1.脉冲整形
图10-14 脉冲整形波形
脉冲信号在传输过程中,常会因干扰导致波形的变化。

由于74LS121内部采用了施密特触发(下节介绍)输入结构,故对于边沿较差的输入信号也能输出一个宽度和幅度恒定的矩形脉冲。

利用这一特点,可将宽度和幅度不规则的脉冲整形为规则的脉冲,如图10-14所示。

2.定时控制
u t
u t
利用单稳态触发器能够输出一定宽度t W的矩形脉冲这一特性,去控制某一系统,使其在t W时间内动作(或不动作),从而起到定时控制的作用。

如图10-15所示,在定时时间t W 内,D端输出脉冲信号,而在其他时间,D端不输出脉冲信号。

(a) 逻辑图 (b) 工作波形图9.15脉冲定时控制
3.脉冲延时
脉冲延时一般包括两种情况,一是边沿延时,如图10-16(a)所示,输出脉冲信号的下降沿相对于输入脉冲信号的下降沿延时了t W ;二是脉冲信号整体延时一段时间,如图10-16
(b)所示。

第一种情况利用一个单稳态触发器即可实现,第二种情况可采用两个单稳态触发器来实现。

其中,第一个单稳态触发器采用上升沿触发,其输出脉冲宽度等于所要求的延时时间;第二个单稳态触发器采用下降沿触发,并使其输出脉冲宽度等于第一个单稳态触发器输入脉冲的宽度即可。

(a) 下降沿延时t W (b) 脉冲延时t D
图9.16脉冲延时
u
t
u
u I
u
u
t
t
t
A
B
C
D
A
D。

相关文档
最新文档