【四川省成都七中】2017届高三二诊模拟考试数学(理)试卷(附答案)
2017年四川省成都市高考数学二诊试卷(理科)

2017年四川省成都市高考数学二诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U =R ,集合2{|230} {|10}A x x x B x x =--<=-,≥,则图中阴影部分所表示的集合为 (A){|1x x -≤或3}x ≥ (B){|1x x <或3}x ≥ (C){|1}x x ≤ (D){|1}x x -≤2.已知等差数列{}n a 的前项和为n S ,且530S =,则3a =(A) 6(B) 7(C) 8(D) 93.已知i 为虚数单位,若复数21(1)i z a a =-++(其中a ∈R )为纯虚数,则2iz=- (A)42i 55- (B)24i 55-+(C)42i 55+(D)24i 55--4.一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为 (A)2π43+ (B)22π43+ (C)42π83+(D)82π83+5.双曲线E :22221x y a b-=(0a >,0b >)的一个焦点F 到E 的渐近线的距离为3a ,则E 的离心率是 (A)2(B)32(C) 2(D) 36.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是 (A) 40 (B) 60 (C) 80 (D) 1007.已知MOD 函数是一个求余函数,记MOD()m n ,表示m 除以n 的余数,例如MOD(83)2=,.右图是某个算法的程序框图,若输入m 的值为48时,则输出i 的值为(A) 7 (B) 8 (C) 9 (D) 108.已知函数()sin()6f x x ωπ=+,其中0ω>.若()()12f x f π≤对x ∈R 恒成立,则ω的最小值为 (A) 2(B) 4(C) 10(D) 169.已知01c <<,1a b >>,下列不等式成立的是(A)a b c c >(B)a ba cb c>-- (C)c c ba ab >(D)log log a b c c >10.正方形ABCD 与等边三角形BCE 有公共边BC ,若∠ABE =120°,则BE 与平面ABCD 所成角的大小为 (A)6π(B)3π(C)4π(D)2π11.过抛物线24y x =的焦点F 作互相垂直的弦AC ,BD ,则点A ,B ,C ,D 所构成四边形的面积的最小值为 (A) 16(B) 32(C) 48(D) 6412.如图,在直角梯形ABCD 中,AB AD ⊥,AB ∥DC ,2AB =,1AD DC ==,图中圆弧所在圆的圆心为点C ,半径为12,且点P 在图中阴影部分(包括边界)运动.若AP xAB yBC =+,其中x y ∈R ,,则4x y -的取值范围是(A)32[23]4+, (B)5[23]2+, (C)25[33]42-+,(D)1717[33]22-+, 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.由直线x=1,x=2,曲线及x 轴所围成的封闭图形的面积是 .14.已知角的始边是x 轴非负半轴.其终边经过点,则sinα的值为 .15.在直角坐标系xOy 中,点A (0,3),直线l :y=2x ﹣4,设圆C 的半径为1,圆心在l 上,若圆C 上存在唯一一点M ,使|MA |=2|MO |,则圆心C 的非零横坐标是 . 16.数列{a n }满足,,且,则4a 2018﹣a 1的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如表:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退休”人数 5 10 10 2 1(Ⅰ)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上合计支持不支持合计(Ⅱ)若从年龄在[45,55),[55,65]的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为ξ,求随机变量ξ的分布列及数学期望.参考数据:P(K2≥k)0.100 0.050 0.010 0.001k 2.706 3.841 6.635 10.828K2=.18.已知函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减;如图,四边形OACB中,a,b,c为△ABC的内角A,B,C的对边,且满足.(Ⅰ)证明:b+c=2a;(Ⅱ)若b=c,设∠AOB=θ,(0<θ<π),OA=2OB=2,求四边形OACB面积的最大值.19.在斜三棱柱ABC﹣A1B1C1中,侧面AC1⊥平面ABC,,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E﹣A1C1﹣A的大小为.20.已知两点A(﹣2,0)、B(2,0),动点P满足.(1)求动点P的轨迹E的方程;(2)H是曲线E与y轴正半轴的交点,曲线E上是否存在两点M、N,使得△HMN是以H为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.21.已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x(a∈R,e为自然对数的底)(Ⅰ)求f(x)的单调区间;(Ⅱ)若对任意给定的x0∈(0,e],在区间(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.22.直角坐标系中曲线C的参数方程为(θ为参数).(1)求曲线C的直角坐标方程;(2)经过点M(0,1)作直线l交曲线C于A,B两点(A在B上方),且满足|BM|=2|AM|,求直线l的方程.2017年四川省成都市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分。
四川省成都市2020届(高2017级)高中毕业班第二次诊断性检测理科数学试题

成都市2017级高中毕业班第二次诊断性检测数学(理科)本试卷分选择题和非选择题两部分,第1卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足2)1(=+i z (i 为虚数单位),则z 的虚部为( ) A.i B.-i C.-1 D.12.设全集R U =,集合{}1<=x x M ,{}2>=x x N ,则N M C U I )(=( ) A.{}2>x x B.{}1≥x x C.{}21<<x x D.{}2≥x x 3.某中学有高中生1500人,初中生1000人,为了解该校学生自主锻炼的时间,采用分层抽样的方法从高中生和初中生中抽取一个容量为n 的样本。
若样本中高中生恰有30人,则n 的值为( )A.20B.50C.40D.60 4.曲线x x y -=3在点)0,1(处的切线方程为( )A.02=-y xB.022=-+y xC.022=++y xD.022=--y x 5.已知锐角β满足αα2cos 12sin 2-=,则αtan =( ) A.21B.1C.2D.4 6.函数)1ln(cos )(2x x x x f -+⋅=在]1,1[-的图象大致为( )A B C D7.执行如图所示的程序框图,则输出S 的值为( )A.16B.48C.96D.1288.已知函数0)4(),0)(2sin()(=<<+=ππωπωf x x f ,则函数)(x f 的图象的对称轴方程为( ) A.Z k k x ∈-=,4ππ B.Z k k x ∈+=,4ππC.Z k k x ∈=,21π D.Z k k x ∈+=,421ππ 9.如图,双曲线C )0,0(12222>>=-b a by a x :的左,右交点分别是)0,(1c F -,)0,(2c F ,直线a bc y 2=与双曲线C 的两条渐近线分别相交于B A ,两点.若321π=∠F BF ,则双曲线C 的离心率为( ) A.2 B.324 C.2 D.33210.在正方体1111D C B A ABCD -中,点Q P ,分别为AD AB ,的中点,过点D 作平面α使αα平面∥,平面∥Q A P B 11,若直线M D B =α平面I 11,则11MB MD 的值为( ) A.41 B.31 C.21 D.32 11.已知EF 为圆1)1()1(22=++-y x 的一条直径,点),(y x M 的坐标满足不等式组⎪⎩⎪⎨⎧≤≥++≤+-103201y y x y x ,则⋅的取值范围为( ) A.]13,29[ B.]13,4[ C.]12,4[ D.]12,27[ 12.已知函数x xe x g xxx f -==)(,ln )(,若存在R x x ∈+∞∈21),,0(,使得)0()()(21<==k k x g x f 成立,则ke x x 212)(的最大值为( ) A.2e B.e C.24e D.21e第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.()41x +的展开式中x 2的系数为 。
2017成都七中高三数学(理)测试题-含答案

成都七中2017届高三数学测试理科命题人:杨敬民 审题人:祁祖海一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{0,1,2,3,4}U =,集合{0,1,3}A =,集合{2,3}B =,则()UA B =( )A .{}4B .{}0,1,2,3C .{}3D .{}0,1,2,4 2.在区间上任取一实数,则的概率是( )A .B .C.D .3.已知复数21iz i +=-(i 为虚数单位),那么z 的共轭复数为( ) A .3322i + B .1322i - C .1322i + D .3322i -4.设m ,n 是两条不同的直线,α,β是两个不同的平面.下列命题正确的是( )A .若,,m n m n αβ⊂⊂⊥,则αβ⊥B .若//,,//m n αβαβ⊥,则m n ⊥C .若,,//m n αβαβ⊥⊥,则//m nD .若,,m n m αβαβ⊥=⊥,则n β⊥5.将4个不同的小球装入4个不同的盒子,则在至少一个盒子为空的条件下,恰好有两个盒子为空的概率是( )A .2164B .2158C .1229 D .7276.设13482,log 3,log 5a b c ===,则( )A .a b c >>B .a c b >>C .c a b >>D .b c a >> 7. 函数()sin(2)3f x x π=+的图象是由函数()cos 2f x x =的图象( )A .向右平移12π个单位B .向左平移12π个单位 C .向右平移512π个单位D .向左平移512π个单位8.中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如.现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于 ( )A .21 B .22 C .23 D .249.如图,网格纸上小正方形的边长为1,粗线画出的为某几何体的三视图,则此几何体的体积为( )A .23 B .1 C .43D .210. 函数24sin 2)21(424+++=+x x x x x f ,则++)20172()20171(f f …=+)20172016(f ( )ABCD1D 1A 1B 1C E FA .2017B .2016C .4034D .403211.如图,已知正方体1111ABCD A B C D -的棱长为1,,E F 分别是棱11,AD B C 上的动点,设1,AE x B F y ==.若棱1DD 与平面BEF 有公共点,则x y +的取值范围是( )A .(]0,2B .13[,]22C .[1,2]D .3[,2]2 12.过x 轴下方的一动点P 作抛物线2:2C x y =的两切线,切点分别为,A B ,若直线AB与圆221x y +=相切,则点P 的轨迹方程为( )A .221(0)y x y -=< B .22(2)1y x ++= C .221(0)4y x y +=< D .21x y =--第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 二项式的展开式中的常数项为____________________.14. 若实数满足不等式组,则目标函数的最大值为___________________.15.已知在ABC ∆中,2B A =,ACB ∠的平分线CD 把三角形分成面积比为4:3的两部分, 则cos A =___________________.16.已知直线y b =与函数()23f x x =+和()ln g x ax x =+分别交于,A B 两点,若AB 的最小值为2,则a b +=________________________.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (12分)已知(12)nx +的展开式中各项的二项式系数和为n a ,第二项的系数为n b . (Ⅰ)求n a ,n b ; (Ⅱ)求数列{}n n a b 的前n 项和n S .18.(12分)如图,在三棱柱中,侧面底面,,且点为中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的大小.19.(12分)为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a <<,(Ⅰ)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率;(Ⅱ)视频率分布直方图中的频率为概率,用样本估计总体,则(1)从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; (2)从长期来看,投资哪种型号的节排器平均利润较大?20. (12分)已知椭圆22122:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,且2F 为抛物线22:2C y px=的焦点,2C 的准线l 被1C 和圆222x y a +=截得的弦长分别为224.(Ⅰ)求1C 和2C 的方程;(Ⅱ)直线1l 过1F 且与2C 不相交,直线2l 过2F 且与1l 平行,若1l 交1C 于,A B ,2l 交1C 交于,C D ,A,C 且在x 轴上方,求四边形12AF F C 的面积的取值范围.21. (12分)已知函数.(Ⅰ)当时,求证:;(Ⅱ)当时,若不等式恒成立,求实数的取值范围;(Ⅲ)若,证明.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线cos :(sin x t l t y t αα=⎧⎨=⎩为参数,(0,))2πα∈与圆:C 22(1)(2)4x y -+-=相交于点,A B ,以O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求直线l 与圆C 的极坐标方程; (Ⅱ)求11OA OB+的最大值. 23. (10分)选修4-5:不等式选讲 设函数()2(0)f x x a x a a =-++>. (Ⅰ)当1a =时,求()f x 的最小值; (Ⅱ)若关于x 的不等式()5f x a x<+在[1,2]x ∈上有解,求实数a 的取值范围. 成都七中2017届高三数学测试 理科参考解答 三、解答题17.(1)2,2n n n a b n ==;(2)12312,12222n n n n n a b n S n -+=⋅=⋅+⋅++⋅,错位相减法2(1)24n n S n +=-+.18.(Ⅰ)证明:因为C A AA 11=,且O 为AC 的中点,所以AC O A ⊥1,又∵面面,交线为AC ,且⊂O A 1平面C C AA 11,∴⊥O A 1平面ABC (Ⅱ)如图,以O 为原点,1,,OA OC OB 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.由已知可得(0,0,0)O ,(0,1,0)A -,13)A ,1(0,3)C ,3,0,0)B ∴(3,1,0)AB =,1(3,0,3)A B =-,11(0,2,0)AC =.............6分 设平面的一个法向量为),,(111z y x m =,则有111110300330m AB x y m A B ⎧⎧⋅=+=⎪⎪⇒⎨⋅==⎪⎩令11=x ,得13y =,11z =)1,3,1(-=m . 8分 设平面11BC A 的法向量为),,(222z y x n =,则有2112212003300y m AC m A B ⎧=⎧⋅=⎪⎪⇒⎨-=⋅=⎪⎩令12=x ,则20y =,21z =,∴)1,0,1(=n ..10分 ∴510102,cos =>=<n m ∴所求二面角的大小为)510arccos(-. .12分19.(1)21364631023C C C P C +==; (2)①由已知及频率分布直方图中的信息知,乙型号节排器中的一级品的概率为710, 二级品的概率14,三级品的概率为120,若从乙型号节排器随机抽取3件, 则二级品数ξ所有可能的取值为0,1,2,3,且1(3,)4B ξ,所以0301213331273127(0)()(),(1)()()44644464P C P C ξξ======, 21230333319311(2)()(),(3)()()44644464P C P C ξξ======, 所以ξ的分布列为所以数学期望()2727272730123646464644E ξ=⨯+⨯+⨯+⨯=(或()13344E ξ=⨯=).②由题意知,甲型号节排器的利润的平均值22132352555E a a a a =+⨯=+,乙型号节排器的利润的平均值22227111375104201010E a a a a a =+⨯+=+,2127171()1010107E E a a a a -=-=-,又11107a <<,所以投资乙型号节排器的平均利润率较大.20.(1)由2224b a b ⎧=⎪⎨⎪=⎩得2,4a b c p ====,所以1C 和2C 的方程分别为2221,884x y y x +==.(2)由题意,AB 的斜率不为0,设:2AB x ty =-,由228x ty y x =-⎧⎨=⎩,得228160,64640y ty t -+=∆=-≤,得21t ≤, 由222280x ty x y =-⎧⎨+-=⎩,得22(1)440t y ty +--=,12122()()AB a e x x y y =++=++=, AB 与CD ABDC 为平行四边形,121122F F CABDC S S ∆===,m m ⎡=∈⎣,1216[,3AF F C S =. 21. 解:(Ⅰ)0a =时,'()1,()1xxf x e x f x e =--=-. ...........1分 当(,0)x ∈-∞时,'()0f x <;当(0,)x ∈+∞时,'()0f x >. .................2分 故()f x 在(,0)-∞单调递减,在(0,)+∞单调递增,00)(min ==)(f x f .........4分(Ⅱ)方法一:'()12x f x e ax =--.由(Ⅰ)知1x e x ≥+,当且仅当0x =时等号成立. 故'()2(12)f x x ax a x ≥-=- 从而当120a -≥,即12a ≤时,在区间[0,)+∞上,()0f x '≥,()f x 单调递增,()(0)f x f ≥,即()0f x ≥,符合题意. ................5分 又由1(0)xe x x >+≠,可得1(0)xe x x ->-≠.从而当12a >时,'()12(1)(1)(2)x x x x xf x e a e e e e a --<-+-=-- 在区间(0,ln 2)a 上,'()0f x <,()f x 单调递减,()(0)f x f <, 即()0f x <,不合题意. ....7分 综上得实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦. .................8分方法二:()12x f x e ax '=--,令ax e x h x 21)(--=,则a e x h x2)(-='.1)当21a ≤时,在[)+∞,0上,()0h x '≥,)(x h 递增,)0()(h x h ≥,即0)0()(='≥'f x f)(x f ∴在[)+∞,0为增函数,0)0()(=≥∴f x f ,21≤∴a 时满足条件;......5分 2)当12>a 时,令0)(='x h ,解得a x 2ln =, 在当(0,ln 2)a 上,,0)(<'x h )(x h 单调递减,()a x 2ln ,0∈∴时,有0)0()(=<h x h ,即0)0()(='<'f x f ,∴)(x f 在区间)2ln ,0(a 为减函数,∴0)0()(=<f x f ,不合题意...........7分综上得实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-21,............8分(Ⅲ)由(Ⅱ)得,当21=a 时,0>x ,212x x e x ++>,即212x x e x+>-欲证不等式2)1ln()1(x x e x>+-,只需证22)1ln(+>+x xx ..................10分设22)1ln()(+-+=x x x x F ,则222)2)(1()2(411)(++=+-+=x x x x x x F ’0>x 时,0)('>x F 恒成立,且0)0(=F ,0)(>∴x F 恒成立.得证. .....12分22.(1)直线l 的极坐标方程为()R θαρ=∈,圆C 的极坐标方程为22cos 4sin 10ρρθρθ--+=; (2)θα=,代入22cos 4sin 10ρρθρθ--+=,得22cos 4sin 10ρραρα--+=,显然121212110,0,2cos 4sin )OA OB ρρρραααϕρρ+>>+==+=-≤, 所以11OA OB+的最大值为23.(1)当1a =时,()1111321110()()22222f x x x x x x x x =-++=-+-++≥+-+-=, 当且仅当12x =时,取等号. (2)[1,2]x ∈时,()55522f x a x a x a a a x x x x<+⇒-++<+⇒-< 553x a x x x⇔-<<+,所以06a <<.。
2017届四川省成都七中高三5月第二次周练理科数学试题及答案

成都七中2017级考试 数学试卷(理科)命题:方廷刚 审题:巢中俊 一、选择题(共50分,每题5分)1.设22{|10},{|log 0}A x x B x x =->=<,则A B ⋂=A.{|1}x x >B.{|0}x x >C.{|1}x x <-D.Φ 2.设i 是虚数单位,若()(1)2(1)a bi i i ++=-,其中,a b R ∈,则a b +的值是A.12- B.2- C.2 D.323.有一正方体,六个面上分别写有数字1、2、3、4、5、6,有3个人从不同的角度 观察,结果如图所示.若记3的对面的数字为m ,4的对面的数字为n ,则m n +=A.3B.7C.8D.114.设554log 4,log ((2,log a b c ==-=则A.a c b <<B.b c a <<C.a b c <<D.b a c <<5.设,A B 是锐角ABC ∆的两内角,(sin ,1),(1,)p A q cosB =-=u r r ,则p u r与q r的夹角是A.锐角B.钝角C.直角D.不确定6.下列判断错误..的是 A.“22am bm <”是“a b <”的充分不必要条件B.“3210x x --≤对x R ∈恒成立”的否定是“存在0x R ∈使得320010x x -->”C.若“p q Λ”为假命题,则,p q 均为假命题D.若随机变量ξ服从二项分布:ξ~1(4,)4B ,则1E ξ=7.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A.32B.43C.3D.238.设22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为3π,离心率为e ,则2a eb +的最小值为C.9.设12,,,n a a a L 是1,2,,n L 的一个全排列,把排在i a 左边且小于i a 的数的个数称为i a 的顺序数(1,2,,i n =L ),例如在排列6,4,5,3,2,1中,5的顺序数是1而3的顺序数是0.在1,2,,8L 的全排列中,8的顺序数为2,7的顺序数为3,5的顺序数为3的不同排列的种数是A.48B.96C.144D.19210.已知函数2()22ln (,0)f x x ax a x a R a =--∈≠,则下列说法错误的是A.若0a <,则()f x 有零点B.若()f x 有零点,则12a ≤且0a ≠ C.0a ∃>使得()f x 有唯一零点 D.若()f x 有唯一零点,则12a ≤且0a ≠二、填空题(共25分,每题5分)11.已知函数2()2x x f x =在区间(0,)a 内单调,则a 的最大值为__________.12.若方程3log (3)20x a x -+-=有实根,则实数a 的取值范围是___________.13.已知直线l :0y -=与抛物线Γ:24y x =交于,A B 两点,与x 轴交于F ,若()OF OA OB λμλμ=+≤u u u r u u r u u u r, 则λμ=_______. 14.正方体1111ABCD A BC D -中,E 是棱1CC 的中点, F是侧面11BCC B 内的动点,且1//A F 平面1D AE ,则1A F与平面11BCC B 所成角的正切值的集合是____________.15.已知函数()122014122014f x x x x x x x =+++++++-+-++-L L 的定义域为R ,给定两集合4222{((12101)(2))(2)}A a R f a a a f a =∈-++=+及B ={()(),}a R f x f a x R ∈≥∈,则集合A B ⋂的元素个数是_________.三、解答题(共75分) 16.(12分)设()f x p q=⋅u u r u r,而2(24sin ,1),(cos )()2xp q x x x R ωωω=-=∈u u ru r.(1)若()3f π最大,求ω能取到的最小正数值.(2)对(1)中的ω,若()(21f x x =+且(0,)2x π∈,求tan 2x .17.(12分)小区统计部门随机抽查了区内60名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过2千元的顾客被定义为“网购红人”,网购金额不超过2千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为3:2.(1)确定,,,x y p q的值,并补全频率分布直方图(图(2)).(2)为进一步了解这60名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查,设ξ为选取的3人中“网购红人”的人数,求ξ的分布列和数学期望.18.(12分)执行如图所描述的算法程序,记输出的一列a 的值依次为12,,,n a a a L ,其中*n N ∈且2014n ≤.(1)若输入λ=写出全部输出结果. (2)若输入4λ=,记*)n b n N =∈,求1n b +与n b 的关系(*n N ∈).19.(12分)如图,已知平面ABCD ⊥平面BCEF , 且四边形ABCD 为矩形,四边形BCEF 为直角梯形,090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==, 2BC BF ==.(1)作出这个几何体的三视图(不要求写作法). (2)设,P DF AG Q =⋂是直线DC 上的动点, 判断并证明直线PQ 与直线EF 的位置关系.(3)求直线EF 与平面ADE 所成角的余弦值.20.(13分)椭圆Γ:2221(0)25x y r r+=>的左顶点为A ,直线4x =交椭圆Γ于,B C 两点(C 上B 下),动点P 和定点(4,6)D -都在椭圆Γ上.(1)求椭圆方程及四边形ABCD 的面积. (2)若四边形ABCP 为梯形,求点P 的坐标.(3)若,m n 为实数,BP mBA nBC =+uu r uu r uu u r,求m n +的取值范围.21.(14分)已知函数()2sin f x x x =-,()()(2)2g x f x π=--.(1)讨论()g x 在(0,)6π内和在(,)62ππ内的零点情况.(2)设0x 是()g x 在(0,)6π内的一个零点,求()f x 在0[,]2x π上的最值.(3)证明对*n N ∈恒有11)1212n k n n π=<<∑.成都七中2017级考试数学试卷(理科)参考答案一、DBCD BCAB CB二、11.12.13.14.15.7三、16.(1).(2).17.解.(1),,补全频率分布直方图如图所示.(2)选出的人中,“网购达人”有4人,“非网购达人”有6人,故的可能取值为0,1,2,3,且易得的分布列为.18.解.(1)输出结果共4个,依次是:.(2).19.(1)如右图. (2)垂直. (3).20.(1); .(2). (3).21.解.(1)在有唯一零点,易知在单增而在内单减,且,故在和内都至多有一个零点.又,故在内有唯一零点;再由知在内无零点.(2)由(1)知在有最大值,故在有最大值;再由(1)的结论知在的最小值应为.由知,于是在的最小值.(3)由(2)知时,有,即①取,则且,将的值代入①中,可得②再由,得③相仿地,时,,故④而时④即,显然也成立.故原不等式成立.。
四川成都2017届高三二诊模拟考试数学试题理含答案

成都2017届二诊模拟考试数学试卷(理科)(时间:120分钟,总分:150分)命题人: 刘在廷 审题人: 张世永一.选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上.)1.已知集合}2,1,0,1,2{--=A ,}0lg |{≤=x x B ,则B A =( )A }1{B }1,0{C }2,1,0{D }2,1{2.已知i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则ab 的值是( ) A -15 B -3 C 3 D 15 3.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( ) A π44+ B π48+ C π344+ D π348+ 4.为了得到函数41log 2+=x y 的图像,只需把函数x y 2log =的图象上所有的点( )A 向左平移1个单位长度,再向上平移2个单位长度B 向右平移1个单位长度,再向上平移2个单位长度C 向左平移1个单位长度,再向下平移2个单位长度D 向右平移1个单位长度,再向下平移2个单位长度5. 某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A 3B 4C 5D 6 6.如图,圆锥的高2=PO ,底面⊙O 的直径2=AB , C 是圆上一点,且︒=∠30CAB ,D 为AC 的中点,则直线OC 和平面PAC 所成角的正弦值为( ) A21 B 23 C 32D 317.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A (3-,3) B (3-0)∪(0,3)C [-∞,∪+∞)正视图侧视图俯视图8.三棱锥A BCD -中,,,AB AC AD 两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( )A 4B 6C 8D 16 9.已知221)a ex dx π-=⎰,若2017220170122017(1)()ax b b x b x b x x R -=++++∈,则20171222017222b b b +++的值为( ) A 0 B -1 C 1 D e 10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足M ∪N=Q ,M ∩N=∅,M 中的每一个元素都小于N 中的每一个元素,则称(M ,N )为戴金德分割.试判断,对于任一戴金德分割(M ,N ),下列选项中一定不成立的是( ) A M 没有最大元素,N 有一个最小元素 B M 没有最大元素,N 也没有最小元素 C M 有一个最大元素,N 有一个最小元素 D M 有一个最大元素,N 没有最小元素11.已知函数3211()201732f x mx nx x =+++,其中{2,4,6,8},{1,3,5,7}m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A 7120B 760C 730D 以上都不对12.若存在正实数,,x y z 满足 2zx ez ≤≤且ln y z x z =,则ln y x 的取值范围为( )A [1,)+∞B [1,1]e -C (,1]e -∞-D 1[1,ln 2]2+二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.)13. 在ABC ∆中,边a 、b 、c 分别是角A 、B 、C 的对边,若cos (3)cos b C a c B =-,则=B cos .14.已知点(,)P x y 的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点O 为坐标原点,点(1,1)M --,那么OM OP ⋅的最大值等于_________.15.动点(,)M x y 到点(2,0)的距离比到y 轴的距离大2,则动点M 的轨迹方程为_______.16.在△ABC 中,A θ∠=,,D E 分别为,AB AC 的中点,且BE CD ⊥,则cos 2θ的最小值为___________.三.解答题(17-21每小题12分, 22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17.设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式; (2)求数列1{}nn a -的前n 项和n T .18. 为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X 表示甲队总得分. (1)求随机变量X 的分布列及其数学期望()E X ; (2)求甲队和乙队得分之和为4的概率.19.已知等边△//AB CBCD中,1,BD CD BC ==1所示),现将B 与/B ,C 与/C 重合,将△//AB C向上折起,使得AD =2所示). (1)若BC 的中点O ,求证:⊥平面BCD 平面AOD ;(2)在线段AC 上是否存在一点E ,使E D B C D 与面成30角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.BACD20.已知圆222:2,E x y +=将圆2E按伸缩变换://2x x y y ⎧=⎪⎨=⎪⎩后得到曲线1E , (1)求1E 的方程;(2)过直线2x =上的点M 作圆2E 的两条切线,设切点分别是A ,B ,若直线AB 与1E 交于C ,D 两点,求CDAB的取值范围.21.已知函数()sin ln sin g x x x θθ=--在[1,)+∞单调递增,其中(0,)θπ∈ (1)求θ的值; (2)若221()()x f x g x x -=+,当[1,2]x ∈时,试比较()f x 与/1()2f x +的大小关系(其中/()f x 是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,1(1)xe x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,又过点(2,4)P --的直线l的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与曲线C 分别交于M ,N.(1)写出曲线C 的平面直角坐标系方程和l 的普通方程; (2)若,,PM MN PN 成等比数列,求a 的值.23.选修4-5:不等式选讲设函数()f x =1(0)x x a a a++->(1)证明:()2f x ≥;(2)若()35f <,求a 的取值范围.成都2017届二诊模拟考试数学试卷(理科参考答案)一、 选择题 1-5:ABDCB 6-10:CBCBC 11-12:BB 二、填空题 13.31 14. 4 15. 28(0)y x x =≥或0(0)y x =< 16.725三、解答题 17 .解:(1)由已知12n n S a a =-有1122(1)n n n n n a S S a a n --=-=->,即12(1)n n a a n -=>. 从而21312,4a a a a ==. 又∵123,1,a a a +成等差数列,即1322(1)a a a +=+,∴11142(21)a a a +=+,解得12a =.∴数列{}n a 是首项为2,公比为2的等比数列 故2n n a =.…………6分(2)由(1)得112n n n n a -=-, 因数列⎭⎬⎫⎩⎨⎧n a 1是首项为21,公比为21的等比数列,∴11[1()](1)1(1)221122212n n n n n n n T -++=-=---.………………12分 18.解:(1)X 的可能取值为0,1,2,3.1111(0)43224P X ==⨯⨯= ,3111211111(1)4324324324P X ==⨯⨯+⨯⨯+⨯⨯=,32112131111(2)43243243224P X ==⨯⨯+⨯⨯+⨯⨯=,3211(3)4324P X ==⨯⨯=,X ∴6分1111123()012324424412E X =⨯+⨯+⨯+⨯=.………………………………7分 (2)设“甲队和乙队得分之和为4”事件A,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:31)32(4131)32(2411)31(3241)(3223213=⨯+⨯⨯⨯+⨯⨯⨯=C C A P .………………12分 19. 解:(1)∵△ABC 为等边三角形,△BCD 为等腰三角形,且O 为中点 ∴,BC AO BC DO ⊥⊥,AO DO O ⋂=,BC AOD ∴⊥平面,又BC ABC ⊂面∴⊥平面BCD 平面AOD………………3分(2)(法1)作,AH DO ⊥交DO 的延长线于H ,则平面BCD ⋂平面,AOD HD =则AH BCD ⊥平面,在Rt BCD ∆中,122OD BC ==, 在Rt ACO ∆中,AO AC ==AOD ∆中, DABCOEF H222cos 23AD OD AO ADO AD OD +-∠==⋅,sin ADO ∴∠=,在Rt ADH ∆中sin 1AH AD ADO =∠=,设(0CE x x =≤≤,作EF CH F ⊥于,平面AHC ⊥平面B C D ,,EF BCD EDF ∴⊥∠平面就是E D B C D与面所成的角。
2017年四川省成都市高考数学二诊试卷(理科)(详细解析)

2017年省市高考数学二诊试卷(理科)(附详细解析)一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]2.若复数z1=a+i(a∈R),z2=1﹣i,且为纯虚数,则z1在复平面所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.在等比数列{an }中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.364.已知平面向量,的夹角为,且||=1,||=,则+2与的夹角是()A.B.C.D.5.若曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值围是()A.(﹣,+∞)B.[﹣,+∞) C.(0,+∞) D.[0,+∞)6.若实数x,y满足不等式,且x﹣y的最大值为5,则实数m的值为()A.0 B.﹣1 C.﹣2 D.﹣57.已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.38.已知函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,).若函数g (x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是()A .g (π)<g (3)<g ()B .g (π)<g ()<g (3)C .g ()<g (3)<g (π) D .g ()<g (π)<g (3)9.执行如图所示的程序框图,若输入a ,b ,c 分别为1,2,0.3,则输出的结果为( )A .1.125B .1.25C .1.3125D .1.37510.已知函数f (x )=sin (ωx +2φ)﹣2sinφcos(ωx +φ)(ω>0,φ∈R )在(π,)上单调递减,则ω的取值围是( ) A .(0,2] B .(0,] C .[,1] D .[,]11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( ) A . B . C . D .12.把平面图形M 上的所有点在一个平面上的射影构成的图形M′叫作图形M 在这个平面上的射影.如图,在三棱锥A ﹣BCD 中,BD ⊥CD ,AB ⊥DB ,AC ⊥DC ,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S 1,S 2,S 3,S 4,设面积为S 2的三角形所在的平面为α,则面积为S 4的三角形在平面α上的射影的面积是( )A.2 B.C.10 D.30二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a=.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为.16.在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),则数列{}的前n项和Tn=.三、解答题(本大题共5小题,共70分)17.(12分)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.18.(12分)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次 x 555559 551 563 552y 601605 597 599 598 (Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=, =﹣)19.(12分)如图,已知梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.20.(12分)在平面直角坐标系xOy中,已知椭圆E: +=1(a>b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.21.(12分)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.[选修4-5:不等式选讲]23.已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.2017年省市高考数学二诊试卷(理科)参考答案与试题解析一、选择题(本题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A=[﹣1,2],B={y|y=x2,x∈A},则A∩B=()A.[1,4] B.[1,2] C.[﹣1,0] D.[0,2]【考点】交集及其运算.【分析】先分别求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A=[﹣1,2],B={y|y=x2,x∈A}=[0,4],∴A∩B=[0,2].故选:D.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若复数z1=a+i(a∈R),z2=1﹣i,且为纯虚数,则z1在复平面所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、纯虚数的定义、几何意义即可得出.【解答】解:复数z1=a+i(a∈R),z2=1﹣i,且===+i为纯虚数,∴ =0,≠0,∴a=1.则z1在复平面所对应的点(1,1)位于第一象限.故选:A.【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,考查了推理能力与计算能力,属于基础题.3.在等比数列{an }中,已知a3=6,a3+a5+a7=78,则a5=()A.12 B.18 C.24 D.36【考点】等比数列的通项公式.【分析】设公比为q,由题意求出公比,再根据等比数列的性质即可求出.【解答】解:设公比为q,∵a3=6,a3+a5+a7=78,∴a3+a3q2+a3q4=78,∴6+6q2+6q4=78,解得q2=3∴a5=a3q2=6×3=18,故选:B【点评】本题考查了等比数列的性质,考查了学生的计算能力,属于基础题.4.已知平面向量,的夹角为,且||=1,||=,则+2与的夹角是()A.B.C.D.【考点】平面向量数量积的运算.【分析】结合题意设出,的坐标,求出+2的坐标以及+2的模,代入公式求出+2与的夹角余弦值即可求出角的度数.【解答】解:平面向量,的夹角为,且||=1,||=,不妨设=(1,0),=(,),故+2=(,),|+2|=,(+2)•=×+×=,故cos<+2,>===,故+2与的夹角是,故选:A.【点评】本题考查了平面向量数量积的运算,考查向量夹角的余弦公式,是一道中档题.5.若曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值围是()A.(﹣,+∞)B.[﹣,+∞) C.(0,+∞) D.[0,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】令y′≥0在(0,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的围.【解答】解:y′=+2ax,x∈(0,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥0在(0,+∞)上恒成立,∴a≥﹣恒成立,x∈(0,+∞).令f(x)=﹣,x∈(0,+∞),则f(x)在(0,+∞)上单调递增,又f(x)=﹣<0,∴a≥0.故选D.【点评】本题考查了导数的几何意义,函数单调性与函数最值,属于中档题.6.若实数x,y满足不等式,且x﹣y的最大值为5,则实数m的值为()A.0 B.﹣1 C.﹣2 D.﹣5【考点】简单线性规划.【分析】画出约束条件表示的可行域,然后根据目标函数z=x﹣2y的最大值为2,确定约束条件中a的值即可.【解答】解:画出约束条件,的可行域,如图:x﹣y的最大值为5,由图形可知,z=x﹣y经过可行域的A时取得最大值5,由⇒A(3,﹣2)是最优解,直线y=m,过点A(3,﹣2),所以m=﹣2,故选:C.【点评】本题考查简单的线性规划,考查学生分析问题解决问题的能力,属于中档题.7.已知m,n是空间中两条不同的直线,α、β是两个不同的平面,且m⊂α,n⊂β.有下列命题:①若α∥β,则m∥n;②若α∥β,则m∥β;③若α∩β=l,且m⊥l,n⊥l,则α⊥β;④若α∩β=l,且m⊥l,m⊥n,则α⊥β.其中真命题的个数是()A.0 B.1 C.2 D.3【考点】空间中直线与平面之间的位置关系.【分析】根据空间直线和平面,平面和平面平行或垂直的判定定理,分别判断,即可得出结论.【解答】解:①若α∥β,则m∥n或m,n异面,不正确;②若α∥β,根据平面与平面平行的性质,可得m∥β,正确;③若α∩β=l,且m⊥l,n⊥l,则α与β不一定垂直,不正确;④若α∩β=l,且m⊥l,m⊥n,l与n相交则α⊥β,不正确.故选:B.【点评】本题主要考查命题的真假判断,涉及空间直线和平面,平面和平面平行或垂直的判定,根据相应的判定定理和性质定理是解决本题的关键.8.已知函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,).若函数g (x)的定义域为R,当x∈[﹣2,2]时,有g(x)=f(x),且函数g(x+2)为偶函数,则下列结论正确的是()A.g(π)<g(3)<g()B.g(π)<g()<g(3)C.g()<g(3)<g(π)D.g()<g(π)<g(3)【考点】反函数.【分析】根据函数的奇偶性,推导出g(﹣x+2)=g(x+2),再利用当x∈[﹣2,2]时,g(x)单调递减,即可求解.【解答】解:函数f(x)=a x(a>0,a≠1)的反函数的图象经过点(,),则a=,∵y=g(x+2)是偶函数,∴g(﹣x+2)=g(x+2),∴g(3)=g(1),g(π)=f(4﹣π),∵4﹣π<1<,当x∈[﹣2,2]时,g(x)单调递减,∴g(4﹣π)>g(1)>g(),∴g()<g(3)<g(π),故选C.【点评】本题考查反函数,考查函数单调性、奇偶性,考查学生的计算能力,正确转化是关键.9.执行如图所示的程序框图,若输入a,b,c分别为1,2,0.3,则输出的结果为()A.1.125 B.1.25 C.1.3125 D.1.375【考点】程序框图.【分析】模拟程序的运行,依次写出每次循环得到的a,b的值,当a=1.25,b=1.5时满足条件|a﹣b|<0.3,退出循环,输出的值为1.375.【解答】解:模拟程序的运行,可得a=1,b=2,c=0.3执行循环体,m=,不满足条件f(m)=0,满足条件f(a)f(m)<0,b=1.5,不满足条件|a﹣b|<c,m=1.25,不满足条件f(m)=0,不满足条件f(a)f(m)<0,a=1.25,满足条件|a﹣b|<c,退出循环,输出的值为1.375.故选:D.【点评】本题考查了程序框图的应用,模拟程序的运行,正确依次写出每次循环得到的a,b的值是解题的关键,属于基础题.10.已知函数f(x)=sin(ωx+2φ)﹣2sinφcos(ωx+φ)(ω>0,φ∈R)在(π,)上单调递减,则ω的取值围是()A .(0,2]B .(0,]C .[,1]D .[,] 【考点】三角函数中的恒等变换应用.【分析】利用积化和差公式化简2sinφcos (ωx +φ)=sin (ωx +2φ)﹣sinωx.可将函数化为y=Asin (ωx +φ)的形式,在(π,)上单调递减,结合三角函数的图象和性质,建立关系可求ω的取值围.【解答】解:函数f (x )=sin (ωx +2φ)﹣2sinφcos(ωx +φ)(ω>0,φ∈R ).化简可得:f (x )=sin (ωx +2φ)﹣sin (ωx +2φ)+sinωx =sinωx,由+,(k ∈Z )上单调递减, 得: +,∴函数f (x )的单调减区间为:[,],(k ∈Z ). ∵在(π,)上单调递减, 可得: ∵ω>0, ω≤1. 故选C .【点评】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.11.设双曲线C :﹣=1(a >0,b >0)的左右焦点分别为F 1,F 2,以F 1F 2为直径的圆与双曲线左支的一个交点为P ,若以OF 1(O 为坐标原点)为直径的圆与PF 2相切,则双曲线C 的离心率为( ) A . B . C . D .【考点】双曲线的简单性质.【分析】设F 1N=ON=MN=r ,则OF 2=2r ,根据勾股定理NF 2=2r ,再利用相似三角形和双曲线的离心率公式即可求得 【解答】解:设F 1N=ON=MN=r , 则OF 2=2r ,根据勾股定理NF2=2r,又△MF2N∽△PF1F2,∴e======,故选:D【点评】此题要求学生掌握定义:到两个定点的距离之差等于|2a|的点所组成的图形即为双曲线.考查了数形结合思想、本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.12.把平面图形M上的所有点在一个平面上的射影构成的图形M′叫作图形M在这个平面上的射影.如图,在三棱锥A﹣BCD中,BD⊥CD,AB⊥DB,AC⊥DC,AB=DB=5,CD=4,将围成三棱锥的四个三角形的面积从小到大依次记为S1,S2,S3,S4,设面积为S2的三角形所在的平面为α,则面积为S4的三角形在平面α上的射影的面积是()A.2 B.C.10 D.30【考点】平行投影及平行投影作图法.【分析】由题意,面积为S4的三角形在平面α上的射影为△OAC,即可得出结论.【解答】解:如图所示,面积为S4的三角形在平面α上的射影为△OAC,面积为=2,故选A.【点评】本题考查射影的概念,考查三角形面积的计算,比较基础.二、填空题(本大题共4小题,每小题5分,共20分)13.在二项式(ax2+)5的展开式中,若常数项为﹣10,则a= ﹣2 .【考点】二项式系数的性质.【分析】利用通项公式即可得出.==a5﹣r,【解答】解:二项式(ax2+)5的展开式中,通项公式Tr+1令10﹣=0,解得r=4.∴常数项=a=﹣10,∴a=﹣2.故答案为:﹣2.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.14.在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,,那么这组数据的方差s2可能的最大值是36 .【考点】极差、方差与标准差.【分析】设这组数据的最后2个分别是:10+x,y,得到x+y=10,表示出S2,根据x的取值求出S2的最大值即可.【解答】解:设这组数据的最后2个分别是:10+x,y,则9+10+11+(10+x)+y=50,得:x+y=10,故y=10﹣x,故S2= [1+0+1+x2+(﹣x)2]= + x2,显然x最大取9时,S2最大是36,故答案为:36.【点评】本题考查了求数据的平均数和方差问题,是一道基础题.15.如图,抛物线y2=4x的一条弦AB经过焦点F,取线段OB的中点D,延长OA 至点C,使|OA|=|AC|,过点C,D作y轴的垂线,垂足分别为E,G,则|EG|的最小值为 4 .【考点】抛物线的简单性质.【分析】设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,|EG|=y2﹣2y1=y2+,利用基本不等式即可得出结论.【解答】解:设直线AB的方程为x=my+1,代入抛物线y2=4x,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,∴|EG|=y2﹣2y1=y2+≥4,当且仅当y2=4时,取等号,即|EG|的最小值为4,故答案为4.【点评】本题考查|EG|的最小值的求法,具体涉及到抛物线的简单性质,直线与抛物线的位置关系,解题时要认真审题,仔细解答,注意合理地进行等价转化.16.在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),则数列{}的前n项和Tn=.【考点】数列的求和.【分析】由条件可得=•,令bn =,可得bn=•bn﹣1,由bn=b1••…•,求得bn,进而得到an,可得==2(﹣),再由数列的求和方法:裂项相消求和,即可得到所求和.【解答】解:在数列{an }中,a1=1,an=an﹣1(n≥2,n∈N*),可得=•,令bn =,可得bn=•bn﹣1,由bn =b1••…•=1••…•=,可得an=,即有==2(﹣),则前n项和Tn=2(1﹣+﹣+…+﹣)=2(1﹣)=.故答案为:.【点评】本题考查数列的求和,注意运用构造数列法,结合数列恒等式,考查裂项相消求和,考查化简整理的运算能力,属于难题.三、解答题(本大题共5小题,共70分)17.(12分)(2017•模拟)如图,在平面四边形ABCD中,已知∠A=,∠B=,AB=6,在AB边上取点E,使得BE=1,连接EC,ED.若∠CED=,EC=.(Ⅰ)求sin∠BCE的值;(Ⅱ)求CD的长.【考点】三角形中的几何计算.【分析】(Ⅰ)在△CBE中,正弦定理求出sin∠BCE;(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,得CB.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC⇒sin∠BEC、cos∠AED在直角△ADE中,求得DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°即可【解答】解:(Ⅰ)在△CBE中,由正弦定理得,sin∠BCE=,(Ⅱ)在△CBE中,由余弦定理得CE2=BE2+CB2﹣2BE•CBcos120°,即7=1+CB2+CB,解得CB=2.由余弦定理得CB2=BE2+CE2﹣2BE•CEcos∠BEC⇒cos∠BEC=.⇒sin∠BEC=,sin∠AED=sin(1200+∠BEC)=,⇒cos∠AED=,在直角△ADE中,AE=5,═cos∠AED=,⇒DE=2,在△CED中,由余弦定理得CD2=CE2+DE2﹣2CE•DEcos120°=49∴CD=7.【点评】本题考查了正余弦定理在解三角形中的应用,是中档题18.(12分)(2017•模拟)某项科研活动共进行了5次试验,其数据如表所示:特征量第1次第2次第3次第4次第5次 x 555559 551 563 552y 601605 597 599 598(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;(Ⅱ)求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.(附:回归直线的斜率和截距的最小二乘法估计公式分别为=, =﹣)【考点】线性回归方程.【分析】(Ⅰ)利用对立事件的概率公式,可得结论;(Ⅱ)求出回归系数,即可求特征量y关于x的线性回归方程=x+;并预测当特征量x为570时特征量y的值.【解答】解:(Ⅰ)从5次特征量y的试验数据中随机地抽取两个数据,共有=10种方法,都小于600,有=3种方法,∴至少有一个大于600的概率==0.7;(Ⅱ)=554, =600, ===0.25, =﹣=461.5,∴ =0.25x+461.5,x=570, =604,即当特征量x为570时特征量y的值为604.【点评】本题考查概率的计算,考查独立性检验知识的运用,正确计算是关键.19.(12分)(2017•模拟)如图,已知梯形CDEF与△ADE所在平面垂直,AD ⊥DE,CD⊥DE,AB∥CD∥EF,AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.(Ⅰ)若G为AD边上一点,DG=DA,求证:EG∥平面BCF;(Ⅱ)求二面角E﹣BF﹣C的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(Ⅰ)以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,利用向量法能证明EG∥平面BCF.(Ⅱ)求出平面BEF的法向量和平面BFC的法向量,利用向量法能求出二面角E ﹣BF﹣C的余弦值.【解答】证明:(Ⅰ)∵梯形CDEF与△ADE所在平面垂直,AD⊥DE,CD⊥DE,AB∥CD∥EF,∴以D为原点,DC为x轴,DE为y轴,DA为z轴,建立空间直角坐标系,∵AE=2DE=8,AB=3,EF=9.CD=12,连接BC,BF.G为AD边上一点,DG=DA,∴E(0,4,0),G(0,0,),B(3,0,4),C(12,0,0),F(9,4,0),=(9,0,﹣4),=(6,4,﹣4),=(0,﹣4,),设平面BCF的法向量=(x,y,z),则,取z=3,得=(4,3,3),∵=﹣12+12=0,EG⊄平面BCF,∴EG∥平面BCF.解:(Ⅱ) =(3,﹣4,4),=(9,0,0),设平面BEF的法向量=(a,b,c),则,取c=1, =(0,,1),平面BFC的法向量=(4,3,3),设二面角E﹣BF﹣C的平面角为θ,则cosθ===.∴二面角E﹣BF﹣C的余弦值为.【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.(12分)(2017•模拟)在平面直角坐标系xOy中,已知椭圆E: +=1(a >b>0),圆O:x2+y2=r2(0<r<b),若圆O的一条切线l:y=kx+m与椭圆E 相交于A,B两点.(Ⅰ)当k=﹣,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r之间的等量关系,并说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,⇒m=,⇒A(0,),B(,0)代入椭圆方程,求出a、b即可(2)由原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2.联立直线方程和与椭圆的方程,利用求解.【解答】解:(Ⅰ)依题意原点O到切线l:y=﹣x+m的距离为半径1,∴,⇒m=,切线l:y=﹣x+,⇒A(0,),B(,0)∴a=,b=,∴椭圆E的方程为:.(Ⅱ)设A(x1,y1),B(x2,y2),联立,得(b2+a2k2)x2+2a2kmx+a2m2﹣a2b2=0...∵以AB为直径的圆经过坐标原点O,∴;⇒(k2+1)x1x2+km(x1+x2)=m2(a2+b2)=(k2+1)a2b2…①又∵圆O的一条切线l:y=kx+m,∴原点O到切线l:y=kx+m的距离为半径r⇒m2=(1+k2)r2…②由①②得r2(a2+b2)=a2b2.∴以AB为直径的圆经过坐标原点O,则a,b,r之间的等量关为:r2(a2+b2)=a2b2.【点评】本题考查曲线方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了平面向量在求解圆锥曲线问题中的应用,是中档题.21.(12分)(2017•模拟)已知函数f(x)=alnx﹣x+,其中a>0(Ⅰ)若f(x)在(2,+∞)上存在极值点,求a的取值围;(Ⅱ)设x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,记为M(a).则a≤e+时,M(a)是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出函数f(x)的导数,得到a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),求出a的围即可;(Ⅱ)求出函数f(x)的导数,得到[f(x2)﹣f(x1)]max=f(n)﹣f(m),求出M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),根据函数的单调性求出M(a)的最大值即可.【解答】解:(Ⅰ)f′(x)=﹣1﹣=,x∈(0,+∞),由题意得,x2﹣ax+1=0在x∈(2,+∞)上有根(不为重根),即a=x+在x∈(2,+∞)上有解,由y=x+在x∈(2,+∞)上递增,得x+∈(,+∞),检验,a>时,f(x)在x∈(2,+∞)上存在极值点,∴a∈(,+∞);(Ⅱ)若0<a≤2,∵f′(x)=在(0,+∞)上满足f′(x)≤0,∴f(x)在(0,+∞)上递减,∴f(x2)﹣f(x1)<0,∴f(x2)﹣f(x1)不存在最大值,则a>2;∴方程x2﹣ax+1=0有2个不相等的正实数根,令其为m,n,且不妨设0<m<1<n,则,f(x)在(0,m)递减,在(m,n)递增,在(n,+∞)递减,对任意x1∈(0,1),有f(x1)≥f(m),对任意x2∈(1,+∞),有f(x2)≤f(n),∴[f(x2)﹣f(x1)]max=f(n)﹣f(m),∴M(a)=f(n)﹣f(m)=aln+(m﹣n)+(﹣),将a=m+n=+n,m=代入上式,消去a,m得:M(a)=2[(+n)lnn+(﹣n)],∵2<a≤e+,∴ +n≤e+,n>1,由y=x+在x∈(1,+∞)递增,得n∈(1,e],设h(x)=2(+x)lnx+2(﹣x),x∈(1,e],h′(x)=2(1﹣)lnx,x∈(1,e],∴h′(x)>0,即h(x)在(1,e]递增,∴[h(x)]max=h(e)=,∴M(a)存在最大值为.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.[选修4-4:坐标系与参数方程]22.(10分)(2017•模拟)在直角坐标系xOy中,曲线C的参数方程为(α为参数),直线l的参数方程为(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2,θ),其中θ∈(,π)(Ⅰ)求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2,θ),θ∈(,π),即可求θ的值;(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.【解答】解:(Ⅰ)曲线C的参数方程为(α为参数),普通方程为x2+(y﹣2)2=4,极坐标方程为ρ=4sinθ,∵点A的极坐标为(2,θ),θ∈(,π),∴θ=;(Ⅱ)直线l的参数方程为(t为参数),普通方程为x+y﹣4=0,点A的直角坐标为(﹣,3),射线OA的方程为y=﹣x,代入x+y﹣4=0,可得B(﹣2,6),∴|AB|==2.【点评】本题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.[选修4-5:不等式选讲]23.(2017•模拟)已知函数f(x)=4﹣|x|﹣|x﹣3|(Ⅰ)求不等式f(x+)≥0的解集;(Ⅱ)若p,q,r为正实数,且++=4,求3p+2q+r的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.【分析】(I)由题意,分类讨论,去掉绝对值,解不等式即可;(Ⅱ)运用柯西不等式,可3p+2q+r的最小值.【解答】解:(Ⅰ)f(x+)≥0,即|x+|+|x﹣|≤4,x≤﹣,不等式可化为﹣x﹣﹣x+≤4,∴x≥﹣2,∴﹣2≤x≤﹣;﹣<x<,不等式可化为x+﹣x+≤4恒成立;x≥,不等式可化为x++x﹣≤4,∴x≤2,∴≤x≤2,综上所述,不等式的解集为[﹣2,2];(Ⅱ)∵(++)(3p+2q+r)≥(1+1+1)2=9, ++=4∴3p+2q+r≥,∴3p+2q+r的最小值为.【点评】本题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.21 / 21。
2017届四川省成都市高三第二次诊断性考试理科数学试题及答案 精品

四川省成都市2017届高三第二次诊断性检测理数试题数学(理工类)本试卷分选择题和非选择题两部分,第I卷(选择题)第1至2页,第II卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名,考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦拭干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上做答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1. 设复数i=3(i为虚数单位)在复平面中对应点A,z+将OA绕原点O逆时针旋转0°得到OB,则点B在(A)第一象限(B)第二象限(C)第三象限(D)第四象限2. 执行如图的程序框图,若输入的x值为7,则输出的x的值为 (A )41(B )3log 2 (C )2 (D )33. ()101-x 的展开式中第6项系的系数是(A )510C - (B )510C (C )610C - (D )610C4. 在平面直角坐标系xoy 中,P 为不等式⎪⎩⎪⎨⎧≤--≥-+≤01021y x y x y 所表示的平面区域上一动点,则直线OP 斜率的最大值为(A )2 (B )31 (C )21 (D )15. 已知βα,是两个不同的平面,则“平面//α平面β”成立的一个充分条件是(A )存在一条直线l ,βα//,l l ⊂ (B )存在一个平面γ,βγαγ⊥⊥,(C )存在一条直线βα⊥⊥l l l ,, (D )存在一个平面βγαγγ⊥,//,6. 设命题();000000cos cos --cos ,,:βαβαβα+∈∃R p 命题,,:R y x q ∈∀且ππk x +≠2,Z k k y ∈+≠,2ππ,若y x >,则y x tan tan >,则下列命题中真命题是(A )q p ∧ (B )()q p ⌝∧ (C )()q p ∧⌝ (D )()()q p ⌝∧⌝7. 已知P 是圆()1122=+-y x 上异于坐标原点O 的任意一点,直线OP 的倾斜角为θ,若d OP =,则函数()θf d =的大致图像是8. 已知过定点()0,2的直线与抛物线y x =2相交于()()2211,,,y x B y x A 两点.若21,x x 是方程0cos sin 2=-+ααx x 的两个不相等实数根,则αtan 的值是(A )21 (B )21- (C )2 (D )-29. 某市环保部门准备对分布在该市的H G F E D C B A ,,,,,,,等8个不同检测点的环境监测设备进行监测维护.要求在一周内的星期一至星期五检测维修完所有监测点的设备,且每天至少去一个监测点进行检测维护,其中B A ,两个监测点分别安排在星期一和星期二,E D C ,,三个监测点必须安排在同一天,F 监测点不能安排在星期五,则不同的安排方法种数为(A )36 (B )40 (C )48 (D )6010. 已知定义在[)+∞,0上的函数()x f ,当[]1,0∈x 时,;2142)(--=x x f 当1>x 时,()()a R a x af x f ,,1∈-=为常数.下列有关函数()x f 的描述:①当2=a 时,423=⎪⎭⎫⎝⎛f ; ②当,<1a 函数()x f 的值域为[]2,2-; ③当0>a 时,不等式()212-≤x ax f 在区间[)+∞,0上恒成立;④当01-<<a 时,函数()x f 的图像与直线()*-∈=N n a y n 12在[]n ,0内的交点个数为()211nn -+-.其中描述正确的个数有 (A )4 (B )3 (C )2 (D )1第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分。
2020年3月6日四川省成都市高2020届高2017级高三成都七中二诊模拟理科数学试题参考答案

一、选择题
12
34
56
7
8
DC
DA
DD A
C
二、填空题
13.2
14. 3,0 (3, )
15. 0, e
三、填空题
17.解:(Ⅰ)设 an 的公差为 d ,由题意有
9 10 11 12 B BA B
1 6. 3 3
aa122
1 a1
所以 g min (x) g(0) 1 a .……3 分 当 a 1时, g min (x) 1 a 0 , 即 g (x) f (x) 0 ,则 f(x)在 R 上单调递增; ……4 分
当 a 1 时, g min (x) 1 a 0 , 易知当 x 时, g (x) ;当 x 时, g (x) ,
又因为 x12 4 y12 4, x22 4 y22 4 x1 x2 x1 x2 4 y1 y2 y1 y2 0 ,……4 分
kAB
y1 y2 x1 x2
4
x1 x2 y1 y2
; kOC
y3 x3
y1 x1
y2 x2
kABkOC
1 .……6 4
a5(a1
且d 4d )
0
a1 d
1 2
………………4
分
所以 an 1 2n 1 2n 1
Sn
na1
2
an
n2
…………6
分
(Ⅱ)因为 bn
1
a2 n1
1
1
4nn 1
1 4
1 n
n11 ………8
分
所以 Tn
1 4
1
1 1 2 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都七中2017届高三二诊模拟考试数学(理)试卷一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求.把答案涂在答题卷上).1.已知集合{}2,1,0,1,2A =--,{}|lg 0B x x =≤,则AB =( )A .{}1B .{}0,1C .{}0,1,2D .{}1,22.已知i 是虚数单位,若()17ii ,2i a b a b +=+∈-R ,则ab 的值是( ) A .15-B .3-C .3D .153.如图,某组合体的三视图是由边长为2的正方形和直径为2的圆组成,则它的体积为( )A .44π+B .84π+C .44π3+D .48π3+4.为了得到函数21log 4x y +=的图像,只需把函数2log y x =的图像上所有的点( ) A 向左平移1个单位长度,再向上平移2个单位长度 B 向右平移1个单位长度,再向上平移2个单位长度 C 向左平移1个单位长度,再向下平移2个单位长度 D 向右平移1个单位长度,再向下平移2个单位长度5.某程序框图如图所示,若使输出的结果不大于20,则输入的整数i 的最大值为( )A .3B .4C .5D .6正视图侧视图俯视图6.如图,圆锥的高PO =底面⊙O 的直径2AB =,C 是圆上一点,且30CAB ∠=,D 为AC 的中点,则直线OC 和平面PAC 所成角的正弦值为( ) A .12BCD .137.若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A.⎛ ⎝⎭B.30,⎛⎫⎛⎫⎪ ⎪⎪⎪⎝⎭⎝⎭ C .33⎡-⎢⎣⎦D .3,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭8.三棱锥A BCD -中,AB AC AD 、、两两垂直,其外接球半径为2,设三棱锥A BCD -的侧面积为S ,则S 的最大值为( ) A .4B .6C .8D .169.已知)221e πa x dx -=⎰,若()20172201701220171()ax b b x b x b x x -=++++∈R ,则20171222017222b b b +++的值为( ) A .0 B .1- C .1D .e10.由无理数引发的数学危机一直延续到19世纪,直到1872年,德国数学家戴金德提出了“戴金德分割”,才结束了持续2000多年的数学史上的第一次大危机.所谓戴金德分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足(),,MN M N =∅,M 中的每一个元素都小于N 中的每一个元素,则称(),M N 为戴金德分割.试判断,对于任意戴金德分割(),M N ,下列选项中一定不成立的是( ) A .M 没有最大元素,N 有一个最小元素 B .M 没有最大元素,N 也没有最小元素 C .M 有一个最大元素,N 有一个最小元素 D .M 有一个最大元素,N 没有最小元素11.已知函数()3211201732f x mx nx x =+++,其中{}{}2,4,6,8,1,3,5,7m n ∈∈,从这些函数中任取不同的两个函数,在它们在(1,(1))f 处的切线相互平行的概率是( )A .7120B .760 C .730D .以上都不对 12.若存在正实数x y z 、、满足e 2z x z ≤≤且ln y z x z =,则ln yx的取值范围为( )A .[)1,+∞B .[]1,e 1-C .(],e 1-∞-D .11,ln 22⎡⎤+⎢⎥⎣⎦二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.13.在ABC △中,边a 、b 、c 分别是角A 、B 、C 的对边,若()cos 3cos b C a c B =-,则cos B =_________.14.已知点(,)P x y 的坐标满足条件400x y x y x -≤⎧⎪+≤⎨⎪≥⎩,若点O 为坐标原点,点()1,1M --,那么OM OP 的最大值等于_________.15.动点(),M x y 到点()2,0的距离比到y 轴的距离大2,则动点M 的轨迹方程为_________.16.在ABC △中,A θ∠=,D E 、分别为AB AC 、的中点,且BE CD ⊥,则cos2θ的最小值为_________. 三、解答题(17~21每小题12分,22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤).17.设数列{}n a 的前n 项和12n n S a a =-,且1231a a a +、、成等差数列. (1)求数列{}n a 的通项公式;(2)求数列1n n a ⎧⎫-⎨⎬⎩⎭的前n 项和n T .18.为宣传3月5日学雷锋纪念日,成都七中在高一,高二年级中举行学雷锋知识竞赛,每年级出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为321,,432,乙队每人答对的概率都是23.设每人回答正确与否相互之间没有影响,用X 表示甲队总得分.(1)求随机变量X 的分布列及其数学期望()E X ; (2)求甲队和乙队得分之和为4的概率.19.已知等边AB C ''△,BCD △中,1,BD CD BC ===1所示),现将B 与B ',C 与C '重合,将AB C ''△向上折起,使得AD =2所示).(1)若BC 的中点O ,求证:BCD AOD ⊥平面平面;(2)在线段AC 上是否存在一点E ,使ED BCD 与面成30︒角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.20.已知圆222:2,E x y +=将圆2E按伸缩变换:x x y y '=⎧⎪⎨'=⎪⎩后得到曲线1E(1)求1E 的方程;(2)过直线2x =上的点M 作圆的两条切线,设切点分别是A B 、,若直线AB 与交于C D 、两点,求||||CD AB 的取值范围. 21.已知函数()sin ln sin g x x x θθ=--在[)1,+∞单调递增,其中()0,πθ∈(1)求θ的值; (2)若()()221x f x g x x -=+,当[]1,2x ∈时,试比较()f x 与()12f x '+的大小关系(其中()f x '是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,()e 11x x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.【选修4—4:坐标系与参数方程】在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :()2sin 2cos 0a a ρθθ=>,又过点()2,4P --的直线l的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-+⎪⎩(t 为参数),l 与曲线C 分别交于M N 、. (1)写出曲线C 的平面直角坐标系方程和l 的普通方程;(2)若,,PM MN PN 成等比数列,求a 的值. 23.【选修4—5:不等式选讲】 设函数()f x =()10x x a a a++-> (1)证明:()2f x ≥;2E 1E BA CDf ,求a的取值范围.(2)若(3)5四川省成都七中2017届高三二诊模拟考试数学(理)试卷答 案一、选择题 1~5.ABDCB 6~10.CBCBC 11~12.BB二、填空题 13.1314.415.()280y x x =≥或()00y x =<16.725三、解答题17.解:(1)由已知12n n S a a =-有()11221n n n n n a S S a a n --=-=->, 即12(1)n n a a n -=>,从而21312,4a a a a ==. 又123,1,a a a +成等差数列,即()13221a a a +=+,∴()1114221a a a +=+,解得12a =.∴数列{}n a 是首项为2,公比为2的等比数列故2n n a =.…………6分(2)由(1)得112nn n n a -=-,因数列1n a ⎧⎫⎨⎬⎩⎭是首项为12,公比为12的等比数列, ∴()()111221*********nn nn n n n T ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦=-=---.………………12分 18.解:(1)X 的可能取值为0,1,2,3.()1111043224P X ==⨯⨯=,()311121111114324324324P X ==⨯⨯+⨯⨯+⨯⨯=,()32112131111243243243224P X ==⨯⨯+⨯⨯+⨯⨯=,()321134324P X ==⨯⨯=,X ∴的分布列为()11111012324424412E X =⨯+⨯+⨯+⨯=.…………………………………………………………7分 (2)设“甲队和乙队得分之和为4”事件A ,包含“甲队3分且乙队1分”,“甲队2分且乙队2分”,“甲队1分且乙队3分”三个基本事件,则:()223123312111211214332433433P A C C ⎛⎫⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………………………………12分19.解:(1)ABC △为等边三角形,BCD △为等腰三角形,且O 为中点 ∴,BCAO BC DO ⊥⊥,AO DO O =,BC ∴⊥平面AOD ,又BC ⊂面ABC BCD AOD ∴⊥平面平面∴平面BCD ⊥平面AOD …………3分(2)法一:作,AH DO ⊥交DO 的延长线于H ,则平面BCD 平面,AOD HD=则AH ⊥平面BCD ,在t R BCD △中,12OD BC ==,在Rt ACO △中,AO AC =,在AOD △中, 222cos 2AD OD AO ADO AD OD +-∠==⋅sin ADO ∴∠=Rt ADH △中sin 1AH AD ADO =∠=,设(0CE x x =≤,作EF CH F ⊥于,平面AHC ⊥平面BCD ,,EF BCD EDF ∴⊥∠平面就是ED BCD 与面所成的角.由,2EF CE EF xAH AC =∴=(※), 在Rt CDE △中,DE =ED BCD 与面成30︒1,12xx =∴=,当1CE =时,ED BCD 与面成30角………………………………………………………………………9分DABCOEFH法二:在解法1中接(※),以D 为坐标原点,以直线DB DC 、分别为x 轴,y 轴的正方向,以过D 与平面BCD 垂直的直线为z 轴,建立空间直角坐标系则()0,0,0,,D E x ⎫⎪⎪⎝⎭2DE ⎛⎫= ⎪⎪⎝⎭, 又平面BCD 的一个法向量为(0,0,1)n =,要使ED BCD 与面成30角,只需使DE 与n 成60, 只需使cos60DE nDEn=1,12xx =∴=, 当1CE =时ED BCD与面成30角法三:将原图补形成正方体(如右图所示),再计算 (3)将原图补形成正方体,则外接球的半径r=,表面积:3π………………………………12分 20.解:(1)按伸缩变换:2x x y y '=⎧⎪⎨'=⎪⎩得:()()2222,x y ''+=则1E :2212x y +=…………………3分(2)设直线2x =上任意一点M 的坐标是()2,,t t ∈R 切点A B 、坐标分别是()()1122,,x y x y 、则经过A点的切线斜率是11x y -,方程是,经过B 点的切线方程是,又两条切线AM BN 、相112x x y y +=222x x y y +=z交于()2,M t 11222222x ty x ty +=⎧∴⎨+=⎩ 所以经过A B 、两点的直线l 的方程是22x ty +=当()()0,1,1,1,1,,1,22t A B C D ⎛⎛=-- ⎝⎭⎝⎭,|||||2,||2CD CD AB AB ∴==∴= 当0t ≠时,联立222212x y t x y -⎧=⎪⎪⎨⎪+=⎪⎩,整理得()222816820t x x t +-+-=设,C D 坐标分别为()()3344,,x y x y 、则3422342168828x x t t x x t ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩)224||8t CD t +=+||AB =)3224||||t CD AB +∴=244,t x +=>设()110,4f x u x ⎛⎫==∈ ⎪⎝⎭又令 ()313261,0,4x u u u ϕ⎛⎫=-++∈ ⎪⎝⎭()201960,4x u b u ϕ=-+=⇒=()104u ϕ⎛⎫∴ ⎪⎝⎭在,()()104u ϕϕϕ⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭,(()(1,f x∴∈,∴||||2CD AB ⎛⎫∈ ⎪ ⎪⎝⎭综上所述,||||CD AB ∴的取值范围是⎫⎪⎪⎣⎭……………………………………………………………………………………………12分 21.解:(1)由题:()1sin 0g x x θ'=-≥恒成立[)()1sin 1,x x θ∴≥∈+∞恒成立 sin 1θ∴≥sin 1θ∴=()0,πθ∈π2θ∴=……2分(2)()()222121ln 1x f x g x x x x x x -=+=-+--()231221f x x x x '∴=--+ ()()23312ln 2f x f x x x x x x '∴-=-++--令()ln h x x x =-,()233122H x x x x =+--()110h x x'∴=-≥()h x ∴单调递增则()()11h x h ≥=又()24326x x H x x--+'=令()2326x x x ϕ=--+显然()x ϕ在[]1,2单调递减 且()()11,210,ϕϕ==-则()01,2x ∃∈使得()H x 在()01,x 单调增,在()0,2x 单调递减∴()()(){}()min1min 1,222H x H H H ===-∴()()122H x H ≥=- ∴()()()()()()min min12f x f x h x H x h x H x '-=+≥+=又两个函数的最小值不同时取得;∴()()12f x f x '->即:()()12f x f x '>+……………………………………………………………7分(3)()e 11x x kg x --≥+恒成立,即:()()e ln 1110xk x k x ++-+-≥恒成立,令()()()e ln 111xF x k x k x =++-+-,则()()e 11x kF x k x '=+-++ 由(1)得:()()1g x g ≥即()ln 101x x x --≥≥,即:()()1ln 110x x x +≥++≥ 即:()()ln 10x x x ≥+≥e 1x x ∴≥+()()()111kF x x k x '∴≥++-++ 当1k =时,0x ≥()()()11112011k F x x k x x x '≥++-+≥++-≥++∴()F x 单调增,∴()()00F x F ≥=满足当(0,1)k ∈0x ≥由对角函数性质()()()()111101kF x x k k k x '≥++-+≥+-+=+ ∴()F x 单调增,∴()()00F x F ≥=满足当0k ≤时,0x ≥由函数的单调性知()()()()111101kF x x k k k x '≥++-+≥+-+=+ ∴()F x 单调增,∴()()00F x F ≥=满足当1k >时,()()2e 1xkF x x ''=-+则()F x ''单调递增,又()010F k ''=-<且(),0x F x ''→+∞>则()F x ''在(0,)+∞存在唯一零点0t ,则()F x '在0(0,)t 单减,在0(,)t +∞单增,∴当0(0,)x t ∈时,()()00F x F '<=∴()F x 在0(0,)t 单减,∴()(0)0F x F <=不合题意综上:1k ≤………………………………………………………………………………………………12分22.解:(Ⅰ)曲线C 的直角坐标方程为()220y ax a >=- 11 - / 11直线l 的普通方程为2=0x y --.………………………………………………………………………4分 (Ⅱ)将直线l 的参数方程与C 的直角坐标方程联立,得()()()()224840840t a t a a a +++=*∆=+>-.设点M N 、分别对应参数12,t t 、恰为上述方程的根. 则1212,,||PM t PN t MN t t ===-.由题设得()()221212121212.4t t t t t t t t t t -+-即=,=由(*)得()()121224,840t t a t t a =>+=++则有 ()()24540,a a -=++得1,a =或4,a =-因为1a >,所以1a =.…………………………………10分 23.解:(1)证明:由绝对值不等式的几何意义可知:()min 12,f x a a=+≥当且仅当1a =取等,所以()2f x ≥.…………………………………………………………………………………………………4分 (2)因为()35f <,所以1|3||3|5a a ++-<⇔13|3|5a a ++-<⇔1|3|2a a-<-⇔ 11232a a a -<-<-a <10分。