3-晶体结构及其与材料性能关系(3)
5.1_晶体材料的结构与物理性能

晶体缺陷
一方面对材料的某些性能产生不良影响 一方面也使材料的性能产生各种变化,达到材料
的改性,甚至赋于材料新的或特殊的性能。 改变晶体中缺陷的种类或缺陷的浓度,可制得所需性能 的晶体材料,是材料改性和制备新型或特殊性能材料的有效 方法之一,非整比化合物构成的材料即是其中的一类。
实例1:在钠蒸汽中加热NaCl晶体 氯化钠晶体中有少量钠原子掺入,此时,若晶体受到辐 射时,钠原子将电离为钠离子和自由电子,钠离子占据正常 正离子位置、电子占据负离子格点,形成Na1+δCl,此时电 子处于空缺位置,他们能够吸收可见光而使晶体材料带有颜 色,为绿色化合物 。
晶体的稳定性: 组成晶体的微粒是对称排列的,形成很规则的几何空 间点阵,组成点阵的各个原子之间,都相互作用着, 它们的作用主要是静电引力。对每一个原子来说,其 他原子对它作用的总效果,使它们都处在势能最低的 状态,因此很稳定,宏观上就表现为形状固定,且不 易改变。
晶体的范性:
晶体内部原子有规则的排列,引起了晶体各向不同的 物理性质。例如原子的规则排列可以使晶体内部出现 若干个晶面,立方体的食盐就有三组与其边平行的平 面。如果外力沿平行晶面的方向作用,则晶体就很容 易滑动(变形),这种变形还不易恢复,称为晶体的 范性。同样也可以看出沿晶面的方向,其弹性限度 小,只要稍加力,就超出了其弹性限度,使其不能复 原;
衍射效应 由于组成材料的周期性排列的晶体相当于三维光 栅,能使波长相当的x射线、电子流或中于流产生衍射 效应,这成为了解晶体材料内部结构的重要实验方法。 测定晶体立体结构的衍射方法,有X射线衍射、电 子衍射和中子衍射等方法。其中以X射线衍射法的应用 所积累的精密分子立体结构信息最多。 例:XRD谱图示例
(2)不同晶体材料的特殊性 不同的晶体材料具有不同的微观结构,使之区 别于其他的晶体,因而又使不同晶体材料之间各 有特点。 例:晶体缺陷形成非整比化合物构成的材料。
金属组织结构的基本轮廓(晶粒、晶界、亚晶、晶体结构)

金属组织结构的基本轮廓(晶粒、晶界、亚晶、晶体结构)1. 引言1.1 概述金属组织结构是材料科学领域中的一个重要研究内容,它涉及到金属材料的微观结构和性能之间的关系。
金属材料广泛应用于制造业和其他领域,因此深入了解金属组织结构对于提高材料性能、改进加工工艺以及开发新型高性能金属具有重大意义。
1.2 文章结构本文将从晶粒、晶界、亚晶和晶体结构四个方面来介绍金属组织结构的基本轮廓。
首先,我们将探讨晶粒的定义、特征以及形成机制与生长过程;其次,我们将详细研究晶界的定义、分类以及对材料力学性能的影响;然后,我们将介绍亚晶的定义、形成机制、观测方法以及研究进展;最后,我们将深入探讨晶体结构,并分析不同类型的晶格结构对材料性质的影响。
1.3 目的本文旨在向读者介绍金属组织结构的基本概念和特征,并探讨其与材料性能之间的关系。
通过对晶粒、晶界、亚晶和晶体结构的详细讨论,读者将能够了解金属材料中微观组织的形成原理以及不同组织结构对材料性质(如强度、塑性、导电性等)的影响。
这将为材料科学工作者和工程师提供有力的指导,以优化金属材料的设计和应用。
2. 晶粒晶粒是金属材料中的基本组织单位,它由大量的原子或分子有序排列而成。
每个晶粒内的原子结构和取向相对稳定,在固态材料中晶粒大小和形状各不相同,具有一定的特征。
2.1 定义与特征晶粒是由同一种晶体结构组成的半球或多面体区域,在结构上呈现出高度有序、周期性和规则性。
它们在材料中是随机分布的,并且相邻晶粒之间以边界进行分割。
每个晶粒具有自己独特的取向和晶格结构,这使得不同的晶粒在外部场合下会表现出不同的性质。
2.2 形成机制与生长过程初始时,金属材料以液态或气态形式存在。
当冷却或凝固时,从液态转变为固态,并开始形成初生晶核。
这些初生晶核会通过吸收周围溶质进行长大并扩张,直到与其他固相结合形成完整的晶体。
这个过程叫做再结晶或冷却结晶。
2.3 晶粒大小与材料性能的关系晶粒的大小对金属材料的性能具有重要影响。
第一章晶体结构(四晶体的结构与性质--无机化合物结构 )

纤锌矿型结构的晶体, 纤锌矿型结构的晶体,如ZnS、CdS、GaAs等和 、 、 等和 其它II与 族 族化合物, 其它 与IV族,III与V族化合物,制成半导体器件,可 与 族化合物 制成半导体器件, 以用来放大超声波。这样的半导体材料具有声电效应。 以用来放大超声波。这样的半导体材料具有声电效应。 通过半导体进行声电相互转换的现象称为声电效应。 通过半导体进行声电相互转换的现象称为声电效应。 声电效应
二、AX2型结构
AX2型结构主要有萤石(CaF2,fluorite)型,金红石 型结构主要有萤石( ) (TiO2,rutile)型和方石英(SiO2,α-cristobalite)型结构。 )型和方石英( )型结构。 其中CaF2为激光基质材料,在玻璃工业中常作为助熔剂和晶 其中 为激光基质材料, 核剂,在水泥工业中常用作矿化剂。 核剂,在水泥工业中常用作矿化剂。TiO2为集成光学棱镜材 料,SiO2为光学材料和压电材料。AX2型结构中还有一种层 为光学材料和压电材料。 型的CdI2和CdCl2型结构,这种材料可作固体润滑剂。AX2 型结构,这种材料可作固体润滑剂。 型的 型晶体也具有按r 选取结构类型的倾向, 型晶体也具有按 +/r-选取结构类型的倾向,见表1-7。 。
型化合物的结构类型与r 表1-4 AX型化合物的结构类型与 +/r-的关系 型化合物的结构类型与
结构类型 CsCl 型 NaCl 型 r+/r1.000~0.732 0.732~0.414 KF RbCl PbBr SrS SrSe MgO NaBr LiCl 1.00 0.82 0.76 0.73 0.66 0.59 0.50 0.43 实例(右边数据为 r+/r-比值) CsCl 0.91 CsBr 0.84 CsI 0.75 SrO 0.96 BaS 0.82 BaSe 0.75 RbI 0.68 CaS 0.62 LiF 0.59 CaTe 0.50 MgSe 0.41 BaO 0.96 RbF 0.89 CaO 0.80 CsF 0.80 NaF 0.74 KCl 0.73 KBr 0.68 BaTe 0.68 KI 0.61 SrTe 0.60 CaSe 0.56 NaCl 0.54 MgS 0.49 NaI 0.44 LiBr 0.40 LiF 0.35 0.20 BeSe 0.18
3-常见晶体结构

小结和作业
1 典型金属的晶体结构(面、体、密)
2 常见无机化合物晶体结构
以立方晶系为主 离子取代原子
重点:各典型金属的晶体结构的晶体学参数
3 固溶体的晶体结构(置换、间隙) 4 固溶体的性能(固溶强化)
作业:1、试从晶体结构的角度说明间隙固溶体、间隙相以及间隙化合物 之间的区别; 2、有一正交点阵,点阵常数a=b、c=a/2,某晶面在3个晶 轴上的截距分别为2个,3个和6个原子间距,求该晶面的密勒指数。 3、解释概念:配位数 、致密度、固溶强化
V K= V 0
V
V0
一个晶胞中原子所占的体积
一个晶胞的体积
在元素周期表一共约有110种元素,其中80
多种是金属,占2/3。而这80多种金属的晶体 结构大多属于三种典型的晶体结构。它们分 别是: 体心立方、面心立方、密排六方
二 典型金属的晶体结构
结构特点:以金属键结合,靠失去外层电子的金属离子 与自由电子的吸引力。无方向性,对称性较高的密 堆结构。 常见结构:
图2-45 面心立方结构
面心立方结构ABCABC排列
沿着面心立方的体对角线观察,就可以看到(111)面的这种堆 垛方式
密排六方结构:属于六方紧密堆积,以ABAB ...的堆积方式堆 积,具有这种结构的金属有:Mg、Zn、α-Ti等
图2-46 密排六方结构
体心立方结构:属于体心立方紧密堆积,原子是以体 心立方空间点阵的形式排列,具有这种结构的金属 有: α-Fe 、Cr、 V、Mo、W等
有序化
EAB结合能与EAA+EBB/2
原子间结合能是指原子结合时克服原子 间相互作用力外力所作的功。结合能越 大,原子越不容易结合。
《材料科学基础》总复习(完整版)

《材料科学基础》上半学期内容重点第一章固体材料的结构基础知识键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念;晶体的特性(5个);晶体的结构特征(空间格子构造)、晶体的分类;晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子;第二章晶体结构与缺陷晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体;典型金属晶体结构;离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例);晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例);第三章材料的相结构及相图相的定义相结构合金的概念:固溶体置换固溶体(1)晶体结构无限互溶的必要条件—晶体结构相同比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明)(2)原子尺寸:原子半径差及晶格畸变;(3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体(一)间隙固溶体定义(二)形成间隙固溶体的原子尺寸因素(三)间隙固溶体的点阵畸变性中间相中间相的定义中间相的基本类型:正常价化合物:正常价化合物、正常价化合物表示方法电子化合物:电子化合物、电子化合物种类原子尺寸因素有关的化合物:间隙相、间隙化合物二元系相图:杠杆规则的作用和应用;匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点;三元相图:三元相图成分表示方法;了解三元相图中的直线法则、杠杆定律、重心定律的定义;第四章材料的相变相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类);按结构分类:重构型相变和位移型相变的异同点;马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变;按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变第5章 金属材料的显微结构特征一、纯金属的凝固及结晶1、结晶的热力学条件结晶后系统自由能下降。
材料科学基础第三章典型晶体结构(共71张PPT)

表示方法:球体堆积法;坐标法;投影图;配位多面体连 接方式
与金刚石晶胞的比照 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、 -ZnS〔纤锌矿〕型结构 〔AB type〕
六方晶系,简单六方格子
配位数:
晶胞中正负离子个数
堆积及空隙情况
同型结构的晶体:BeO, ZnO, AlN等
笼外俘获其它原子或基团,形成类C60的衍生物,例如
C60F60。再如,把K、Cs、Ti等金属原子掺进C60分子 的笼内,就能使其具有超导性能。再有C60H60这些相 对分子质量很大地碳氢化合物热值极高,可做火箭的 燃料等等。
2〕碳纳米管
碳纳米管又称纳米碳管〔 Carbon nanotube,CNT〕,是 单质碳的一维结构形式。碳纳米 管按照石墨烯片的层数分类可分 为:单壁碳纳米管〔Singlewalled nanotubes, SWNTs〕和多 壁碳纳米管〔Multi-walled nanotubes, MWNTs〕。
4. -ZnS〔闪锌矿〕型结构 〔AB type〕 点群:
空间群:
配位数:
晶胞中正负离子个数Z:
堆积及间隙情况:
• 以体积较大的S2-作立方紧密堆积 • Zn2+如何填充? • 空隙如何分布?
等同点分布:
共有2套等同点。这种结构 可以看作是Zn离子处在由S离 子组成的面心立方点阵的4个
四面体间隙中,即有一半四面 体间隙被占据,上层和下层的
晶体结构的描述通常有三种方法:
1〕坐标法:给出单位晶胞中各质点的空间坐标,这种采用
数值化方式描述晶体结构是最标准化的。为了方便表示晶胞, 化学式可写为MO,其中M2+是二价金属离子,结构中M2+和O2-分别占据了NaCl中钠离子和氯离子的位置。 以由体正积 负还较离大子可的半径S以2比-作rN采立a方+/r用紧cl-密≈堆投0.积 影图,即所有的质点在某个晶面〔001〕上的投
第一章材料的内部结构

3.固溶体的结构
固溶体的最大特点是保持溶剂的晶格类型不变,但 与纯溶剂组元相比,结构已发生了很大的变化,主要表现为: ⑴ 晶格畸变
⑵ 溶质原子偏聚与短程有序
⑶ 溶质原子长程有序
某些具有短程有序的 固溶体,当其成分接近一 定原子比(如1:1)时, 可在低于某一临界温度时 转变为长程有序结构。这 样的固溶体称为有序固溶 体。对CuAu有序固溶体, 铜原子和金原子按层排列 于(001)晶面上。由于 铜原子比金原子小,故使 原来的面心立方晶格畸变 为正方晶格。
⑵ 间隙化合物 当非金属原子半径与金属原子半径的比值大于 0.59时,将形成另一种化合物,其中非金属原子也 位于晶格的间隙处,故称之为间隙化合物。 特点是晶体结构复杂,例如铁碳合金中的渗碳体 Fe3C,具有复杂的正交晶格,其晶胞中含有12个 铁原子和4个碳原子。间隙化合物也具有很高的 熔点和硬度,脆性较大,也是钢中重要的强化相 之一。但与间隙相相比,间隙化合物的熔点和硬 度以及化学稳定性都要低一些。 间隙相、间隙化合物和间隙固溶体的区别?
3.配位数 指晶格中任一原子最邻近、等距离的原子数。 晶体中原子配位数愈大,晶体中的原子排列愈紧密。 体心立方晶体结构的原子配位数为8。面心立方和 密排六方晶体结构原子配位数均为12。
4.致密度K 指晶胞中所含全部原子的体积总和与该晶胞体积 之比: K = nv / V
式中, n --晶胞中的原子数;v ——单个原子的体 积;V ——晶胞体积。
1.4.2中间相
如果溶质含量超过它在溶剂中的溶解度时,便 可能形成新相,称为中间相。中间相可以是化合 物,也可以是以化合物为基的固溶体。主要特点 是它的晶体结构不同于其任一组元,结合键中通 常包括金属键。因此中间相具有一定的金属特性, 又称为金属间化合物。性能是有较高的熔点、高 的硬度和脆性,通常作为合金的强化相。此外还 发现有些金属间化合物具有特殊的物理化学性能, 可用作新一代的功能材料或者耐热材料。金属间 化合物种类很多,主要介绍三种。
工程材料与机械制造基础-3-金属的晶体结构与结晶

17:05
金属的结晶
• 纯金属的结晶过程 • 液态金属的结晶过程分为两个阶段:① 形成晶核,② 晶核长大。
17:05
纯金属的结晶过程
• 晶核的形成过程 • 液态金属中存在着原子排列规则的小原子团,它们时 聚时散,称为晶坯。 • 在T0以下, 经一段时间后(即孕育期), 一些大尺寸的 晶坯将会长大,称为晶核。
刃型位错
螺型位错
刃型位错和螺型位错
刃型位错的形成
实际金属的结构
• 刃型位错:当一个完整晶体某晶面以上的某处多出半 个原子面,该晶面象刀刃一样切入晶体,这个多余原 子面的边缘就是刃型位错。 • 半原子面在滑移面以上的称正位错,用“ ┴ ”表示。 • 半原子面在滑移面以下的称负位错,用“ ┬ ”表示。
17:05
{110}
Z (110) (011) (011) (101) (101) Y (110)
X
17:05
金属的晶体结构
立方晶系常见的晶向为:
100 : [100]、 [010]、 [001] 110 : [110]、 [101]、 [011]、 [1 10]、 [1 01]、 [0 1 1] 111 : [111]、 [1 11]、 [1 1 1]、 [111]
密排六方晶格的参数
常见的金属晶格
• 密排六方晶格
晶格常数:底面边长 a 和高 c,
c/a=1.633
1 原子半径 :r a 2 原子个数:6 配位数: 12 致密度:0.74 常见金属: Mg、Zn、 Be、Cd等
常见的金属晶格
三种常见晶格的密排面和密排方向
•单位面积晶面上的原子数称晶面原子密度。
17:05 三斜
金属的晶体结构
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哥希密特结晶化学定律
结晶化学定律 :“晶体的构型,取决于其结 构基元(原子、离子或原子团)的数量关系、离 子的大小关系和极化作用的性质。”这一概括 一般称为哥希密特结晶化学定律
第三章无机非金属材料的晶体结构
3.1 3.2 无机材料典型的晶体结构 3.3 硅酸盐晶体结构
大多数无机材料为晶态材料,其质点的排列具有 周期性和规则性。不同的晶体,其质点间结合力 的本质不同,质点在三维空间的排列方式不同, 使得晶体的微观结构各异,反映在宏观性质上, 不同晶体具有截然不同的性质。
此定律不仅适用于离子晶体,也适用于其他晶 体。
3.2 无机材料典型的晶体结构
要求了解: • 无机材料典型的晶体结构类型 • 晶胞分析和描述——晶系、基本格子、等
同点分析、正负离子配位数(CN)、晶胞分 子数z、质点坐标、四面体和八面体空隙数量、
位置及被占据情况 • 同晶型典型物质及特性 • 结构与性能的关系
[配例M位g如O数,6]低在两,镁种所橄配以位榄[S多石iO面结4]体构之,中间但,彼S有此i4+[无电Si连价O4接高] 和,、 它们之间由[MgO6] 所隔开。
鲍林第五规则──节约规则
“在同一晶体中,组成不同的结构基元的数 目趋向于最少”。
在硅酸盐晶体中,不会同时出现[SiO4]四面 体和[Si2O7]双四面体结构基元,尽管它们之间 符合鲍林其它规则。
硅酸盐晶体中,一个[SiO4] 顶点的O2-还可以 和另一个[SiO4] 相连接(2个配位多面体共用一 个顶点),或者和另外3个[MgO6] 相连接(4个配 位多面体共用一个顶点),即可使O2-电价饱和。
鲍林第三规则──多面体共顶、共棱、共面规 则
“在一个配位结构中,共用棱,特别是共用 面的存在会降低这个结构的稳定性。其中高电 价,低配位的正离子的这种效应更为明显”。
两个配位多面体连接时,随共用顶点数目 增加,中心阳离子间距缩短,库仑斥力增大, 结构稳定性降低。则结构中[SiO4]只能共顶连 接,而[AlO6]却可以共棱连接,在有些结构, 如刚玉型结构中,[AlO6]还可以共面连接。
鲍林第四规则──不同配位多面体连接规 则
“若晶体结构中含有一种以上的正离 子,则高电价、低配位的多面体之间有尽 可能彼此互不连接的趋势”。
于是,按第二规则,负离子的电价数为 :
W
i
Si
i
W
(n
)
i
电价规则的作用
判断晶体是否稳定
在CaTiO3结构中,Ca2+、Ti4+、O2-配位数分别 为12、6、6。O2-配位多面体是[OCa4Ti2],则O2-的 电荷数,与O2-的电价相等,故晶体结构稳定。
判断共用一个顶点的多面体的数目。
2.石墨结构
IV族元素,六方晶系, P63/mmc空间群, a=0.146nm,h=0.670nm。 层状结构: 层内六节环,C-C原子间距0.142nm,共价键相
连; 层间C -C原子间距0.335nm,范德华键相连。 C原子四个外层电子在层内形成三个共价键,配
位数为3,多余一个电子可在层内移动。 同类结构物质: h-BN
高温环境下的固体润滑剂 航天航空中的热屏蔽材料 原子反应堆的结构材料
同质多晶现象
• 化学组成相同的物质,在不同的热力学条件下 生成不同的晶体结构的现象,称为同质多晶现 象。 • 当外界条件改变时,各变体之间就要发生结构 转变,称为同质多晶转变
25 0 ,1 0 0
75 50
C
0 ,1 0 0
图3-1 金刚石的晶胞图和投影图
结构与性能的关系
性能:最高硬度
极好导热性
半导体性
应用:高硬度切割材料
磨料及钻井用钻头
集成电路中散热片
高温半导体材料
同类型结构的物质有: • 硅、锗、灰锡(-Sn) • 立方氮化硼(c-BN):
硬度仅次于金刚石,但热稳定性远高于 金刚石,对铁系金属元素有较大的化学稳 定性。用以制造的磨具,适于加工既硬又 韧的材料,如高速钢、工具钢、模具钢、 轴承钢、镍和钴基合金、冷硬铸铁等。
第一规则实际上是对晶体结构的直观描述 ,如NaCl晶体是由[NaCl6]八面体以共棱方 式连接而成。
鲍林第二规则──电价规则
“在一个稳定的离子晶体结构中,每一个负 离子电荷数等于或近似等于相邻正离子分配 给这个负离子的静电键强度的总和,其偏差 ≤1/4价”。
静电键强度S定义为:正离子电价数W+与其 配位数n+之比。即S=W+/n+
1912年以后,由于X射线晶体衍射实验的成功, 不仅使晶体微观结构的测定成为现实,而且在晶 体结构与晶体性质之间相互关系的研究领域中, 取得了巨大的进展。
许多科学家 ,如 鲍 林(Pauling )、哥希密特( Goldschmidt)、查哈里阿生(Zachariason)等在 这一领域作出了巨大的贡献,本章所述内容很多 是他们研究的结晶。
3.1鲍林规则
1928年,鲍林根据当时已测定的晶体结 构数据和晶格能公式所反映的关系,提 出了判断离子化合物结构稳定性的规则 ──鲍林规则。
鲍林规则共包括五条规则。
鲍林第一规则──配位多面体规则: “在离子晶体中,在正离子周围形成一个 负离子多面体,正负离子之间的距离取决 于离子半径之和,正离子的配位数取决于 离子半径比”。
图3-2 石墨晶体结构(虚线范围为单位晶胞)
结构与性能的关系
石墨: 润滑性 (中低温固体润滑剂 ) 良好的导电性 (高温发热体 ) 硬度低,易加工 在惰性气氛中熔点很高(高温坩埚 )
六方氮化硼 (h-BN):
h-BN与石墨是等电子体,有白色石墨之称。 有良好的润滑性,电绝缘性导热性和耐化学腐蚀 性,具有中子吸收能力。化学性质稳定,对所有 熔融金属化学呈惰性,成型制品便于机械加工, 有很高的耐湿性。
1.金刚石结构
IV族元素,立方晶系, Fd3m空间群,a=0.356nm; 面心立方结构:C原子分布于八个角顶和六
个面心,四个C原子交叉地位于4条体对角 线的1/4、3/4处。每个C原子周围都有四个 碳,共价键连接,配位数为4。
0 ,1 0 0
50
0 ,1 0 0
A
75 50
ห้องสมุดไป่ตู้
25
B
0 ,1 0 0 50